Uncountable Frames in Non-Separable Hilbert Spaces and their characterization

M. I. Ismailov, Z. V. Mamedova, Y. I. Nasibov

Abstract


The concepts of Bessel families and frames in non-separable Hilbert
spaces are introduced in this work. Besselianness criterion for a family is found.
Similar to the usual case, analysis, synthesis and frame operators are defined,
their properties are studied. Many results related to usual frames are extended
to new case. Examples are given.


References


R. J. Duffin, A.C.Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc.

(1952), 341-366.

Ch. Chui, Wavelets: a tutorial in theory and applications. Academic Press, Boston, 1992, 724

p.

Meyer Y. Wavelets and operators, Herman, Paris, 1990

I. Daubechies, Ten lectures on wavelets. SIAM, Philadelphia, 1992.

Mallat S. A wavelet tour of signal processing, Academic Press, San Diego, 1999

R. Young, An introduction to nonharmonic Fourier series, Academic Press, New York, 1980.

Ch. Heil, A Basis Theory Primer, Springer, 2011, 534 p.

O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser Boston, 2002.

O. Christensen, Frames and bases. An introductory course, Birkhauser, Boston, 2008.

O. Christensen, D.T. Stoeva, p-frames in separable Banach spaces, Advances in Computational

Mathematics 18(2003), 17-126.

I.M. Dremin, O.V. Ivanov, V.A. Nechitailo, Wavelets and their uses. Usp. phisics nauk, 171(5)

(2001), 465-501.

A. Aldroubi, Q. Sun, W.Sh. Tang, p-frames and shift invariant subspaces of Lp , J. Fourier

Anal. Appl., 7(1) (2001), 1-22

N.K. Bari, Biorthogonal systems and bases in Hilbert space, Moscow Gos. Univ. Uceneye

Zapiski 148, Matematika 4 (1951), 69-107.

B.T. Bilalov, Z.G. Guseinov, p-Bessel and p-Hilbert systems and p-bases, Dokl. NANA,

LXIV(3) (2008), 3-8.

B.T. Bilalov, Z.G. Guseinov, K -Bessel and K -Hilbert systems and K - bases, Doklady

Mathematics, 80(3) (2009), 826-828.

B.T. Bilalov, Sh.M. Hashimov, On Decomposition In Banach Spaces, Proceedings of the IMM

of NAS of Azerbaijan, 40(2) (2014), 97-106.

S.R. Sadigova, On Frame Properties Of Degenerate System Of Exponents In Hardy Classes,

Caspian Journal of Applied Mathematics, Ecology and Economics, 1(1)(2013), 97-103.

S.R. Sadigova, The general solution of the homogeneous Riemann problem in the weighted

Smirnov classes, Proc. of the IMM of NAS of Azerbaijan, 40(2) (2014), 115-124.

S.R. Sadigova, I. Ismailov, On Frames of Double and Unary Systems in Lebesgue Spaces,

Pensee Journal, 76(4) (2014), 189-202.

S.R. Sadigova, Z.A. Kasumov, On atomic decomposition for Hardy classes with respect to

degenerate exponential systems, Proc. of the IMM of NAS of Azerbaijan, 40(1) (2014), 55-67

A. Rahimi, B. Daraby, Z. Darvishi, Construction of Continuous Frames in Hilbert spaces, Azerbaijan Journal of Mathematics, 7(1), 2017, 49-58.

Li S., Ogawa H. Pseudoframes for subspaces with applications, J. Fourier Anal. Appl. 10

(2004) pp. 409-431

Feichtinger H.G., Grochening K.H. Banach spaces related to integrable group representations

and their atomic decompositions, I., J. of Func. Analysis. 86(2), 1989, pp. 307-340

Feichtinger H.G., Grochening K.H. Banach spaces related to integrable group representations

and their atomic decompositions, II., Mh. Math. 108, 1989, pp.129–148.

Grochenig K.H. Describing Functions: Atomic Decompositions Versus Frames. Mh. Math.

, 1991, pp. 1-41.

Sun W. Stability of g-frames. Journal of Mathematical Analysis and Applications, 326 (2),

, pp. 858-868.

Sun W. G-frames and g-Riesz bases. Journal of Mathematical Analysis and Applications, 322

(1), 2006, pp. 437-452.

Bilalov B.T., Guliyeva F.A. Noetherian perturbation of frames. Pensee Journal (ISSN: 0031-

,Vol.75,Issue.12,2013,pp.425-431

Bilalov B.T., Guliyeva F.A. t-Frames and their Noetherian Perturbation. Complex Analysis

and Operator Theory, DOI 10.1007/s11785-014-0416-9

Bilalov B.T., Mamedova Z.V. On the frame properties of some degenerate trigonometric sys-

tem, Dokl. Acad. Nauk, v.LXVIII, 5, 2012, pp. 14-18

Bilalov B.T., Guliyeva F.A. On The Frame Properties of Degenerate System of Sines, Journal

of Function Spaces and Applications, Vol. 2012 (2012), Article ID 184186, 12 pages, doi:10.

/2012/184186

Kadison R., Singer I. Extensions of pure states, Amer. J. Math. 81(1959), 547-564.

Casazza P.G., Vershynin R. Kadison-Singer meets Bourgain-Tzafriri, Preprint

Casazza P.G., Christensen O., Lindner A., Vershynin R. Frames and the Feichtinger Conjec-

ture, Proceedings of AMS, Vol. 133 No. 4 (2005) 1025-1033.

Bourgain J., Tzafriri L. On a problem of Kadison and Singer, J. Reine Angew. Math. 420

(1991), 1-43.

Marcus A., Spielman D. A., Srivastava N. Interlacing families II: Mixed characteristic poly-

nomials and the Kadison-Singer problem //arXiv preprint arXiv:1306.3969, 2013.

Weaver, Nik. ”The Kadison-Singer problem in discrepancy theory.” Discrete mathematics

1 (2004): 227-239

Weaver, Nik. ”The Kadison-Singer problem in discrepancy theory II.” arXiv:1303.2405v1, 11

Mar 2013

Casazza P.G., Matthew F., Janet C.T., Eric W. ”The Kadison-Singer problem in mathematics

and engineering: a detailed account.” Contemporary Mathematics 414 (2006): 299.

Cruz-Uribe D.V., Fiorenza A. Variable Lebesgue Spaces: Foundations and Harmonic Analysis.

Springer, 2013, 312 p.

Kokilashvili V., Meshki A., Rafeiro H. Samko S. Integral operators in nonstandard function

spaces, Birkhauser-Springer, 2016, 1003 p.

Adams D.R. Morrey spaces. Birkhauser-Springer, 2015, 120 p.

Bardaro C., Musielak J., Vinti G. Nonlinear integral operators and applications, Walter de

Gruyter-Berlin-New York, 2013, 201 p.

Ismayilov M. I., Nasibov Y. I. One Generalization of Banach Frame. Azerb. J. of Math., vol.

, No. 2, 2016, pp.143-159

Ole Christensen, A Short Introduction To Frames, Gabor Systems, And Wavelet Systems.

Azerb. J. of Math., vol. 4, No. 1, 2014, pp.25-39

Ole Christensen, Maria I. Zakowicz , Paley-Wiener type perturbations of frames and the

deviation from perfect reconstruction . Azerb. J. of Math., vol. 7, No. 1, 2017, pp.59-69

Kasumov Z.A., Hashimov Ch.M. On the equivalent bases of cosines in generalized Lebesgue

spaces. Proceedings of the Institute of Mathematics and Mechanics, National Academy of

Sciences of Azerbaijan Volume 41, Number 2, 2015, Pages 70–76


Refbacks

  • There are currently no refbacks.


free counters