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The relation between different norms of algebraic poly-
nomials in the regions of complex plane
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Abstract. In this work, we study Bernstein-Zigmund type and Nikolskii type estimations for the
arbitrary algebraic polynomial in regions of the complex plane.
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1. Introduction and Main results

Let G be a finite region, with 0 € G , bounded by a Jordan curve L := dG, and let
X and Y be norm spaces of functions defined in G and let g,, denote the set of arbitrary
algebraic polynomials P,(z), deg P, =n, n=0,1,2,...,. Our goal is to find the estimate

‘|P7§k)‘|x < A(kvn> G)HPHHY7

for all polynomials P, € p,, and all K =0,1,2, ..., where A(k,n,G) is a constant depending
on k,n and G in general.

The comparison of norms of polynomials with itself and itself with derivation of poly-
nomials have been studied by many mathematicians (see, for example, [1], [2], [3], [4], [5],
0], [12]).

Let o be the two-dimensional Lebesque measure and h (z) is a weight function in G.
Let A,(h,G), p > 0, denote the class of functions f which are analytic in G' and satisfy

the condition
1/p
1, = 11La o ( J[ e |pdaz) < oo,

and 4,(1,G) = 4,(6). -

Let w = ¢(2) (w = ®(z)) be the conformal mapping of G (Q := CG) onto the
unit disc B := B(0,1 ) =A{w:|w| <1} (A := A(0,1) := {2z :|z| > 1}) normalized by
©(0) =0, ¢ (0) >0 (P(c0) =00, D (c0) >0) and let 1) := @1 (¥ := ).

*Corresponding author.
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Definition 1. [13] A bounded Jordan region G is called a k -quasidisk, 0 < k < 1, if any
conformal mapping 1 can be extended to a K -quasiconformal, K = Hk , homeomorphizm
of the plane C on the C. In that case the curve L := 0G is called a K -quasicircle. The
region G (curve L ) is called a quasidisk (quasicircle), if it is k -quasidisk ( k -quasicircle)
with some 0 < k < 1.

Throughout this paper, ¢, ¢, co, ... are positive constants (in general, different in dif-
ferent relations), which depend on G in general.

Theorem 1. Let G be a k -quasidisk, 0 < k < 1. Then for arbitrary P, € p, and any
m=20,1,2,... we have

1P ey < ean™ WPy 6y, 9> 1. (1.1)

Theorem 2. Let G be a k -quasidisk, 0 < k < 1. Then for arbitrary P, € p, and any
m=20,1,2,...we have

| Pl HA <62n[(m+1) 2] k)

1Pl 5(G) P> 2. (1.2)
Theorem 3. Let G be a k -quasidisk, 0 < k < 1. Then for arbitrary P, € @, and
any 1 <p<qg<oo we have

2(%

1Pallaye) < esn® ™ Pla, ) (13)
Theorems 1, 2 and 3 are fine, since we can know coefficients quasiconformality of taking
regions. Note that the result which is similar to the (3) was obtained in [14] in the case of
1<p<qg<oo . But, the dependence on n and k of the right side of the inequality
was not clearly expressed like (3).
Now, we define the class of regions under functional conditions, such that the coeffi-
cients quasiconformality of this regions are hard to define, but we can define these regions

in according to other parameters.

Definition 2. We say that G € Q,, 0 < a <1, if

a) L is a quasicircle,
b) ® € Lipa, z € Q.

Theorem 4. Let G € Q. Then, for arbitrary P, € o, and any m = 0,1,2,...we have

2
nd(er )’ a <

(m))
12 %@s%{nwwﬁ’az 1Pallay@y P> 1. (14)

N[— N[

where 6 = 6(G), 1 < <2, is a certain number.
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Theorem 5. Let G € Q. Then, for arbitrary P, € o, and any m = 0,1,2,...we have

5m 1
n’m  a<s
PPl < { na 05T 1Pl (1.5

where § = 0(G), 1 < § <2, is a certain number.

Theorem 6. Let G € Q. Then, for arbitrary P, € p, and any 1 < p < q < oo we have

n%(%_%) a<i
1Pl a,c) < co 2(1_1 2 NPallay @), (1.6)
ne'r 4 o>y

where 0 = 6(G), 1 < <2, is a certain number.

2. Some auxiliary results

Throughout this paper, we denote that “a < b*“ and “a =< b* are equivalent to a < b
and cia < b < coa for some constants c, ¢, co respectively.

Let G is a quasidisk. Then there exists a quasiconformal reflection y(.) across L such
that y(G) = Q, y() = G and y(.) fixes the points of L. The quasiconformal reflection
y(.) is such that it satisfies the following condition [7], [9, p.26];

1

|y(C)_Z| = |C_z‘7Z€L7€<|C|<E7
v = el =1 e < Il < 2
= = = g —
yg Y¢ ; 67

1
WO, Kl <&, e <17 1¢I> 2. (2.1)

¢

]

Fort>0,let Ly :={z:|p(z)| =t, if t <1, |P(2)|=¢, if t>1}, Gy :=intLy, Q =
extL;.

For R > 1, we denote L* := y(Lr), G* := intL*, Q* := extL*; w = ®r(z) be the
conformal mapping of 2* onto the A normalized by ®r(c0) = o, <I>/R(oo) >0; U= @1}1;
For t > 1, let L} :={z: |®Rr(2)| =t}, Gf :=intL}, Qf := extL;.

According to [8], for all z € L* and t € L such that |z — t| = d(z, L) we have

d(z,L) = d(t,Lg)=d(z L%),
Br(z)| < |Pp(t)] <1+ c(R—1). (2.2)

Lemma 1. [6] Let G be a quasidisk, zy € L, 23,23 € QN {z : |z — 21| < d(z1,Ly)};
w; = P(25), 7 =1,2,3. Then,

a) The statements |z1 — z2| < |21 — 23| and |w1 —wa| < |wy —ws| are equivalent. So
are |z1 — zo| < |21 — 23| and |wy — wa| < w1 — w3 .
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b) If |z1 — 22| < |21 — 23|, then

&1 c2

Z1 — %3

‘wl—wg,

w1 — w3
Jm,

w1 — Wy 21 — 29 w1 — w2

where 0 < rg < 1 is a constant, depending on G and k.

Lemma 2. Let G be a k -quasidisk for some 0 < k < 1. Then

(W (wi) — W(ws)| = |wy —wa|'TF,

for all w1, wy € Q.

This fact follows from an appropriate result for the mapping f € > (k)[13, p.287] and
estimation for the '[9, Th.2.8].

Let {z; };nzl be a fixed system of the points on L and the weight function h (z) defined
as the following;:

h(z)=ho(2) ]|z —2l", (2.3)
j=1

where v; > —2 for j = 1,m, and hg (2) is uniformly separated from zero in G:
ho(z) >¢>0, Vz € G.

Lemma 3. [2] Let G be a quasidisk and P,(z), deg P, < n,n = 1,2, ..., is an arbitrary
polynomial and weight function h(z) satisfies the condition(2.3). Then for any R > 1,
p>0andn=12,..

+1
||PTZHAp(h,G1+C(R71)) <R ||Pn||Ap(h,G) , (2.4)
where ¢, cs are independent of n and G.

In particular, in case of h(z) = 1, we get

1
1Pall gy < R 2 1 Pall g - (2.5)
p(G1ye(rR-1)) »(G)

This result is the integral analog of the familiar lemma of Bernstein-Walsh[15, p.101]
for the case A,(G) -norm and, shows that the order A,(G) -norm of arbitrary polynomials
is taken from the region G and G/, which are both identical.

Lemma 4. Let G be a quasidisk and P,(z), deg P, < n,n = 1,2,..., is an arbitrary
polynomial. Then for any R =1+ -, n=1,2,.., and m = 0,1,2, ..., there exists a
c1:=c1(G,c) >0 such that

< 1 o

C(G) C(G7)
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Proof. For any fixed number m =0,1,2,..., m <n, we put

P (2)

— 2 e Q.
[@R(Z)]Trklim

F(Z) = F(Z,m,n,R) =

Obviously, the function F(z) is analytic in ¥, continuous on Q* , F(c0) = 0 and |F(2)| =

Pém)(z)‘ for z € L*. Then, the maximum modulus principle yields

< = (m)
[F(2)] < max|F()] = max | P{"™)(2)
So,
(m) < n+1-m || p(m) =5
@) < G B s 2 e P

According to (2.2), for the z € L, we get

cint+tl-m
] <1,

|(I)R(Z)‘n+1—m < [1 + C(R _ 1)]n+1—m _ |:1 + =
n
Since z € L is arbitrary, then

C(G)

|

<

p,gm>H .«
c(G")
3. Proof of Theorems

3.1. Proof of Theorems 1 and 4

Proof. As L is a quasicircle, then for arbitrary z € G*, we can write the following
integral representation for P, (2)[9]:

e = - ] G o =<
G

Applying the Minkowski inequality, we have

=

R < P TR opan - x
G

1
lyel? !
8 // y(0) — e |
G
1
q

|ye|? 11
) // ly(¢) — z|alm+2) doc| 1Palla, » + iy 1. (3.1)
c
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_ |yel?
’ _é/ MGECEGRRS

For € > 0, we put Us(2) := {C : | — 2| < €}; without loss of generality, we may take
U. :=U-(0) C G*. For arbitrary fixed z € L*, we have

|yel?
Jq(z) = // \y(C) — z‘q(m-l—?) dUC +
Ue

lyel?
*// 9() — a7 =

G\U-
= Jl(Z) + JQ(Z). (32)

Let us set

Let us estimate Ji(z). According to (2.1), [ye| = ly(¢)|> for all ¢ € U., because of
I — 2] > ¢, |y(Q) — 2| < |y(¢)| for z € L* and ¢ € Ue, then we can find

ne s // T =
- // AT
N // |yd0'|cqm (33)

2
For the estimation of J»(z) , first of all, we note that the Jacobian £, := \y<|2 - ‘yz‘ of
the reflection y(¢) satisfies the following inequality

2
Lol |"_ £y
2 20 2
el = |ue] wel®/ |ve| ) -

1
2 2

X 1 1

< (22) i

where x := ﬁj& Consequently, |[£,] > \yg\Q. Then, after carrying out the change of

variable we obtain for the J(2):
lyel?
do¢ <
] e

G\U-

e
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dag
IC— =

y(G\Ue)
dO’C
= // _ z‘q 16 — »la(m+2)
[{— z|>d(zL
< (d(z, L))*am+2), (3.4)

JUz) < 14 (d(z,Lg))>"2m+2) <
< (d(z,L)*>79+2) vy e ¥, (3.5)

Using (2.2), from (3.1),( 3.2)-(3.5) for all z € L* and t € L such that |z —t| = d(z, L), we

obtain
PI ()] < d™ "D (4 L) | Pall gy » V2 € L7 (3.6)

If G € Qq, according to [9] and [11] we have
d(t,Lr) = (R—1" >=n"H, (3.7)

where p = é, if o > % and p =9, if a < %, 0=90(a,G), 1 <6 <2, is a certain number.
If G is a quasidisk, taking Lemma 2 into account, we get

d(z,Lg) = |¢ — 2| = | (1) — U(w)| > |7 — w|"TF = n=(+R), (3.8)

Consequently, according to Lemma 4, we obtain

6(m+2) 1
(m) B n pl o< 5
1P ||c(G) = { né(mj%)’ o> % 1Palla, @), p>1,
and
k)
IES oy < n D Py ey, 2> L

The proof or theorems 1 and 4 is completed. <«

3.2. Proof of Theorem 5

Proof. Since L is a quasicircle, we conclude that any Lg, R = 14 cn~! is also a

quasicircle. Therefore, we can construct a Kj-quasiconformal reflection ygr, yr(0) = oo
across Lp that satisfies conditions (2.1) described for yr(¢). By using yr(¢) constructed
in this way, we can write the following integral representations for P, (z)

1)!
P (z) = — (m + // e y_R;migdac 2z €@. (3.9)
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Applying the Holder inequality, we get

(m+1)! |yR(‘
PP < [ ] // Q) — a2

\P
// G z‘m+2d0<

After integration from over a region G, we have

2
/ / [P (2)2do, < [M}
™
G
|ng\ 1P (¢
// // GRS // [yr(0) —z\m+2d“< 17 =

|yR(|
< sup// ——>  _dos X
cec ) Tyr(Q) —2m+270¢
o // 7 X Pl cm) =
ce Gr lyr(C |
= :Agr(2) XBR(Z) ||PnHA2(GR)- (3.10)

Let us estimate

‘?JRg|
—sup// do 3.11
s TuR(Q) — 2 310

For ¢ > 0, Us(2) := {C : | — 2| < e}, we can assume without loss of generality that
U := U.(0) C G*. For arbitrary fixed z € L, we have

‘ng| |yR(|
——> —d
// [yr(©) — 22 // yr(Q) — 22 ¢ T
|Z/Rg\
// Rl _Z|m+2dag =

Gr\Ue
= :J1+ Jo. (3.12)

Let us estimate Ji. According to (2.1), [yg¢| = lyr(¢)]* for all ¢ € U, because of
I — 2| > ¢, lyr(¢) — 2] < |yr(¢)| for z € L and ¢ € Ug, then we can find

‘ng|
// r(0) z\m+2d0< =
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- |yR
- ‘ |m+2
do¢
_ //‘yR e <1 (3.13)

2
For the estimation of J , first of all, we note that the Jacobian £, := \yR,g|2 — ‘yRZ‘ of
the reflection yr(() satisfies the following inequality

£

YR

yR,Z‘

g = |—
YRl — ‘sz‘

NI

£
_ YR <

_<|Z/R,c|2/‘y3g‘2> -1

1
2 2
% 1 1
< <1—X2> | £yrl? < [£yp|?,
where x := K-

= +1 Consequently, |£,,| > |yp <‘2 Then, analogous to the estimate for Ji,
after carrying out the change of variable, we obtain for the Js:

|yR(‘
// lyr(C) —Z\m”dac<

Gr\U-

/R

R(GR\U:)

do¢
¢ — zm+2 =
|¢—2|>d(z,LR)
< (d(z,Lg))™™. (3.14)

<

Agr(z) <1+ (d(z,Lr)) ™ < (d(2,Lgr))™™, Vz € L. (3.15)
Next, analogous to the estimate Ag(z), for the Br(z), we get

Br(z) < (d(z2,Lgr))"™, Yz € L. (3.16)

From (3.10), ( 3.15), and (3.16), we obtain

/ IP{™ () 2do, < (d(2, L))" | Pal2 s V2 € L.
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Since G € @, according to [9] and [11], we have

d(z,Lg) » (R—1)# =n"H,

79

where p =1 ifa>Jand p=4,if o < %, 6 =6(, G), 1 < <2, is a certain number.

Consequently, according to Lemma 3, we obtain
IPS™ [ sy = 7 ™1 Pl as ()

and we completed the proof.«

3.3. Proof of Theorem 2

Proof. In a similar way, analogous to (3.9), we can write the following integral repre-

sentation

m+ 1)! yR
P (z) = // (0 — ;m+2 do¢, z € G.

Applying the Holder inequality, we get

1/2
P < / [ i |
1/2
// lyr(C ‘yR_C‘Z|m+2dUC
Then
//‘p(m ‘pdgz_{w} >
p/2

|Z/R¢‘ [P (¢
// // VR(C —z|m+2d"< // VR(C —z|m+2d"< do: =

p/2

1)!
< {(m+ } sup // ‘de = —r— ol X
2€G ‘yR _z‘m

x// // ‘yR\P _z‘m+2dag do. = AL(2) x BL(2).

(3.17)
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Estimations for AL(z), we can find analogous estimation Ag(z). In this case, for z € L

we get
p/2

|Z/R Pdo _mp
-0 // lyr( C— Z|n21+2 < (d(z,Lr))" % .
¢ceqd

Applying the generalized Minkowski inequality for the estimation Bj(z) for z € L, we
get

p/2

|P
i = Jf | ]|

[ (Jf ) ] -
o lyr(¢ —Z|

/ / e 0 % Pl
CGGR lyr(C _Z‘

m+2

< (d(z Lr)" 2 P < Pl 6

IN

IN

Then, from (3.17) we have

/ P (2)Pdo, < (d(z, Lr)> 0 x [Py, . - (3.18)

Let ¢ € Ly such that d(z,Lr) = |( — 2|, z € L. Taking Lemma 2 into account, we get
d(z,Lg) = [¢ — 2| = |¥(r) — T(w)| > |7 — w|['TF = n=0FH), (3.19)
According to Lemma 3, from (3.17), (3.18) and (3.19), we complete the proof.

0R) [(m+1) ]

IPS™ )4,y < 1Pl as(cy-

3.4. Proof of Theorems 6 and 3

Proof. According to Lemma 4 and (3.6), in case of m = 0, we obtain

(//G\Pn(z)wd%)l/q:
- (//G [Pa(2)|" | Pa(2)” daz) "

1Pl 4, ()
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1/q
Smwmwwiﬁﬁﬁwmw@) <
z€G G

Po(2) % ||B)
q

< max B ()] 7 [1Pall i ) <
1_1

< d2(q ;)(t,LR) HPnHAp(G) ’

Thus, using (3.7) and (3.8) respectively, we completed the proofs.«

We note that the Theorems 1 -6 are sharp. For the Theorems 4 and 1, this is easy to
n .
see on the example P,(z) = > (j+ 1)z, G=B, m =0, p=2 and a = 1.(Theorem 4)

7=0
and k = 0 (Theorem 1). In this case

(n+1)(n+2) m(n+1)(n+2)
1Pallo@ = "D e = )

Then, we have

(n+1)(n+2)

HPan(é) = 2 =
(n+1)(n +2) 2
- >
> Dty e =
(n+1)(n+2)
2\ IPllaye 2
1
Z \2 | Poll 456 -
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