Simultaneous statistical approximation of analytic functions and their derivatives by k-positive linear operators

A.D. Gadjiev

Abstract

In this paper we obtain the theorems on simultaneous statistical approximation of analytic functions and their derivatives by the sequences of k-positive linear operators and its derivatives in the unite disk of complex plane.

Key Words and Phrases: The space of analytical functions, linear k-positive operators, Simultaneous approximation, Korovkin type theorem.
2000 Mathematics Subject Classifications: 41A25, 41A36.

1. Introduction

Let D be the open unit disk of $|z|<1, D=\{z:|z|<1\}$ and $A(D)$ denote the space of all analytic functions in D. For each function $f \in A(D)$ the Taylor expansion is given by

$$
f(z)=\sum_{k=0}^{\infty} f_{k} z^{k},
$$

where f_{k} is the Taylor coefficients of $f(z)$, and $\limsup _{k \rightarrow \infty}\left|f_{k}\right|^{\frac{1}{k}}=1$. This condition imply that for any fixed $r<1$ the series in right hand-side is uniformly convergent if $|z| \leq r$. Denoting for any $r<1$

$$
\begin{equation*}
\|f\|_{A(D), r}=\max _{|z| \leq r}|f(z)|, \tag{1}
\end{equation*}
$$

we see that $A(D)$ is a Fréchet space with the family of norms $\|f\|_{A(D), r}$ depending on the number r.

It is easy to see that any linear operator acting from $A(D)$ to $A(D)$ can be represented in the form

$$
\begin{equation*}
T f(z)=\sum_{k=0}^{\infty} z^{k} \sum_{m=0}^{\infty} f_{m} T_{k, m}, \tag{2}
\end{equation*}
$$

(C) 2010 AZJM All rights reserved.
with some matrix of $T_{k, m}$ such that

$$
\limsup _{k \rightarrow \infty}\left|\sum_{m=0}^{\infty} f_{m} T_{k, m}\right|^{\frac{1}{k}}=1
$$

We will study the sequence of linear operators

$$
T_{n} f(z)=\sum_{k=0}^{\infty} z^{k} \sum_{m=0}^{\infty} f_{m} T_{k, m}^{(n)}
$$

acting on functions $f \in A(D)$ and having the properties of " k-positivity" in the sense of our work [6]. Recall, that by the definition (see [6]) a linear operator T, acting from $A(D)$ to $A(D)$, is called k-positive if it preserves the class of functions with non-negative Taylor coefficients. As were shown in [6] linear operator T_{n}, given by the formula (2), is k-positive if and only if $T_{k, m}^{(n)} \geq 0$ for all n, k, m. Note that the different approximation properties of linear k-positive operators were studied in the papers [1], [2], [3], [7], [8], [9], [10], [12], [13]. The papers [2],[3],[8] and [10] is devoted to statistical approximations of analytic functions by the sequences of k-positive linear operators. We recall the concept of "statistical convergence" (see [5]). A sequence α_{n} is said to be statistically convergent to a number α if for every $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \frac{\left|\left\{k \leq n:\left|\alpha_{k}-\alpha\right|>\varepsilon\right\}\right|}{n}=0
$$

where $\left|\left\{k \leq n:\left|\alpha_{k}-\alpha\right|>\varepsilon\right\}\right|$ be the number of all $k \leq n$, for which $\left|\alpha_{k}-\alpha\right|>\varepsilon$. In this case we write $s t-\lim _{n \rightarrow \infty} \alpha_{n}=\alpha$.

Note that in the paper [11] have been proved the first Korovkin type theorems on the statistical approximation by positive operators and given the definition of order of statistical approximation by positive linear operators.

2. Main results

Let $f_{n}(z)$ be a sequence of analytic functions in D. Then we can write

$$
f_{n}(z)=\sum_{k=0}^{\infty} f_{n, k} z^{k}, \text { where } \limsup _{k \rightarrow \infty}\left|f_{n, k}\right|^{\frac{1}{k}}=1, \text { for any fixed natural } n
$$

The following lemma is a statistical analogue of the lemma on the uniform convergence of the sequence of analytic functions in $A(D)$, proved in the paper [4].
Lemma 1. To the sequence $f_{n}(z)$ statistically tends to zero in $A(D)$ necessary and sufficient to satisfy the condition

$$
\begin{equation*}
\left|f_{n, k}\right| \leq \varepsilon_{n}\left(1+\delta_{n}\right)^{k}, \quad k=0,1,2, \ldots \tag{3}
\end{equation*}
$$

where δ_{n} tends to zero and ε_{n}-statistically tends to zero as $n \rightarrow \infty$.

Proof. Let (3) holds. Then, by (1), for any $r<1$:

$$
\left\|f_{n}\right\|_{A(D), r} \leq \varepsilon_{n} \sum_{k=0}^{\infty}\left(1+\delta_{n}\right)^{k} r^{k}
$$

and we can write

$$
\left\|f_{n}\right\|_{A(D), r} \leq \frac{\varepsilon_{n}}{1-r\left(1+\delta_{n}\right)}
$$

because by the condition $\lim _{n \rightarrow \infty} \delta_{n}=0$ we can choose $\delta_{n}<\frac{1}{r}-1$.
Since $\lim _{n \rightarrow \infty} \frac{1}{1-r\left(1+\delta_{n}\right)}=\frac{1}{1-r}$ is finite, then there exists a positive constant $K(r)$ such that for all n

$$
\frac{1}{1-r\left(1+\delta_{n}\right)} \leq K(r)
$$

Therefore, for all $n=1,2, \ldots$

$$
\left\|f_{n}\right\|_{A(D), r} \leq \varepsilon_{n} K(r)
$$

This inequality allows us to write the following embedding

$$
\left\{n:\left\|f_{n}\right\|_{A(D), r}>\varepsilon\right\} \subset\left\{n: \varepsilon_{n} K(r)>\varepsilon\right\} .
$$

Therefore,

$$
\left|\left\{n:\left\|f_{n}\right\|_{A(D), r}>\varepsilon\right\}\right| \leq\left|\left\{n: \varepsilon_{n} K(r)>\varepsilon\right\}\right| .
$$

From this, since ε_{n} statistically tends to zero as $n \rightarrow \infty$, we can write by the definition of statistical convergence

$$
s t-\lim _{n \rightarrow \infty} \varepsilon_{n}=\lim _{n \rightarrow \infty} \frac{\left|\left\{n: \varepsilon_{n} K(r)>\varepsilon\right\}\right|}{n}=0 \text {. }
$$

It follows that

$$
s t-\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{A(D), r}=0,
$$

and the sufficiency is proved. To prove a necessity, we choose δ_{n} so slowly tending to zero that

$$
\varepsilon_{n}=\max _{|z|=\frac{1}{1+\delta_{n}}}\left|f_{n}(z)\right|
$$

statistically tends to zero as $n \rightarrow \infty$.
Then we can write

$$
f_{n, k}=\frac{1}{2 \pi i} \int_{|z|=\frac{1}{1+\delta_{n}}} \frac{f_{n}(z)}{z^{k+1}} d z
$$

and

$$
\left|f_{n, k}\right| \leq \varepsilon_{n} \int_{|z|=\frac{1}{1+\delta_{n}}} \frac{|d z|}{|z|^{k+1}}=\varepsilon_{n}\left(1+\delta_{n}\right)^{k} .
$$

Corollary 1. The following two statements are equivalent:
a) $f_{n}^{(m)}(z)$ statistically tends to zero in $A(D)$ for any $m=0,1,2,3, \ldots$;
b) $\left|f_{n, k+m}\right| \leq \frac{k!}{(k+m)!} \varepsilon_{n}\left(1+\delta_{n}\right)^{k+m}, \quad m=0,1,2, \ldots$,
where ε_{n} and δ_{n} as in Lemma 1.
Proof. From the Taylor expansion of $f_{n}(z)$, we can write the following obvious representation

$$
\begin{equation*}
f_{n}^{(m)}(z)=\sum_{k=0}^{\infty}(k+1) \ldots(k+m) f_{n, k+m} z^{k} . \tag{4}
\end{equation*}
$$

By Lemma 1, st $-\lim _{n \rightarrow \infty}\left\|f_{n}^{(m)}\right\|_{A(D)}=0$ if and only if

$$
(k+1) \ldots(k+m)\left|f_{n, k+m}\right| \leq \varepsilon_{n}\left(1+\delta_{n}\right)^{k+m} .
$$

Therefore, a) holds iff

$$
\left|f_{n, k+m}\right| \leq \frac{k!}{(k+m)!} \varepsilon_{n}\left(1+\delta_{n}\right)^{k+m}
$$

which gives b).
Inversely, if b) holds then

$$
\begin{aligned}
& \left\|f_{n}^{(m)}(z)\right\|_{A(D), r} \leq \sum_{k=0}^{\infty}(k+1) \ldots(k+m)\left|f_{n, k+m}\right| r^{k} \leq \\
& \leq \varepsilon_{n}\left(1+\delta_{n}\right)^{m} \sum_{k=0}^{\infty} r^{k}\left(1+\delta_{n}\right)^{k}=\varepsilon_{n} \frac{\left(1+\delta_{n}\right)^{m}}{1-r\left(1+\delta_{n}\right)},
\end{aligned}
$$

which gives a).
Lemma 2. To

$$
\begin{equation*}
s t-\lim _{n \rightarrow \infty}\left\|f_{n}^{(m)}\right\|_{A(D), r}=0, \quad m=0,1,2, \ldots \tag{5}
\end{equation*}
$$

it necessary and sufficient to satisfy the condition (5) for $m=0$.
Proof. Let the condition (5) holds for $m=0$. Then by Lemma 1 there exist sequences ε_{n} and δ_{n} such that $\lim _{n \rightarrow \infty} \delta_{n}=0, s t-\lim _{n \rightarrow \infty} \varepsilon_{n}=0$ and the inequality (3) holds. From the equality (4) we have for any natural m

$$
\left\|f_{n}^{(m)}\right\|_{A(D), r} \leq \varepsilon_{n}\left(1+\delta_{n}\right)^{m} \sum_{k=0}^{\infty}(k+1) \ldots(k+m)\left(1+\delta_{n}\right)^{k} r^{k}
$$

since

$$
\frac{d^{m}}{d z^{m}} \frac{1}{1-z}=\sum_{k=0}^{\infty}(k+1) \ldots(k+m) z^{k}
$$

we can write

$$
\frac{m!}{(1-z)^{m+1}}=\sum_{k=0}^{\infty}(k+1) \ldots(k+m) z^{k} .
$$

Therefore,

$$
\left\|f_{n}^{(m)}\right\|_{A(D), r} \leq \varepsilon_{n}\left(1+\delta_{n}\right)^{m} \frac{m!}{\left(1-r\left(1+\delta_{n}\right)\right)^{m+1}}
$$

Since

$$
\lim _{n \rightarrow \infty}\left(1+\delta_{n}\right)^{m} \frac{m!}{\left(1-r\left(1+\delta_{n}\right)\right)^{m+1}}=\frac{m!}{(1-r)^{m+1}},
$$

there exist a constant $K(m, r)$ such that for any $n=1,2, \ldots$

$$
\left(1+\delta_{n}\right)^{m} \frac{m!}{\left(1-r\left(1+\delta_{n}\right)\right)^{m+1}} \leq K(m, r)
$$

So we have the inequality

$$
\left\|f_{n}^{(m)}\right\|_{A(D), r} \leq \varepsilon_{n} K(m, r),
$$

which implies

$$
\left|\left\{k \leq n:\left\|f_{k}^{(m)}\right\|_{A(D), r}>\varepsilon\right\}\right| \leq\left|\left\{k \leq n: \varepsilon_{n}>\frac{\varepsilon}{K(m, r)}\right\}\right| .
$$

The last inequality gives the proof as in the proof of Lemma 1.
Consider now a sequence of linear k-positive operator T_{n} given by the formula (2). Obviously, for any natural p :

$$
\frac{d^{p}}{d z^{p}} T_{n} f(z)=\sum_{k=0}^{\infty} z^{k}(k+1)(k+2) \ldots(k+p) \sum_{m=0}^{\infty} T_{k+p, m}^{(n)} f_{m} .
$$

Since T_{n} is a sequence of k-positive operators then, by the definition, $T_{k+p, m}^{(n)} \geq 0$ for any k, p and m. For positive coefficients f_{m} we have

$$
(k+1)(k+2) \ldots(k+p) \sum_{m=0}^{\infty} T_{k+p, m}^{(n)} f_{m} \geq 0
$$

By the definition, T_{n} is k-positive operator if for any $f \in A(D)$, having non-negative Taylor coefficients, $T_{n} f(z) \in A(D)$ and also has a non-negative Taylor coefficients. Therefore we have a

Proposition 1. If $T_{n} f(z)$ is a k-positive operators then for any natural $p, \frac{d^{p}}{d z^{p}} T_{n} f(z)$ is also k-positive operator.

Lemma 2 allows us to formulate any theorem on statistical convergence $T_{n} f(z)$ to $f(z)$ as $n \rightarrow \infty$ in $A(D)$ as a Theorem on simultaneous convergence of $\frac{d^{p}}{d z^{p}} T_{n} f(z)$ to $f^{(p)}(z)$, $p=0,1,2, \ldots$.

For example, using the general result, proven in [10](see, p.399, Theorem 2.1) we can formulate the following result.

Theorem 1. Let $g_{k} \geq 1$ be an increasing sequence of real numbers, $\limsup _{k \rightarrow \infty} g_{k}^{\frac{1}{k}}=1$ and

$$
g_{v}(z)=\sum_{k=0}^{\infty} g_{k}^{\frac{v}{2}} z^{k}
$$

Then, for linear k-positive operators T_{n}, given by (2) and acting from $A(D)$ into itself the following are equivalent:
a) st- $\lim _{n \rightarrow \infty}\left\|\frac{d^{p}}{d z^{p}} T_{n} f(z)-f^{(p)}(z)\right\|_{A(D), r}=0, p=0,1,2, \ldots$ for any function f with Taylor coefficient satisfying the inequality

$$
\begin{equation*}
\left|f_{k}\right| \leq M g_{k}, \quad k=0,1,2, \ldots \tag{6}
\end{equation*}
$$

b) st- $\lim _{n \rightarrow \infty}\left\|T_{n} g_{v}-g_{v}\right\|_{A(D), r}=0, v=0,1,2$.

Proof. In [10] have proved that under the conditions of Theorem 1

$$
s t-\lim _{n \rightarrow \infty}\left\|T_{n} f-f\right\|_{A(D), r}=0
$$

for any function $f \in A(D)$ with Taylor coefficients satisfying (6). Therefore, applying Lemma 2 we obtain the desired result.

Theorem 2. Let $g_{k} \geq 1, \quad k=0,1,2, \ldots, \quad \limsup _{k \rightarrow \infty} g_{k}^{\frac{1}{k}}=1$ and $g(z)=\sum_{k=0}^{\infty} g_{k} z^{k}$ be an analytic function in $D=\{z:|z|<1\}$. Let T_{n} be a sequence of linear k-positive operators from $A(D)$ into itself. If for any $r<1$

$$
\begin{gather*}
s t-\lim _{n \rightarrow \infty}\left\|T_{n} g(z)-g(z)\right\|_{A(D), r}=0 \tag{7}\\
s t-\lim _{n \rightarrow \infty}\left\|T_{n}\left(z g^{\prime}(z)\right)-z g^{\prime}(z)\right\|_{A(D), r}=0 \tag{8}\\
s t-\lim _{n \rightarrow \infty}\left\|T_{n}\left(z^{2} g^{\prime \prime}(z)\right)-z^{2} g^{\prime \prime}(z)\right\|_{A(D), r}=0 \tag{9}
\end{gather*}
$$

then for any function f with Taylor coefficients satisfying (6)

$$
\begin{equation*}
s t-\lim _{n \rightarrow \infty}\left\|\frac{d^{p} T_{n} f(z)}{d z^{p}}-f^{(p)}(z)\right\|_{A(D), r}=0, \quad p=0,1,2, \ldots \tag{10}
\end{equation*}
$$

Proof. Obviously, we have

$$
\begin{gathered}
z g^{\prime}(z)=\sum_{k=0}^{\infty} k g_{k} z^{k} \\
z^{2} g^{\prime \prime}(z)=\sum_{k=0}^{\infty} k(k-1) g_{k} z^{k}
\end{gathered}
$$

and therefore using (2) the conditions (7)-(9) gives as $n \rightarrow \infty$:

$$
\begin{array}{r}
\left\|\sum_{k=0}^{\infty} z^{k} \sum_{m=0}^{\infty} T_{k, m}^{(n)} g_{m}-\sum_{k=0}^{\infty} z^{k} g_{k}\right\|_{A(D), r} \longrightarrow^{(s t)} 0, \\
\left\|\sum_{k=0}^{\infty} z^{k} \sum_{m=0}^{\infty} T_{k, m}^{(n)} m g_{m}-\sum_{k=0}^{\infty} z^{k} k g_{k}\right\|_{A(D), r} \longrightarrow^{(s t)} 0, \\
\left\|\sum_{k=0}^{\infty} z^{k} \sum_{m=0}^{\infty} T_{k, m}^{(n)} m(m-1) g_{m}-\sum_{k=0}^{\infty} z^{k} k(k-1) g_{k}\right\|_{A(D), r} \longrightarrow{ }^{(s t)} 0,
\end{array}
$$

where $\longrightarrow{ }^{(s t)} 0$ denote that statistical limit tends to zero. By Lemma 1 this means that there exist a sequences δ_{n} and ε_{n} such that st $-\lim _{n \rightarrow \infty} \varepsilon_{n}=0$ and $\lim _{n \rightarrow \infty} \delta_{n}=0$ and the following inequalities hold

$$
\begin{gathered}
\left|\sum_{m=0}^{\infty} T_{k, m}^{(n)} g_{m}-g_{k}\right|<\varepsilon_{n}\left(1+\delta_{n}\right)^{k}, \\
\left|\sum_{m=0}^{\infty} T_{k, m}^{(n)} m g_{m}-k g_{k}\right|<\varepsilon_{n}\left(1+\delta_{n}\right)^{k}, \\
\left|\sum_{m=0}^{\infty} T_{k, m}^{(n)} m(m-1) g_{m}-k(k-1) g_{k}\right|<\varepsilon_{n}\left(1+\delta_{n}\right)^{k} .
\end{gathered}
$$

From these inequalities follows that

$$
\begin{equation*}
\sum_{k=0}^{\infty}(m-k)^{2} g_{m} T_{k, m}^{(n)}<\varepsilon_{n}\left(1+\delta_{n}\right)^{k}(1+k)^{2} \tag{11}
\end{equation*}
$$

Let now $f(z)$ be any function in $A(D)$ with Taylor coefficients satisfying (6). Then

$$
\begin{gather*}
\left\|T_{n} f-f\right\|_{A(D), r} \leq 2 M\left\{\sum_{k=0}^{\infty} r^{k} g_{k} \sum_{m=0}^{\infty}(m-k)^{2} g_{m} T_{k, m}^{(n)}+\sum_{k=0}^{\infty} r^{k} g_{k}\left|\sum_{k=0}^{\infty} T_{k, m}^{(n)}-1\right|\right\}= \\
=2 M\left\{S_{n}^{\prime}+S_{n}^{\prime \prime}\right\} . \tag{12}
\end{gather*}
$$

Using (11), we have

$$
S_{n}^{\prime} \leq \varepsilon_{n} \sum_{k=0}^{\infty} r^{k} g_{k}(1+k)^{2}\left(1+\delta_{n}\right)^{k}
$$

and since the series converges, the right-hand side tends to zero as $n \rightarrow \infty$ statistically.

Now we estimate $S_{n}^{\prime \prime}$. Using (11)

$$
\sum_{k \neq m} T_{k, m}^{(n)} \leq \sum_{k=0}^{\infty}(k-m)^{2} T_{k, m}^{(n)} \leq \varepsilon_{n}\left(1+\delta_{n}\right)^{k}(1+k)^{2}
$$

Further, by the condition (7)

$$
s t-\lim _{n \rightarrow \infty}\left\|\sum_{k=0}^{\infty} z^{k} \sum_{m=0}^{\infty} T_{k, m}^{(n)} g_{m}-\sum_{k=0}^{\infty} z^{k} g_{k}\right\|_{A(D), r}=0
$$

and therefore

$$
\left|\sum_{m=0}^{\infty} T_{k, m}^{(n)} g_{m}-g_{k}\right|<\varepsilon_{n}\left(1+\delta_{n}\right)^{k}
$$

or

$$
\left|g_{k}\left(T_{k, k}^{(n)}-1\right)+\sum_{k \neq m} T_{k, m}^{(n)} g_{m}\right|<\varepsilon_{n}\left(1+\delta_{n}\right)^{k}
$$

This inequality gives

$$
\begin{equation*}
g_{k}\left|T_{k, k}^{(n)}-1\right| \leq \varepsilon_{n}\left(1+\delta_{n}\right)^{k}+\sum_{k \neq m} T_{k, m}^{(n)} g_{m}(m-k)^{2} \leq 2 \varepsilon_{n}\left(1+\delta_{n}\right)^{k}(1+k)^{2} \tag{13}
\end{equation*}
$$

by (11). On the other side, (11) gives

$$
\begin{equation*}
\sum_{k \neq m} T_{k, m}^{(n)} \leq \varepsilon_{n}\left(1+\delta_{n}\right)^{k}(1+k)^{2} \tag{14}
\end{equation*}
$$

From the inequalities (13) and (14) we obtain

$$
S_{n}^{\prime \prime} \leq \varepsilon_{n} \sum_{k=0}^{\infty} r^{k} g_{k}(1+k)^{2}\left(1+\delta_{n}\right)^{k}+2 \varepsilon_{n} \sum_{k=0}^{\infty} r^{k}(1+k)^{2}\left(1+\delta_{n}\right)^{k}
$$

Since both series in right-hand side converge, then $S_{n}^{\prime \prime}$ statistically tends to zero as $n \rightarrow \infty$ because statistically tends to zero ε_{n}.

Therefore, both S_{n}^{\prime} and $S_{n}^{\prime \prime}$ statistically tend to zero as $n \rightarrow \infty$ and using (12), we see that $\left\|T_{n} f-f\right\|_{A(D), r}$ statistically convergent to zero.

Using Lemma 2 we get (10) and the proof of Theorem 2 is completed.
Corollary 2. Let T_{n} be a sequence of linear k-positive operators from $A(D)$ into itself. If

$$
s t-\lim _{n \rightarrow \infty}\left\|T_{n} \frac{z^{v}}{(1-z)^{v+1}}-\frac{z^{v}}{(1-z)^{v+1}}\right\|_{A(D), r}=0, \quad v=0,1,2
$$

then for any function $f \in A(D)$, having bounded Taylor coefficients

$$
s t-\lim _{n \rightarrow \infty}\left\|\frac{d^{m} T_{n} f(z)}{d z^{m}}-f^{(m)}(z)\right\|_{A(D), r}=0, m=0,1,2, \ldots
$$

References

[1] R.A. Ahadov. On convergence of a sequence of linear operators in the space of functions analytic in a disk. Izv. Akad. Nauk Azerbaijan SSR, Ser. Fiz. Tehn. Mat. Nauk, pages 67-71, 1981,(Russian).
[2] M. A. Özarslan. \mathcal{I}-convergence theorems for a class of k-positive linear operators. Cent. Eur. J. Math., 7(2):357-362, 2009.
[3] O. Duman. Statistical approximation theorems by k-positive linear operators. Arch. Math.(Basel), 86:569-576, 2006.
[4] M.A. Evgrafov. The method of near systems in the space of analytic functions and its application to interpolation. Trudy Moskov. Mat. Obsc., 5:89-201, 1956, (Russian).
[5] H. Fast. Sur la convergence statistique. Colloq. Math., 2:241-244, 1951.
[6] A.D. Gadjiev. Linear k-pozitive operators in the space of regular functions and Korovkin's type theorem. Izvestiya Acad. of Sciences of Azerbaijan, pages 49-53, 1974, (Russian).
[7] A.D. Gadjiev. Theorems of the type of P.P. Korovkin theorems. Mat. Zametki(English translated in Math. Notes), 20:781-786 (995-998), 1976.
[8] A.D. Gadjiev, O. Duman, and A.M. Ghorbanalizadeh. Ideal convergence of k-positive linear operators. Journal of Function Spaces and Applications, (accepted manuscript).
[9] A.D. Gadjiev and A.M. Ghorbanalizadeh. Approximation of analytical functions by sequences of k-positive linear operators. Journal of Approximation Theory, 162(6):1245-1255, 2010.
[10] A.D. Gadjiev and A.M. Ghorbanalizadeh. On approximation processes in the space of analytical functions. Cent. Eur. J. Math., 8(2):389-398, 2010.
[11] A.D. Gadjiev and C. Orhan. Some approximation theorems via statistical convergence. Rocky Mountain Journal of Mathematics, 32:129-138, 2002.
[12] N. İspir. Convergence of sequence of k-positive linear operators in subspace of the space of analytic functions. Hacettepe Bulletin of Natural Sciences and Engineering Series B, 28:47-53, 1999.
[13] N. İspir and Ç. Atakut. On the convergence of a sequence of positive linear operators on the space of m-multiple complex sequences. Hacettepe Bulletin of Natural Sciences and Engineering Series B, 29:47-54, 2000.

Akif D. Gadjiev
Institute of Mathematics and Mechanics of NAS of Azerbaijan, Az1141, Baku, Azerbaijan
E-mail: akif_gadjiev@mail.az
Received 15 September 2010
Published 27 November 2010

