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Approximation capabilities of neural networks with weights

from two directions

V.E. Ismailov

Abstract. In this note, we characterize compact sets in R
n over which any continuous multivariate

function can be approximated arbitrarily well by neural networks with one hidden layer and weights
from two fixed directions.
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1. Introduction

The theory of approximation of multivariate functions using artificial neural networks
with one or more hidden layers is of great interest to both approximation theorists and
applied mathematicians. At present, there are a large number of papers devoted to various
problems in this area (see, e.g., [3],[4],[5],[18],[7],[8], [11], [12], [14], [13],[15], [16], [17]). We
are interested in questions of density of a single-hidden-layer perceptron model in neural
networks. A typical density result shows that a network can approximate an arbitrary
function in a given class with any degree of accuracy.

A single-hidden-layer perceptron model with r units in the hidden layer and input
x = (x1, ..., xn) evaluates a function of the form

r
∑

i=1

ciσ(w
i·x− θi), (1)

where the weights wi are vectors in R
n, the thresholds θi and the coefficients ci are real

numbers and the activation function σ is a univariate function which is considered to be
continuous in the present note. For various activation functions σ, it has been proved in a
number of papers that one can approximate well to a given continuous function from the
set of functions of the form (1) ( r is not fixed! ) over any compact subset of Rn. In other
words, the set

M(σ) = span {σ(w · x− θ) : θ ∈ R, w ∈Rn},
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is dense in the space C(Rn) in the topology of uniform convergence on all compacta (see,
e.g., [3],[4],[5],[8],[11]). More general result of this type belongs to Leshno, Lin, Pinkus and
Schoken [12]. They proved that the necessary and sufficient condition for any continuous
activation function to have the density property is that it not be a polynomial. This result
shows the efficacy of the single hidden layer perceptron model within all possible choices
of the activation function σ, provided that σ is continuous. In fact, density of the set
M(σ) also holds for some reasonable sets of weights and thresholds. (see[17]).

In the present note, we are interested in the related question of density. Let W be
some restricted set of weights. It is clear that if w varies only in W , the set M(σ) may not
be dense in the topology of uniform convergence on all compacta. The problem here is in
the determination of model efficacy boundaries. Over which compact sets X ⊂ R

n does
the model preserve its general propensity to approximate arbitrarily well every continuous
multivariate function? We will answer this question for a set W of weights consisting of
two directions. Here by a direction we mean the set {ta : t ∈ R}, where a is a fixed
vector in R

n (generating vector of the direction). In the sequel, this direction will also be
denoted by a. Note that two directions a and b coincide if and only if their generating
vectors are linearly dependent.

2. Main results

To formulate our main theorem, we recall what objects are called paths with respect
to two directions a1 and a2 (see [2], [9],[10]). A path with respect to the directions a1 and
a2, or simply a path if there is no confusion, is a finite or infinite ordered set of points
(x1,x2, ...) in R

n with xi 6= xi+1 and its units xi+1 −xi alternatively perpendicular to the
directions a1 and a2. The length of a path is the number of its points. A singleton is a
path of the unit length. A path

(

x1, ...,xm
)

is closed if m is an even number and the set
(

x1, ...,xm,x1
)

also forms a path.
The relation x ∼ y when x and y belong to some path in a given compact set X ⊂ R

n

defines an equivalence relation. The equivalence classes we call orbits.
Let K be a family of functions defined on R

n and X be a subset of Rn. By KX we will
denote the restriction of this family to X.

We start the analysis by defining ridge functions. A ridge function is a multivariate
function of the form

g (a · x) = g (a1x1 + · · · + anxn) ,

where g : R → R and a = (a1, ..., an) is a fixed vector (direction) in R
n\ {0}. In other

words, it is a multivariate function constant on the parallel hyperplanes a · x = α,α ∈ R.
Ridge functions and their combinations arise in various contexts. They arise naturally in
problems of partial differential equations (where they are called plane waves), computer-
ized tomography, statistics, approximation theory, and neural networks (see e.g. [1] for
further details).

Set

R
(

a1,a2
)

=
{

g1
(

a1·x
)

+ g2
(

a2·x
)

: g
i
∈ C(R), i = 1, 2

}

.
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The following theorem is a special case of the known general result of Marshall and
O’Farrell [6] established for the sum of two algebras (see also theorem 4.1 and the following
discussions in [9]).

Theorem 1. Let X be a compact subset of Rn with all its orbits closed. Then the set
RX

(

a1,a2
)

is dense in C(X) if and only if X contains no closed path.

Now we are able to step forward from ridge function approximation to neural networks.

Theorem 2. Let σ ∈ C(R) and assume σ is not a polynomial. Let a1 and a2 be fixed
vectors and W = {tia

i : ti ∈ R, i = 1, 2} be the set of weights. Let X be a compact subset
of Rn with all its orbits closed. Then

MX(σ;W,R) = span {σ(w · x− θ) : w ∈W, θ ∈ R},

is dense in the space of all continuous functions over X if and only if X contains no closed
path.

Proof. Sufficiency. Let X be a compact subset of Rn with all its orbits closed. Besides,
let X contain no closed path. By theorem 1, the set RX

(

a1,a2
)

is dense in C(X). This
means that for any positive real number ε there exist continuous univariate functions g1
and g2 such that

∣

∣f(x)− g1
(

a1·x
)

− g2
(

a2·x
)
∣

∣ <
ε

3
, (2)

for all x ∈ X. Since X is compact, the sets Yi = {ai·x : x ∈ X}, i = 1, 2, are also
compacts. Leshno, Lin, Pinkus and Schoken [12] proved that the set

span {σ(ty − θ) : t, θ ∈ R},

is dense in C(R) in the topology of uniform convergence. Thus, for the given ε there exist
numbers cij , tij , θij ∈ R, i = 1, 2, j = 1, ...,mi , for which

∣

∣

∣

∣

∣

∣

gi(y)−

mi
∑

j=1

cijσ(tijy − θij)

∣

∣

∣

∣

∣

∣

<
ε

3
, (3)

for all y ∈ Yi, i = 1, 2. From (2) and (3) we obtain that

∥

∥

∥

∥

∥

∥

f(x)−

2
∑

i=1

mi
∑

j=1

cijσ(tija
i·x− θij)

∥

∥

∥

∥

∥

∥

C(X)

< ε. (4)

Hence MX(σ;W,R) = C(X).
Necessity. Let X be a compact subset of Rn with all its orbits closed and the set

MX(σ;W,R) be dense in C(X). Then for an arbitrary positive real number ε, inequality
(4) holds with some coefficients cij , tij , θij, i = 1, 2, j = 1, ...,mi. Since for i = 1, 2,
∑mi

j=1 cijσ(tija
i·x − θij) is a function of the form gi(a

i·x), the subspace RX

(

a1,a2
)

is
dense in C(X). Then by theorem 1, the set X contains no closed path.
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Remark 1. It can be shown that the necessity of the theorem is valid without any restric-
tions on orbits of X. Indeed if X contains a closed path, then it contains a closed path
p = (x1, ...,x2m) with different points. The functional Gp =

∑2m
i=1(−1)i−1f(xi) belongs to

the annihilator of the subspace RX

(

a1,a2
)

. There exist nontrivial continuous functions f0
on X such that Gp(f0) 6= 0 (take, for example, any continuous function f0 taking values +1
at {x1,x3, ...,x2m−1}, −1 at {x2,x4, ...,x2m} and −1 < f0(x) < 1 elsewhere). This shows
that the subspace RX

(

a1,a2
)

is not dense in C(X). But in this case, the set MX(σ;W,R)
cannot be dense in C(X). Obtained contradiction means that our assumption is not true
and X contains no closed path.

Remark 2. The hypothesis of the theorem on orbits of X cannot simply be omitted in the
sufficiency. The following example due to Marshall and O’Farrell justifies our assertion.
For the sake of simplicity, we restrict ourselves to R

2. Let a1 = (1; 1), a2 = (1;−1) and the
set of weights W = {(t, t) ∪ (t,−t) : t ∈ R}. The set X can be constructed as follows. Let
X1 be the union of the four line segments [(−3; 0), (−1; 0)], [(−1; 2), (1; 2)], [(1; 0), (3; 0)]
and [(−1;−2), (1;−2)]. Rotate one segment in X1 90◦ about its center and remove the
middle one-third from each line segment. The obtained set denote by X2. By the same
way, one can construct X3,X4, and so on. It is clear that the set Xi has 2

i+1 line segments
and every orbit in Xi is a closed path consisting of 2i+1 points, one in each line segment.
Let X be a limit of the sets Xi, i = 1, 2, .... Note that every orbit of X is dense in X,

hence not closed. Besides, there are no closed paths.

By Si, i = 1, 4, denote the closed discs with the unit radius and centered at the points
(−2; 0), (0; 2), (2; 0) and (0;−2) respectively. Let Q be a parallelogram with sides parallel
to the vectors a1, a2 and containing the disks Si, i = 1, 4 (hence all the sets X1,X2, ...,

and X). Consider a continuous function f0 such that f0(x) = 1 for x ∈ (S1 ∪ S3) ∩ X,
f0(x) = −1 for x ∈ (S2 ∪ S4) ∩ X, and −1 < f0(x) < 1 elsewhere. Let p = (y1,y2, ...)
be any infinite path in X. Since the points yi, i = 1, 2, ..., are alternatively in the sets
(S1 ∪ S3) ∩X and (S2 ∪ S4) ∩X, the path p is an extremal path for f0 (see definition 2.4
in [9]). By the characterization theorem on extremal sums of ridge functions (see theorem
2.5 in [9]),

E(f0, Q) = inf
g∈RQ(a1,a2)

‖f0 − g‖C(Q) = ‖f0‖C(Q) = 1. (5)

Note that X does not satisfy the hypothesis of this theorem as regards convexity. But
in fact, (5) remains valid for the error of approximation to f0 over the set X. To show
this, put pk = (y1, ...,yk) and consider the path functional

Gpk(f) =

k
∑

i=1

(−1)i−1f(yi).

Gpk is a continuous linear functional obeying the following obvious properties:

(1) ‖Gpk‖ = Gpk(f0) = 1;
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(2) Gpk(g1+ g2) ≤
2
k
(‖g1‖+ ‖g2‖) for ridge functions g1 = g1

(

a1·x
)

and g2 = g2
(

a2·x
)

.

By property (1), the sequence {Gpk}
∞
k=1 has a weak* cluster point. This point will be

denoted by G. By property (2), G ∈ RX

(

a1,a2
)⊥

. Therefore,

1 = G(f0) = G(f0 − g) ≤ ‖f0 − g‖C(X) for any g ∈ RX

(

a1,a2
)

.

Taking inf over g in the right-hand side of the last inequality, we obtain that 1 ≤
E(f0,X). Now since E(f0,X) ≤ E(f0, Q), it follows from (5) that E(f0,X) = 1. Recall
that MX(σ;W,R) ⊂ RX

(

a1,a2
)

. Thus

inf
h∈MX(σ;W,R)

‖f − h‖C(X) ≥ 1.

The last inequality finally shows that MX(σ;W,R) 6= C(X).

Remark 3. Considering various activation functions, one can make additional restric-
tions on the set of weights and also thresholds so that theorem 2 does not fail. For example,
let σ be a sigmoidal function, that is a continuous function satisfying limt−→−∞ σ(t) = 0
and limt−→+∞ σ(t) = 1. Then theorem 2 remains valid if the weight w and the threshold θ

vary only in the set W = {tia
i : ti ∈ Z, i = 1, 2} and in the set of integers correspondingly.

The last argument can be proved by the similar way using the following result of Chui and
Li [3]: if σ is sigmoidal, then the set

span {σ(ty − θ) : t, θ ∈ Z},

is dense in C(R) in the topology of uniform convergence on all compacta.

Examples:

(a) Let a1 and a2 be two noncollinear vectors in R
2. Let B = B1...Bk be a broken line with

the sides BiBi+1, i = 1, ..., k − 1, alternatively perpendicular to a1 and a2. Besides,
let B does not contain vertices of any parallelogram with sides perpendicular to these
vectors. Then the set MB(σ;W,R) is dense in C(B).

(b) Let a1 and a2 be two noncollinear vectors in R
2. If X is the union of two paral-

lel line segments, not perpendicular to any of the vectors a1 and a2, then the set
MX(σ;W,R) is dense in C(X).

(c) Let now a1 and a2 be two collinear vectors in R
2. In this case, in fact, we have one

direction and the set of weights W coincide with this direction. Note that any path
consisting of two points is automatically closed. Thus the set MX(σ;W,R) is dense
in C(X) if and only if X contains no path different from a singleton. A simple
example is a line segment not perpendicular to the given direction.

(d) Let X be any compact set with interior points. Then theorem 1 fails, since any such
set contains the vertices of some parallelogram with sides perpendicular to the given
directions a1 and a2, that is a closed path.
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AssumeMX(σ;W,R) is dense in C(X). Is it necessarily closed? The following theorem
may describe cases when it is not.

Theorem 3. Let MX(σ;W,R) = C(X). Then X contains no closed path and the
lengths of all paths in X are bounded by some positive integer.

The proof immediately follows from theorem 5 in [10]: Let X be a compact subset of
R
n. The equality R

(

a1,a2
)

= C(X) holds if and only if X contains no closed path and
there exists a positive integer n0 such that the lengths of all paths in X are bounded by
n0.

For example, let a1 = (1;−1), a2 = (1; 1). Consider the set

X = {(2;
2

3
), (

2

3
;
2

3
), (0; 0), (1; 1), (1 +

1

2
; 1−

1

2
), (1 +

1

2
+

1

4
; 1−

1

2
+

1

4
),

(1 +
1

2
+

1

4
+

1

8
; 1−

1

2
+

1

4
−

1

8
), ...}.

It is clear that X is a compact set with all its orbits closed. (In fact, there is only
one orbit, which coincides with X). Hence, by theorem 2, MX(σ;W,R) = C(X). But by
theorem 3, MX(σ;W,R) 6= C(X). Therefore, the set MX(σ;W,R) is not closed in C(X).
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