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Abstract. It is shown that the Hilbert integral type inequality with non-homogeneous kernel
function can be established by introducing two parameters and a proper logarithm function. And
the constant factor expressed by product of the gamma function and the Riemann Zeta function
is proved to be the best possible. As applications, some equivalent forms are considered.
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1. Introduction and Lemmas

Let f (x) , g (x) ∈ L2 (0, + ∞). Then
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∞
∫

0

(

ln x
y

)

f (x) g (y)

x − y
dxdy ≤ π2
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∫

0
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0

g2 (x) dx
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. (1.1)

And
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∫

0
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0

f (x) g (y)

x + y
dxdy ≤ π
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∫

0

f2 (x) dx
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∫

0

g2 (x) dx







1
2

. (1.2)

They are the famous Hilbert integral inequalities, where the constant factor π2 and π are
the best possible. And the equalities in (1.1) and (1.2) hold if and only if f (x) = 0, or
g (x) = 0.These results can be found in papers [2] and [7]. Owing to the importance of
the Hilbert inequality and the Hilbert type inequality in analysis and applications, some
mathematicians have been studying them. Recently, various refinements, extensions and
generalizations of (1.2) appear in a great deal of the articles. (such as [1], [3], [4], [5], [10],
[11], [12], [13] etc.). However, the research articles of (1.1) are few.

Let α, λ > 0. Define a non-homogeneous kernel function by
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k(x, y) =

{

| lnxy|α

| 1−(xy)λ| , xy 6= 1

0, xy = 1
, (x, y) ∈ (0,+∞) × (0,+∞). (1.3)

Throughout the paper we will use frequently the kernel function.

The aim of the present paper is to establish some extensions of (1.1) and to build an
inequality of the form

∞
∫

0

∞
∫

0

k(x, y)f(x)g(y)dxdy ≤ Cλ (α)







∞
∫

0

ω(x)f2 (x) dx
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∫

0

ω(x)g2 (x) dx







1
2

. (1.4)

And the constant factor Cλ (α)and the weight function ω (x)will be given, and some
important and especial results will be enumerated, and then some equivalent forms will
be considered.

In order to prove our main results, we need to introduce the Hurwitz Zeta functions
and some lemmas.

Let Rez > 1 and 0 < q < 1. Then the Hurwitz Zeta function is defined by

ζ (z, q) =
1

Γ (z)

∞
∫

0

tz−1e−qt

1− e−t
dt, (1.5)

where Γ (z)is the gamma function.

The Hurwitz Zeta function can be expressed by series as follows:

ζ (z, q) =
∞
∑

k=0

1

(k + q)z
, (Rez > 1, q 6= 0,−1,−2, · · · ). (1.6)

In case q = 0, we obtain the famous Riemann Zeta function:

ζ(z) =
∞
∑

k=1

1

kz
, (Rez > 1) (1.7)

These results can be found in the papers [6] and [9].

Lemma 1.2. Let α and λ be positive numbers. Then

∞
∫

0

sαe
−

λs
2

1−e−λs ds =
Γ(α+ 1)

λα+1
ζ(α+ 1, 12), (1.8)

where Γ (z)is the gamma function and ζ (z, q)is the Hurwitz zeta function, and that Rez > 1
and 0 < q < 1.
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Proof. Let t = λs. Then
∞
∫

0

sαe
−

λs
2

1−e−λs
ds = 1

λα+1

∞
∫

0

tαe
−

1
2t

1−e−t dt, It follows from (1.5) that the

equality (1.8) holds.J
Lemma 1.3. Let α be a positive number. Then

ζ
(

α+ 1, 12
)

=
(

2α+1 − 1
)

ζ (α+ 1) , (1.9)

where ζ(z) =
∞
∑

k=1

1
kz
, (Rez > 1) is the Riemann Zeta function.

Proof. When α > 0, it is known from (1.6) that

ζ
(

α+ 1, 1
2

)

=
∞
∑

k=0

1
(

k + 1
2

)α+1 =
∞
∑

k=0

2α+1

(2k + 1)α + 1
.

Based on (1.7), we have

ζ(α+ 1) =
∞
∑

k=0

1
(k+1)α+1and

1
2α+1 ζ (α+ 1) =

∞
∑

k=1

1
(2k)α+1 .

It is obvious that

∞
∑

k=0

1

(2k + 1)α+1 = ζ (α+ 1)− 1

2α+1
ζ (α+ 1) =

2α+1 − 1

2α+1
ζ (α+ 1) .

It follows that the equality (1.9) holds.J
Lemma 1.4. With the assumptions as Lemma1.1, and define a function by

Cλ (α) =
2
(

2α+1 − 1
)

λα+1
Γ (α+ 1) ζ(α+ 1), (1.10)

where Γ (z)is the gamma function and ζ (z) is the Riemann Zeta function. Then

∞
∫

0

| lnu|α

| 1−uλ|u
λ
2 − 1du = Cλ (α) . (1.11)

Proof. It is easy to duce that

∞
∫

0

| lnu|α

| 1−uλ|u
λ
2 − 1du =

1
∫

0

(

ln
1
u

)α

1−uλ u
λ
2 − 1du+

∞
∫

1

(lnu)α

uλ−1
u
λ
2 − 1du =

=

1
∫

0

(

ln
1
u

)α

1−uλ u
λ
2 − 1du+

1
∫

0

(

ln
1
v

)α

1−vλ
v
λ
2 − 1dv =

= 2

1
∫

0

(

ln
1
u

)α

1−uλ u
λ
2 − 1du = 2

∞
∫

0

sαe
−

λs
2

1−e−λs ds.
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It follows from (1.8) and (1.9) that the equality (1.11) holds.J

Lemma 1.5. With the assumptions as Lemma1.1, define a function by

ω(α, λ, x) =

∞
∫

0

k (x, y)
(

x
y

)1−
λ
2
dy.

Then

ω (α, λ, x) = Cλ (α) x
1−λ, (1.12)

where Cλ (α)is defined by (1.10).

Proof. It is easy to deduce that

ω(α, λ, x) =

∞
∫

0

k (x, y)
(

x
y

)1−
λ
2
dy =

∞
∫

0

| ln(xy)|α

| 1−(xy)λ|
(

x
y

)1−
λ
2
dy = x1−λ

∞
∫

0

| lnu|α

| 1−uλ|u
λ
2 − 1

du.

It follows from (1.11) that the equality (1.12) holds.J

Lemma 1.6. With the assumptions as Lemma1.1, define a function by

ω̃(α, λ, x) =

∞
∫

0
x 6= y

∣

∣

∣
ln
(

x
y

)
∣

∣

∣

α

| xλ−yλ|
(

x
y

)1−
λ
2
dy.

Then

ω̃ (α, λ, x) = Cλ(α)x
1−λ, (1.13)

where Cλ (α)is defined by (1.10). Proof. It is easy to deduce that

ω̃(α, λ, x) =

∞
∫

0
x 6= y

∣

∣

∣
ln
(

x
y

)
∣

∣

∣

α

|xλ−yλ|
(

x
y

)1−
λ
2
dy =

∞
∫

0
x 6= y

∣

∣

∣
ln
(

x
y

)
∣

∣

∣

α

xλ

∣

∣

∣

∣

1−
yλ

xλ

∣

∣

∣

∣

(

x
y

)1−
λ
2
dy =

= x1−λ

∞
∫

0

∣

∣

∣
ln

1
u

∣

∣

∣

α

| 1−uλ|u
λ
2 − 1du = x1−λ

∞
∫

0

| lnu|α

| 1−uλ|u
λ
2 − 1du.

It follows from (1.11) that the equality (1.13) holds.J
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2. Main Results

In this section, we will prove our assertions.

Theorem 2.1. Let k (x, y) be a function by (1.3), fand g be two real functions. If
∫∞
0 x1−λf2(x)dx < + ∞and

∫∞
0 x1−λg2(x)dx < + ∞, then

∞
∫

0

∞
∫

0

k(x, y)f (x) g (y) dxdy ≤ Cλ (α)







∞
∫

0

x1−λf2 (x) dx







1
2






∞
∫

0

x1−λg2 (x) dx







1
2

,

(2.1)

where Cλ (α)is defined by (1.10), and Cλ (α)in (2.1)is the best possible. And the equality
in (2.1) holds if and only if f(x) = 0, or g(x) = 0.

Proof. We may apply the Cauchy-Schwartz inequality to estimate the left-hand side
of (2.1) as follows

∞
∫

0

∞
∫

0

k (x, y) f (x) g (y) dxdy =

=

∞
∫

0

∞
∫

0

{

(k (x, y))
1
2

(

x
y

)

2−λ
4

f(x)

}

{

(k (x, y))
1
2
(

y
x

)

2−λ
4 g(y)

}

dxdy ≤

≤





∞
∫

0

∞
∫

0

k (x, y)
(

x
y

)

2−λ
2

f2(x)dxdy





1
2




∞
∫

0

∞
∫

0

k (x, y)
(

y
x

)

2−λ
2 g2(y)dxdy





1
2

= (2.2)

=





∞
∫

0

ω(α, λ, x)f2(x)dx





1
2




∞
∫

0

ω(α, λ, x)g2(x)dx





1
2

, (2.3)

where ω(α, λ, x) =
∞
∫

0

k (x, y)
(

x
y

)1−
λ
2
dy.

It follows from (1.11) and (2.3) that the inequality (2.1) is valid.

Iff(x) = 0, or g(x) = 0, then the equality in (2.1) is obviously valid. If f (x) 6= 0and
g (x) 6= 0, then 0 <

∫∞
0 x1−λf2(x)dx < + ∞ and 0 <

∫∞
0 x1−λg2(x)dx < + ∞. Let’s

consider (2.2). If (2.2) takes the form of the equality, then it is known from the paper [7]
(pp.5.) that there exist a pair of non-zero constants c1 and c2 such that

c1k (x, y) f
2 (x)

(

x
y

)1−
λ
2
= c2k (x, y) g

2 (y)
(

y
x

)1−
λ
2 a.e. on (0,+ ∞)× (0,+ ∞.)

Then we have

c1x
2−λ f2 (x) = c2y

2−λ g2 (y) = C0.(constant) a.e. on (0,+ ∞)× (0,+ ∞).
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Without losing the generality, we suppose that c1 6= 0, then

∫ ∞

0
x1−λf2 (x) dx = C0

c1

∫∞
0 x−1dx.

This contradicts that0 <
∫∞
0 x1−λf2 (x) dx < + ∞. Hence it is impossible to take the

equality in (2.2). It shows that it is also impossible to take the equality in (2.1). In other
words, the equality in (2.1) holds if and only iff(x) = 0, or g(x) = 0.

It remains to need only to show thatCλ (α) in (2.1) is the best possible.
∀ n ∈ N,define two functions by

fn(x) =

{

x
λ
2 − 1 + 1

2n , x ∈ (0, 1)
0, x ∈ [1, ∞)

and gn(x) =

{

0, x ∈ (0, 1]

x
λ
2 − 1− 1

2n , x ∈ (1, ∞).
Then we have





1
∫

0

x1−λf2
n(x)dx





1
2

=





∞
∫

1

x1−λg2n(x)dx





1
2

=
√
n. (2.4)

When xy = 1, It is known from (1.3) that the inequality (2.1) is obviously valid.
Consider the case xy 6= 1. Let 0 < A ≤ Cλ (α)such that the inequality (2.1) is still

valid, when Cλ(α)in (2.1) is replaced by A. By using (2.4), we have

1

n

∞
∫

0

∞
∫

0

k (x, y) fn (x) gn (y) dxdy =
1

n

∞
∫

0

∞
∫

0

| lnxy| αfn(x)gn(y)

| 1− (xy)λ| dxdy ≤

≤ A

(

1

n

)







∞
∫

0

x1−λf2
n (x) dx







1
2






∞
∫

0

x1−λg2n (x) dx







1
2

= A. (2.5)

Let k(1, xy) = | lnxy|α

|1−(xy)λ| . Based on (2.5) and then by using Fubini’s theorem, we have

A ≥ 1

n

∞
∫

0

∞
∫

0

k(1, xy)fn(x)gn(y)dxdy =

=
1

n

∞
∫

1

y
λ
2 − 1− 1

2n





1
∫

0

k(1, xy)x
λ
2 − 1 + 1

2n dx



 dy

=
1

n

∞
∫

1

y−1−
1
n





y
∫

0

k(1, u)u
λ
2 − 1 + 1

2n du



 dy =

=
1

n







∞
∫

1

y−1−
1
n





1
∫

0

k(1, u)u
λ
2 − 1 + 1

2n du



 dy+
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+

∞
∫

1

y−1−
1
n





y
∫

1

k(1, u)u
λ
2 − 1 + 1

2n du



 dy







=

=
1

n







∞
∫

1

n





1
∫

0

k(1, u)u
λ
2 − 1 + 1

2n du



+

∞
∫

1

k(1, u)u
λ
2 − 1 + 1

2n





∞
∫

u

y−1−
1
n dy



 du







=

=

1
∫

0

k(1, u)u
λ
2 − 1 + 1

2n du+

∞
∫

1

k(1, u)u
λ
2 − 1− 1

2n du.

By Fatou’s lemma and (1.11), we have

A ≥ lim
n→∞

1
∫

0

k(1, u)u
λ
2 − 1 + 1

2n du+ lim
n→∞

∞
∫

1

k(1, u)u
λ
2 − 1− 1

2n du ≥

≥
1
∫

0

lim
n→∞

k(1, u)u
λ
2 − 1 + 1

2n du+

∞
∫

1

lim
n→∞

k(1, u)u
λ
2 − 1− 1

2n du =

=

1
∫

0

k(1, u)u
λ
2 − 1du+

∞
∫

1

k(1, u)u
λ
2 − 1du =

=

∞
∫

0

k(1, u)u
λ
2 − 1du =

∞
∫

0

| lnu|α
| 1− uλ|u

λ
2 − 1du = Cλ(α).

It follows that A = Cλ(α)in (2.1) is the best possible. Thus the proof of Theorem is
Completed.J

Based on Theorem 2.1, we have the following result when α is odd.

Theorem 2.2. Let n be a positive integer and λ > 0. If
∞
∫

0

x1−λf2(x)dx < +∞ and

∞
∫

0

x1−λg2(x)dx < +∞, then

∞
∫

0

∞
∫

0

| lnxy|2n−1f(x)g(y)

| 1−(xy)λ| dxdy ≤ Cλ (2n − 1)







∞
∫

0

x1−λf2 (x) dx







1
2






∞
∫

0

x1−λg2 (x) dx







1
2

,

(2.6)

where Cλ (2n− 1) =
22n−1(22n−1)

n

(

π
λ

)2n
Bn, and the Bn′s are the Bernoulli numbers, viz.

B1 = 1
6 , B2 = 1

30 , B3 = 1
42 , B4 = 1

30 , B5 = 5
66 , etc., and the constant factor
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Cλ (2n− 1)is the best possible. And the equality in (2.6) holds if and only if f (x) = 0, or
g (x) = 0.

Proof. We need only to verify the constant factor Cλ (2n− 1)in (2.6). When α = 2n−1,
it is known from(1.10) that

Cλ (2n− 1) =
2
(

22n − 1
)

λ2n
Γ (2n) ζ(2n) =

=
2
(

22n − 1
)

λ2n
(2n− 1)!

∞
∑

k=1

1

k2n
.

It is known from the paper [8] that

∞
∑

k=1

1

k2n
=

22n−1π2n

(2n)!
Bn,

where theBn′s are the Bernoulli numbers, viz. B1 = 1
6 , B2 = 1

30 , B3 = 1
42 , B4 =

1
30 , etc..

It follows that the constant factor Cλ (2n − 1)in (2.6) is the best possible.J
Theorem 2.3. With the assumptions as Theorem 2.1, then

∞
∫

0

∞
∫

0

∣

∣

∣
ln
(

x
y

)∣

∣

∣

α

f (x) g (y)

|xλ − yλ| dxdy ≤ Cλ (α)







∞
∫

0

x1−λf2 (x) dx







1
2






∞
∫

0

x1−λg2 (x) dx







1
2

,

(2.7)
where Cλ (α)is defined by (1.10), and Cλ (α)in (2.7) is the best possible. And the equality
in (2.7) holds if and only if f(x) = 0, or g(x) = 0.

Proof. We may apply the Cauchy-Schwartz inequality to estimate the left-hand side
of (2.7) as follows

∞
∫

0

∞
∫

0

∣

∣

∣
ln
(

x
y

)
∣

∣

∣

α

f(x)g(y)

|xλ−yλ| dxdy =

∞
∫

0

∞
∫

0

(
∣

∣

∣
ln
(

x
y

)
∣

∣

∣

α

|xλ−yλ|

)

1
2 (

x
y

)

2−λ
4

f(x)

(
∣

∣

∣
ln
(

x
y

)
∣

∣

∣

α

|xλ−yλ|

)

1
2
(

y
x

)

2−λ
4 ×

×g(y)dxdy ≤





∞
∫

0

∞
∫

0

∣

∣

∣
ln
(

x
y

)
∣

∣

∣

α

|xλ−yλ|
(

x
y

)

2−λ
2

f2(x)dxdy





1
2




∞
∫

0

∞
∫

0

∣

∣

∣
ln
(

x
y

)
∣

∣

∣

α

|xλ−yλ|
(

y
x

)

2−λ
2 g2(y)dxdy





1
2

=





∞
∫

0

ω̃(α, λ, x)f2(x)dx





1
2




∞
∫

0

ω̃(α, λ, x)g2(x)dx





1
2

, (2.8)
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where ω̃(α, λ, x) =
∞
∫

0

∣

∣

∣
ln
(

x
y

)
∣

∣

∣

α

|xλ−yλ|
(

x
y

)1−
λ
2
dy.

It follows from (1.13), (1.10) and (2.8) that the inequality (2.7) is valid.J
The rest is similar to the proof of Theorem 2.1, it is omitted.
In particular, when α is odd, based on (2.7), an extension of (1.1) can be obtained.

Theorem 2.4. Let n be a positive integer and λ > 0. If
∞
∫

0

x1−λf2(x)dx < +∞ and

∞
∫

0

x1−λg2(x)dx < +∞, then

∞
∫

0

∞
∫

0

(

ln x
y

)2n−1
f (x) g (y)

xλ − yλ
dxdy ≤ Cλ (2n− 1)







∞
∫

0

x1−λf2 (x) dx







1
2

×

×







∞
∫

0

x1−λg2 (x) dx







1
2

, (2.9)

where Cλ (2n − 1) =
22n−1(22n−1)

n

(

π
λ

)2n
Bn, and theBn′s are the Bernoulli numbers, viz.

B1 = 1
6 , B2 = 1

30 , B3 = 1
42 , B4 = 1

30 , B5 = 5
66 , etc., and the constant factor

Cλ (2n− 1)is the best possible. And the equality in (2.9) holds if and only if f (x) = 0, or
g (x) = 0.

3. Some Applications

As applications, we will build some new inequalities.
Theorem 3.1. Let α and λ be two positive numbers, fand g be two real functions. If

∫∞
0 x1−λf2(x)dx < + ∞, then

∞
∫

0

yλ−1







∞
∫

0

k (x, y) f (x) dx







2

dy ≤ (Cλ (α))
2

∞
∫

0

x1−λf2 (x) dx, (3.1)

where Cλ (α)is defined by (1.10), and Cλ (α)in (3.1)is the best possible. And the equality
in (3.1) holds if and only if f(x) = 0. And the inequality (3.1) is equivalent to (2.1).

Proof. First, we assume that the inequality (2.1) is valid. Setting a real function g(y)as

g(y) = yλ−1

∞
∫

0

k (x, y) f (x) dx, y ∈ (0, + ∞).

By using (2.1), we have

∞
∫

0

yλ−1







∞
∫

0

k (x, y) f (x) dx







2

dy =

∞
∫

0

∞
∫

0

k (x, y) f (x) g(y)dxdy ≤
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≤ Cλ (α)







∞
∫

0

x1−λf2(x)dx







1
2






∞
∫

0

y1−λg2(y)dy







1
2

=

= Cλ (α)







∞
∫

0

x1−λf2(x)dx







1
2






∞
∫

0

yλ−1

(∫ ∞

0
k (x, y) f(x)dx

)2

dy







1
2

(3.2)

It follows from (3.2) that the inequality (3.1) is valid after some simplifications.
On the other hand, assume that the inequality (3.1) keeps valid, by applying in turn

Cauchy-Schwartz’s inequality and (3.1), we have

∞
∫

0

∞
∫

0

k (x, y) f (x) g (y) dxdy =

∞
∫

0

y
λ−1
2







∞
∫

0

k (x, y) f (x) dx







y
1−λ
2 g (y) dy ≤

≤
{

∞
∫

0

yλ−1

(

∞
∫

0

k (x, y) f (x) dx

)2

dy

}

1
2 {∞
∫

0

y1−λg2 (y) dy

}

1
2
≤

≤







(Cλ (α))
2

∞
∫

0

x1−λf2 (x) dx







1
2






∞
∫

0

y1−λg2 (y) dy







1
2

=

= (Cλ (α))
2







∞
∫

0

x1−λf2 (x) dx







1
2






∞
∫

0

y1−λg2 (y) dy







1
2

. (3.3)

If the constant factor (Cλ (α))
2 in (3.1) is not the best possible, then it is known

from (3.3) that the constant factor Cλ (α) in (2.1) is also not the best possible. This is a
contradiction. Therefore the inequality (3.1) is equivalent to (2.1). It is obvious that the
equality in (3.1) holds if and only if f (x) = 0. The proof of Theorem is completed.J

Similarly, we have the following result.
Theorem 3.2. With the assumptions as Theorem 3.1, then

∞
∫

0

yλ−1







∞
∫

0

∣

∣

∣
ln

x
y

∣

∣

∣

α

|xλ−yλ|f (x) dx







2

dy ≤ (Cλ (α))
2

∞
∫

0

x1−λf2 (x) dx, (3.4)

where Cλ (α)is defined by (1.10), and Cλ (α)in (3.4) is the best possible, and the equality
in (3.4) holds if and only if f(x) = 0. And the inequality (3.4) is equivalent to (2.7) .

Its proof is similar to one of Theorem 3.1. Hence it is omitted.
Similarly, we can establish also some new inequalities which they are respectively equiv-

alent to the inequalities (2.6) and (2.9). They are omitted here.
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