Statistical approximation by (p; q)-analogue of Bernstein-Stancu Operators

Asif Khan, Vinita Sharma


In this paper, some approximation properties of (p; q)-analogue of Bernstein-Stancu Operators has been studied. Rate of statistical convergence by means of modulus of continuity and Lipschitz type maximal functions has been investigated. Monotonicity of (p; q)-Bernstein-Stancu Operators and a global approximation theorem by means of Ditzian-Totik modulus of smoothness is established.
A quantitative Voronovskaja type theorem is developed for these operators. Furthermore, we show comparisons and some illustrative graphics for the convergence of operators to a function.


(p; q)-integers; (p; q)-Bernstein-Stancu operators; Positive linear operators; Korovkin type approximation; Statistical convergence; Monotonicity for convex functions; Ditzian-Totik modulus of smoothness; Voronovskaja type theorem.


T Acar, A. Aral, S. A Mohiuddine, Approximation By Bivariate (p; q)Bernstein-Kantorovich op-

erators, Iranian Journal of Science and Technology, Transactions A: Science, DOI:10.1007/s40995-


T. Acar, S.A. Mohiudine, M. Mursaleen, Approximation by (p; q)Baskakov Durrmeyer Stancu

operators, Communicated.

T. Acar, (p; q)-Generalization of Szsz-Mirakyan operators, Mathematical Methods in the Applied

Sciences, DOI: 10.1002/mma.3721.

T. Acar, A. Aral, S.A. Mohiuddine, On Kantorovich modication of (p; q)-Baskakov operators,

Journal of Inequalities and Applications, 98 (2016).

S. N. Bernstein, Constructive proof of Weierstrass approximation theorem, Comm. Kharkov

Math. Soc. (1912)

P.E. Bezier, Numerical Control-Mathematics and applications, John Wiley and Sons, London,

Qing-Bo Cai, Guorong Zhoub, On (p; q)-analogue of Kantorovich type Bernstein-Stancu-Schurer

operators, Applied Mathematics and Computation, Volume 276, 5 March 2016, Pages 1220.

G. Gasper, M. Rahman, Basic hypergometric series, Cambridge University Press, Cambridge,

Mahouton Norbert Hounkonnou, Joseph Desire Bukweli Kyemba, R(p; q)-calculus: dierentia-

tion and integration, SUT Journal of Mathematics, Vol. 49, No. 2 (2013), 145-167.

R. Jagannathan, K. Srinivasa Rao, Two-parameter quantum algebras, twin-basic numbers, and

associated generalized hypergeometric series, Proceedings of the International Conference on

Number Theory and Mathematical Physics, 20-21 December 2005.

A. Karaisa, On the approximation properties of bivariate (p; q)Bernstein operators


P. P. Korovkin, Linear operators and approximation theory, Hindustan Publishing Corporation,

Delhi, 1960.

A. Lupas, A q-analogue of the Bernstein operator, Seminar on Numerical and Statistical Calculus,

University of Cluj-Napoca, 9(1987) 85-92.

S. Ersan and O. Dogru, Statistical approximation properties of q-Bleimann, Butzer and Hahn

operators, Mathematical and Computer Modelling, 49 (2009) 1595{1606.

H. Fast, Sur la convergence statistique, Colloq. Math. 2(1951) 241-244.

A. D. Gadjiv and C. Orhan, Some approximzation theorems via statistical convergence, Rocky

Mount. J. Math., 32 (2002) 129{138.

M. Mursaleen, K. J. Ansari, Asif Khan, On (p; q)-analogue of Bernstein Operators, Applied

Mathematics and Computation, 266 (2015) 874-882, (Erratum, 266 (2015) 874-882.)

Ditzian, Z, Totik,V: Moduli of smoothness.Springer,New York (1987)

M. Mursaleen, K. J. Ansari and Asif Khan, Some Approximation Results by (p; q)-analogue

of Bernstein-Stancu Operators, Applied Mathematics and Computation 264,(2015), 392-402.

(Some Approximation Results by (p; q)-analogue of Bernstein-Stancu Operators (Revised)

arXiv:1602.06288v1 [math.CA].)

M. Mursaleen, K. J. Ansari and Asif Khan, Some approximation results for Bernstein-Kantorovich

operators based on (p; q)-calculus, accepted for publication in Scientic bulletin.

M. Mursaleen, Md. Nasiruzzaman, Asif Khan and K. J. Ansari, Some approximation results on

Bleimann-Butzer-Hahn operators dened by (p; q)-integers, Filomat 30:3 (2016), 639-648, DOI


M. Mursaleen, Asif Khan, Generalized q-Bernstein-Schurer Operators and Some Approximation

Theorems, Journal of Function Spaces and Applications Volume 2013, Article ID 719834, 7 pages

M. Mursaleen, F. Khan and Asif Khan, Approximation by (p; q)-Lorentz polynomials on a com-

pact disk, Complex Anal. Oper. Theory, DOI: 10.1007/s11785-016-0553-4.

On (p; q)-analogue of divided dierence and Bernstein operators, M. Mursaleen, Md. Nasiruzza-

man, Faisal khan and Asif Khan (communicated).

M. Mursaleen and Md. Nasiruzzaman and Ashirbayev Nurgali, Some approximation results on

Bernstein-Schurer operators dened by (p; q)-integers, Journal of Inequalities and Applications

(2015), 249, DOI 10.1186/s13660-015-0767-4.

N. Mahmudov and P. Sabancigil, A q-analogue of the Meyer-Konig and Zeller Operators. Bull.

Malays. Math. Sci. Soc. (2), 35(1) (2012) 39-51

Halil Oruc, George M. Phillips, q-Bernstein polynomials and Bezier curves, Journal of Compu-

tational and Applied Mathematics 151 (2003) 1-12.

Soya Ostrovska, On the Lupas q-analogue of the bernstein operator, Rocky mountain journal of

mathematics Volume 36, Number 5, 2006.

G.M. Phillips, Bernstein polynomials based on the q-integers, The heritage of P.L.Chebyshev,

Ann. Numer. Math., 4 (1997) 511{518.

G.M. Phillips, A De Casteljau Algorithm For Generalized Bernstein Polynomials, BIT 36 (1)

(1996), 232-236.

Approximation by Meyer-Konig and Zeller Operators using (p; q)-Calculus, U. Kadak, Asif Khan

and M. Mursaleen, (Communicated)

Ugur Kadak, On weighted statistical convergence based on (p; q)-integers and related approxima-

tion theorems for functions of two variables, Journal of Mathematical Analysis and Applications,

May 2016, DOI: 10.1016/j.jmaa.2016.05.062.

Shin Min Kang, Arif Raq, Ana-Maria Acu, Faisal Ali and Young Chel Kwun, Some approx-

imation properties of (p; q)-Bernstein operators, Journal of Inequalities and Applications, 2016

(169), DOI: 10.1186/s13660-016-1111-3.

Khalid Khan, D.K. Lobiyal, Adem Kilicman, A de Casteljau Algorithm for Bernstein type Poly-

nomials based on (p; q)-integers, arXiv 1507.04110v4.

Khalid Khan, D.K. Lobiyal, Bezier curves based on Lupas (p; q)-analogue of Bern-

stein functions in CAGD, (Accepted) Journal of Computational and Applied Mathematics

Khalid Khan, D.K. Lobiyal, Bezier curves and surfaces based on modied Bernstein polynomials,


Khalid Khan, D.K. Lobiyal, Algorithms and identities for (p; q)-Bezier curves via (p; q)-Blossom.


P. P. Korovkin, Linear operators and approximation theory, Hindustan Publishing Corporation,

Delhi, 1960.

V. Kac, P. Cheung, Quantum Calculus, in: Universitext Series, vol. IX, Springer-Verlag, 2002.

A. Lupas, A q-analogue of the Bernstein operator, Seminar on Numerical and Statistical Calculus,

University of Cluj-Napoca, 9(1987) 85-92.

N. I. Mahmudov and P. Sabancgil, Some approximation properties of Lupas q-analogue of Bern-

stein operators, arXiv:1012.4245v1 [math.FA] 20 Dec 2010.

A. Wa, Nadeem Rao, Approximation properties of (p; q)-variant of Stancu-Schurer and

Kantorovich-Stancu-Schurer operators, arXiv:1508.01852v2.


  • There are currently no refbacks.

free counters