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A Hilbert Integral Type Inequality with Non-homogeneous
Kernel

Gao Mingzhe*, Gao Xuemei

Abstract. It is shown that the Hilbert integral type inequality with non-homogeneous kernel
function can be established by introducing two parameters and a proper logarithm function. And
the constant factor expressed by product of the gamma function and the Riemann Zeta function
is proved to be the best possible. As applications, some equivalent forms are considered.
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1. Introduction and Lemmas

Let f(x), g(x) € L?(0, + o). Then

O/OOO/OO <1n%1f_(f;)g(y)d$dy < 72 0/°°f2 (z) de 0792 () ds b (L.1)

DO
N[

And . )
77f d:z:dy < /f2 i /0092 (2)de b . (12)
0 0

They are the famous Hilbert integral inequalities, where the constant factor 72 and 7 are
the best possible. And the equalities in (1.1) and (1.2) hold if and only if f(x) = 0, or
g (z) = 0.These results can be found in papers [2] and [7]. Owing to the importance of
the Hilbert inequality and the Hilbert type inequality in analysis and applications, some
mathematicians have been studying them. Recently, various refinements, extensions and
generalizations of (1.2) appear in a great deal of the articles. (such as [1], [3], [4], [5], [10],
[11], [12], [13] etc.). However, the research articles of (1.1) are few.
Let a, A > 0. Define a non-homogeneous kernel function by
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| Inzy| o
k(z,y) = { | 1= (@]’ y#1 . (x,y) € (0,400) x (0,+00). (1.3)

0, zy =1

Throughout the paper we will use frequently the kernel function.
The aim of the present paper is to establish some extensions of (1.1) and to build an
inequality of the form

1
00 oo o L 1
o/o/k z,y)f(2)g(y)dzdy < Cy(a) O/W(ﬂ?)f2 (z) dx O/w($)92 (x)dx p . (1.4)

And the constant factor C) (o)and the weight function w (z)will be given, and some
important and especial results will be enumerated, and then some equivalent forms will
be considered.

In order to prove our main results, we need to introduce the Hurwitz Zeta functions
and some lemmas.

Let Rez > 1 and 0 < ¢ < 1. Then the Hurwitz Zeta function is defined by

Ootz 1 —qt
C( / —< (1.5)
0

where T" (2)is the gamma function.
The Hurwitz Zeta function can be expressed by series as follows:

oo

1
z,q) = —, (Rez >1, 0,—-1,-2, ---). 1.6
¢(29) kzo(kJrq)z ( q # ) (1.6)
In case ¢ = 0, we obtain the famous Riemann Zeta function:
=1
=y = (Rez > 1) (1.7)
k=1

These results can be found in the papers [6] and [9].
Lemma 1.2. Let a and )\ be positive numbers. Then

T As
[eetas =@, (18)
0

where I" (2)is the gamma function and ¢ (z, q)is the Hurwitz zeta function, and that Rez > 1
and 0 < qg < 1.
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00 As 1
Proof. Let t = As. Then [ & 6,35 ds = o [ 2! dt, Tt follows from (1.5) that the
0 0

1—e—t

equality (1.8) holds.«
Lemma 1.3. Let a be a positive number. Then

((a+1,3) =2 -1)¢(a+1), (1.9)

where ((z) = Z =, (Rez > 1) is the Riemann Zeta function.
en o

Proof. W > 0, it is known from (1.6) that
° 1 i ga+1
Clatl3) =D =D T
im0 (E+3) oo @k+1) T

Based on (1.7), we have

a+1)= - L__and L a+1)= 3
ot 1) = 3 grfmrand (ot 1) = 3

1
(2k)a+l .
It is obvious that

S L 1 gatl _ q
k=0

It follows that the equality (1.9) holds.«
Lemma 1.4. With the assumptions as Lemmal.1, and define a function by

2 (2011 —

Cy (o) = o 1)F(oz+1)§(oz+1), (1.10)

where I' (2)is the gamma function and ¢ (2) is the Riemann Zeta function. Then

[e.o]

a A
|‘ ﬂ‘k‘ua ~lau =0 (a). (1.11)
0
Proof. 1t is easy to duce that
[e'¢) y 1 e [e'¢) N
A In ~ A a A
/ l w2 " Lay :/ (ln:;z u?2 1du—|—/ (irizi)l w2 " ldu =
0 0 1
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It follows from (1.8) and (1.9) that the equality (1.11) holds.«
Lemma 1.5. With the assumptions as Lemmal.1, define a function by

wla, A\, z) = /k:(x,y) (%)17 dy.
0

Then
wlo, A z) = Cy () zt™2, (1.12)

where C) (a)is defined by (1.10).

Proof. 1t is easy to deduce that

2 In(zy)|* 2 — Inu| £ —
wlahe) = [Kag) (2) Tdy= [ el (2)7 2 gy =gt [ pmes = Laa,
0 0 0

It follows from (1.11) that the equality (1.12) holds. <«
Lemma 1.6. With the assumptions as Lemmal.1, define a function by

EAY _2A
W(a, A\, x) = / “lx£y3A‘| (%)1 > dy.
0
TF#Y
Then
(oA z) = Cy(a)z! ™, (1.13)

where C (a)is defined by (1.10). Proof. It is easy to deduce that

7 In(Z “ 1—A ra In(Z ¢ I_A
Dl N x) = / ‘W(yy)k“ (5) = / ‘ fﬂ (5) av=
0 0 :
r#y TFEY

It follows from (1.11) that the equality (1.13) holds. <«
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2. Main Results

In this section, we will prove our assertions.
Theorem 2.1. Let k(x,y) be a function by (1.83), fand g be two real functions. If
JoZ 2t 2 (w)da < + ocand [[° x' A g2 (xv)dx < + oo, then

1 1
//k: z,y)f (y)dzdy < Ch(«) /a,‘l)‘f2 () dz /xl)‘QQ (x)dz p
00 0 0

(2.1)
where C (a)is defined by (1.10), and Cy («a)in (2.1)is the best possible. And the equality
in (2.1) holds if and only if f(x) =0, or g(x) = 0.

Proof. We may apply the Cauchy-Schwartz inequality to estimate the left-hand side
of (2.1) as follows

¥
>/
N[
~ —

1
00 00 00 00 2
<[ [rewn (@)™ pown] | [ [ren®T o) = e2)
00 00
1 1
oe] 2 o] 2
/w a, A\ )d /w(a,)\,x)f(a:)dx , (2.3)
0 0

o
where w(a, A\, z) = [k (x,y) (%) dy.
0

It follows from (1.11) and (2.3) that the inequality (2.1) is valid.

Iff(x) = 0, or g(z) = 0, then the equality in (2.1) is obviously valid. If f(x) # Oand
g(z) # 0, then 0 < [[" 2! f2(2)dz < 4+ o0 and 0 < [;°2'"*¢?(z)dz < + oo. Let’s
consider (2.2). If (2.2) takes the form of the equality, then it is known from the paper [7]

(pp.5.) that there exist a pair of non-zero constants ¢; and cg such that
A

1- 5 _2
ak(z,) 2 (@) (£) 7 = eok(@0)6% (1) (1) 2 ae. on (0,4 o) x (0,4 00.)
Then we have
12?7 f2(x) = coy®> ™ ¢% (y) = Cp.(constant) a.e. on (0,+ 0o) x (0, + 00).
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Without losing the generality, we suppose that ¢; # 0, then

/ xl*)\fQ dl‘ — CO f(] _ld.’E.
0

This contradicts that0 < [;° 2! f? (z) dzv < + oo. Hence it is impossible to take the
equality in (2.2). It shows that it is also impossible to take the equality in (2.1). In other
words, the equality in (2.1) holds if and only iff(z) = 0, or g(z) = 0.

It remains to need only to show thatC) (a) in (2.1) is the best possible.

VneN ,deﬁne two functlons by

-1+ 0, x e (0,1
falw) = o2 W, we) andgn(z) =4 A_j_ 1 (01
0, x € [1, 00) 2 2n x € (1, 00)
Then we have
1
1 2 ) b)
[a P f@an | = | [+ g@as | = v (2.4)

0 1
When zy = 1, It is known from (1.3) that the inequality (2.1) is obviously valid.
Consider the case xy # 1. Let 0 < A < C) (a)such that the inequality (2.1) is still
valid, when Cj(a)in (2.1) is replaced by A. By using (2.4), we have

[celne e}

1 T 1 | Inzy| @ frn(z)gn(y)
J— = — <
o [E@n s @ g ) dndy = [ [ Lt gy <
0 0 0 0
) 00 2 00 2
< A(ﬁ) / 2! AR (x) d / 1222 (2)dz p = A (2.5)
0 0

Let k(1,zy) = % Based on (2.5) and then by using Fubini’s theorem, we have

A>

Slr—‘

O/O/k: (1, 2) fo () g () drdy =

[e.o]

1
1 A 1 A 1
/y2 L= /k(l,xy)a:2 L+ 5 de dy
n

1 0

y
= /1 /k:lu 1+2ndu dy =
1
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(o) Yy

1 A 1
—l—/ylﬁ /k(l,u)’Iﬁ 1+ wma dy y =
1

1

1 oo 1 0o 0
1
— /n /k:lu 1+2ndu +/k(1u)__1+2n /ylﬁdy du p =
n
1 0 1 U
1 00
14 -1
:/k(l)u 2ndu—|—/]{: 2n du.
0 1
By Fatou’s lemma and (1.11), we have
1 [os)
-1+ A_ 1L
A> lim [ k(1,u)u 2ndu+ lim [ k(1,u)u2 2ndu >
n— oo n—00
0 1
1 0
-1+ . AL
lim (1, u) 2ndu—|— lim k(1,u)u2 ndu =
n— o0 n—o0
0 1
1 00
-1 -1
k(L u)u du+ [ k(1,u)u du =
0 1

) \ oo ) o
= /k(l,u)’lﬁ gy = &uﬁ gy = Ch(a).
[ 1w
0

It follows that A = C(«)in (2.1) is the best possible. Thus the proof of Theorem is
Completed. «

Based on Theorem 2.1, we have the following result when « is odd.

o
Theorem 2.2. Let n be a positive integer and A > 0. If [ 2172 f%(z)dz < +oo and
0

2172 g2(z)dxr < 400, then

o3y

1
00 00 oo 2 oo 2
/ | lnx|y‘12n lr )()\ ‘)g(y) dedy < Cy (Qn B 1) /l,l)\fQ (l‘) dx /1‘1)\92 (l‘) dx ’
0 0 0 0
(2.6)

92n—1 (2277._1)
n

By =

( )271

B,,, and the B, are the Bernoulli numbers, viz.
L = %, By = %, etc., and the constant factor

Sn

where Cy (2n —1) =
1

B1:%>B2:

oy

L
30° 42>
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Cy (2n — 1)is the best possible. And the equality in (2.6) holds if and only if f (x) =0, or
g(x) =0.

Proof. We need only to verify the constant factor Cy (2n — 1)in (2.6). When o = 2n—1,
it is known from(1.10) that

2 (22" -1
2 (227 — 1) — 1
k=1
It is known from the paper [8] that
(o)
1 221171 2n
Z k‘—” = (2 ;rl B,
k=1 n
where theB, s are the Bernoulli numbers, viz. By = %, By = %, B3 = ﬁ, By =

1

350 €tc..
It follows that the constant factor C) (2n — 1)in (2.6) is the best possible.«
Theorem 2.3. With the assumptions as Theorem 2.1, then

) 1

ool (a T 7 ? Vi

// ‘ 1 (72/\ _fy(/\|)g(y)dxdy < i) /xl—)\f2 (2) da /l‘l_)‘QQ (x)da p |
00 "

0

N|—

(2.7)
where Cy («)is defined by (1.10), and C («)in (2.7) is the best possible. And the equality
in (2.7) holds if and only if f(x) =0, or g(xz) = 0.

Proof. We may apply the Cauchy-Schwartz inequality to estimate the left-hand side
of (2.7) as follows

00 o0 T\| ©0 00 x\| ¢ 3 - T\ |« 3
[ [ s, - [ ] (BEIEY () o (L) 0"
0 0 0 0

N[
DN~
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T\ |* A
O | In( = 1- 5
where @(a, A\, x) = ({7‘|$A<_yyl" (%) % dy.
It follows from (1.13), (1.10) and (2.8) that the inequality (2.7) is valid.«

The rest is similar to the proof of Theorem 2.1, it is omitted.
In particular, when « is odd, based on (2.7), an extension of (1.1) can be obtained.

o
Theorem 2.4. Let n be a positive integer and X > 0. If [ 272 f?(z)dz < +oo and
0

212 g?(z)dxr < 400, then

o3y

55 ()" S @) x !
// ™ —y dedy < Cy(2n—1) /331)\]02 () dx X
0 0

A

X /a,‘l)‘g2 (x)dx p (2.9)

2n—1(92n __
where Cy (2n — 1) = # (%)QH B, and theB, s are the Bernoulli numbers, viz.
By = %, By = %, B3y = 4—12, By = %, By = %, etc., and the constant factor
Cy (2n — 1)is the best possible. And the equality in (2.9) holds if and only if f (x) =0, or

g(x)=0.

3. Some Applications

As applications, we will build some new inequalities.
Theorem 3.1. Let o and X\ be two positive numbers, fand g be two real functions. If
JoZ a7 f2(w)dr < + oo, then

0o o) 2 oo
/Z/,\—l /k(x,y)f(x) dey dy < (Ch (06))2/.1‘1_>\f2 () da, (3.1)
0 0 0

where Cy (a)is defined by (1.10), and Cy (a)in (3.1)is the best possible. And the equality
in (3.1) holds if and only if f(x) = 0. And the inequality (3.1) is equivalent to (2.1).
Proof. First, we assume that the inequality (2.1) is valid. Setting a real function g(y)as

oo

o) = [ R @) do, ye (0, + ).
0
By using (2.1), we have

71/“ 7/-6 (z,y) [ (z)dz 2dy = 7)71@(93,1/) f (@) g(y)dady <
0 0 0

0



106 Gao Mingzhe and Gao Xuemei

1
0 2 o 2
< Oy (a) O/xlAfQ(w)dx 0/y1A92(y)dy =
[e’e) 2 ') o 9 1
—Ci(@){ [o Py § [ ( /0 k(w)f(x)dw) dy (3.2)
0 0

It follows from (3.2) that the inequality (3.1) is valid after some simplifications.
On the other hand, assume that the inequality (3.1) keeps valid, by applying in turn
Cauchy-Schwartz’s inequality and (3.1), we have

0
oo % 00 2
< (Cx(a)? [ 22 (2)da Y () dy p =
/ /
1 1
') 2 o] 2
~ (Ch ()’ / P () da / VP () dy S (3.3)
0 0

If the constant factor (C (a))® in (3.1) is not the best possible, then it is known
from (3.3) that the constant factor C) («) in (2.1) is also not the best possible. This is a
contradiction. Therefore the inequality (3.1) is equivalent to (2.1). It is obvious that the
equality in (3.1) holds if and only if f (x) = 0. The proof of Theorem is completed.«

Similarly, we have the following result.

Theorem 3.2. With the assumptions as Theorem 3.1, then

2

/yAl /{::_%y’wf(x) dr y dy < (Cy (a))Z/l,l)\fQ (z) da, (3.4)
0 0 0

where Cy (a)is defined by (1.10), and Cy (a)in (3.4) is the best possible, and the equality
in (3.4) holds if and only if f(x) =0. And the inequality (3.4) is equivalent to (2.7) .

Its proof is similar to one of Theorem 3.1. Hence it is omitted.

Similarly, we can establish also some new inequalities which they are respectively equiv-
alent to the inequalities (2.6) and (2.9). They are omitted here.
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