The Existence and Nonexistence of Global Solutions of the Cauchy Problem for Systems of three semilinear Klein-Gordon equations

A. B. Aliev, G. I. Yusifova

Abstract


n/a

References


ISegal, I.: Nonlinear partial differential equations in quantum eld theory. Proc.

Symp. Appl. Math. A.M.S. 17, 210{226 , (1965). I. E., Segal, "The global Cauchy

problem for a relativistic scalar eld with power interaction," Bull. Soc. Math. France,

, No. 2, 129-135 (1963).

V.G. Makhankov, Dynamics of classical solutions in integrable systems, Phys. Rep.

(1978) 1 128.

L.A. Medeiros, G. Perla Menzala, On a mixed problem for a class of nonlinear

Klein Gordon equations, Acta Math. Hungar. 52 (1988) 61 69.

Lions JL. Quelques Methodes De Resolution Des Problemes Aux limites Non

Lineaires. Dunod Gauthier-Villars: Paris, 1969.

T.T. Li, Y. Zhou, Breakdown of solutions to utt􀀀Δu+ut = juj1+ , Discrete Contin.

Dyn. Syst. 1 (1995) 503{520.

Q.S. Zhag, A blow-up result for a nonlinear wave equation with damping, C. R. Acad.

Sci. Paris, Serie I 333 (2001) 109{114. The critical case.

G.Todorova ,B. Yordanov, Critical exponent for a nonlinear wave equation with damp-

ing, C. R. Acad. Sci. Paris, t. 330, Serie I, p. 557{562, 2000

B.R. Ikehata, Y. Miataka, Y. Nakataka, Decay estimates of solutions of dissipative

wave equations in Rn with lower power nonlinearities, J. Math. Soc. Japan 56(2)

(2004) 365{373.

D. H. Sattinger, On global solutions for nonlinear hyperbolic equations Arch. Ration.

Mech. Anal. 30, 148{172 (1968).

] L.E. Payne, D.H. Sattinger, Saddle points and instability of nonlinear hyperbolic

equations, Israel Math. J. 22 (1975) 273 303.

Y.C. Liu, On potential wells and vacuum isolating of solutions for semilinear wave

equations, J. Differential Equations 192 (2003) 155 169.

R.Z. Xu, Global existence, blow up and asymptotic behaviour of solutions for nonlin-

ear Klein Gordon equation with dissipative term, Math. Methods Appl. Sci. (2009),

in press (doi:10.1002/mma.1196).

J. Zhang, On the standing wave in coupled non-linear Klein Gordon equations, Math.

Methods Appl. Sci. 26 (2003) 11 25

Wenjun Liu, Global Existence, Asymptotic Behavior and Blow-up of Solutions for

Coupled Klein{Gordon Equations with Damping Terms, Nonlinear Anal.,73, 244{

(2010).

A. B. Aliev and A. A. Kazimov, The Existence and Nonexistence of Global Solutions

of the Cauchy Problem for Klein{Gordon Systems. Dokl. Math. 87 (1), 39{41 (2013).

Aliev, A.B., Kazimov, A.A.: Nonexistence of Global Solutions of the Cauchy Prob-

lem for Systems of Klein{Gordon Equations with Positive Initial Energy, Differential

Equations, 51 (12), 1563{1568, (2015).

Alvino, P.L.Lions, G. Trombetti, Comparison results for elliptic and parabolic via

Schwarz symmetrization, Annales de l'I.H.P, section C, tome 7, Nr2, (1990), 37-65.

S. Kesavan, Symmetrization and applications, Series in Analysis, Vol. 3, (2006).

G. Polya, G. Szeg?o, Isoperimetric inequalities in mathematical physics, Ann. Math.

Stud. Princeton, University Press, 27 (1952)., 645{651 (1970)W.A. : On weak solu-

tions of semi-linear hyperbolic equations. Anais

W. A. Straus, On weak solutions of semi-linear hyperbolic equations, An. Acad. Brazil

Ci. 42 (1970), 645-651.

R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975


Refbacks

  • There are currently no refbacks.


free counters