On Three Dimensional Kenmotsu Manifolds admitting A quater symmetric metric connection

Uday Chand De *, Krishnendu De

Abstract

The object of the present paper is to study a type of quater-symmetric metric connection in a 3-dimensional Kenmotsu manifold. We study some curvature properties of a 3-dimensional Kenmotsu manifold with respect to the quater- Symmetric metric connection.Finally, we construct an example of a 3-dimensional Kenmotsu manifold to verify the results.

Key Words and Phrases: Quater-symmetric metric connection, Kenmotsu manifold, η-parallel Ricci tensor, cyclic Ricci tensor,locally ϕ-symmetric manifold

2000 Mathematics Subject Classifications: 53c15, 53c25

1. Introduction

The product of an almost contact manifold M and the real line \mathbb{R} carries a natural almost complex structure. However if one takes M to be an almost contact metric manifold and suppose that the product metric G on $M \times \mathbb{R}$ is Kaehlerian, then the structure on M is cosymplectic [9] and not Sasakian. On the other hand, Oubina [12] pointed out that if the conformally related metric $e^{2 t} \mathrm{G}, \mathrm{t}$ being the coordinates on \mathbb{R}, is Kaehlerian, then M is Sasakian and conversely.

In [19] S. Tanno classified almost contact metric manifolds whose automorphism groups possesses the maximum dimension. For such a manifold M, the sectional curvature of a plane section containing ξ is a constant ,say c.If $\mathrm{c}>0, \mathrm{M}$ is a homogeneous Sasakian manifold of constant sectional curvature. If $\mathrm{c}=0, \mathrm{M}$ is the product of a line or a circle with a Kaehler manifold of constant holomorphic sectional curvature. If $\mathrm{c}<0, \mathrm{M}$ is a warped product space $\mathbb{R} \times f^{C^{n}}$. In $1972, \mathrm{~K}$. Kenmotsu [10] abstracted the differential geometric properties of the third case. We call it Kenmotsu manifold.

The quater-symmetric connection generalizes the semi-symmetric connection. The semi-symmetric metric connection is important in the geometry of Riemannian manifolds having also physical application; for instance, the displacement on the earth surface following a fixed point is metric and semi-symmetric [17].

[^0]In this paper we undertake a study of quater-symmetric metric connection in a 3dimensional Kenmotsu manifold.In 1975 , S.Golab [7] defined and studied quater-symmetric connection in a differentiable manifold.

A linear connection $\widetilde{\nabla}$ on an n -dimensional Riemannian manifold (M, g) is called a quater-symmetric connection [7] if its torsion tensor T of the connection $\widetilde{\nabla}$ defined by $T(X, Y)=\widetilde{\nabla}_{X} Y-\widetilde{\nabla}_{Y} X-[X, Y]$, satisfies

$$
\begin{equation*}
T(X, Y)=\eta(Y) \phi X-\eta(X) \phi Y \tag{1.1}
\end{equation*}
$$

where η is a 1 -form and ϕ is a $(1,1)$ tensor field.
In particular, if $\phi(X)=X$, then the quater-symmetric connection reduces to a semisymmetric connection [6].
If moreover, a quater-symmetric connection $\widetilde{\nabla}$ satisfies the condition

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} g\right)(Y, Z)=0, \tag{1.2}
\end{equation*}
$$

for all $\mathrm{X}, \mathrm{Y}, \mathrm{Z} \varepsilon \mathrm{T}(\mathrm{M})$, where $\mathrm{T}(\mathrm{M})$ is the Lie algebra of vector fields of the manifold M , then $\widetilde{\nabla}$ is said to be a quater-symmetric metric connection, otherwise it is said to be a quatersymmetric non-metric connection.
After S.Golab [7], S.C. Rastogi ([13],[14]) continued the systematic study of quatersymmetric metric connection. In 1980,R.S.Mishra and S.N.Pandey [11] studied quatersymmetric metric connection in Riemannian,Kaehlerian and Sasakian manifolds.In 1982, K.Yano and T.Imai [20] studied quater-symmetric metric connection in Hermition and Kaehlerian manifolds.In 1991, S. Mukhopadhyay, A.K. Roy and B. Barua [15] studied quater-symmetric metric connection on a Riemannian manifold (M, g) with an almost complex structure ϕ.In 1997, U.C. De and S.C Biswas [1] studied quater-symmetric metric connection on an SP-Sasakian manifold.In 2008,U.C.De and A.K. Mondal studied quatersymmetric metric connection on a Sasakian manifold [4].Also in 2008, Sular,Ozgur and De [16] studied quater-symmetric metric connection in a Kenmotsu manifold. The paper is organized as follows:

In section 2, some preliminary results are recalled.After preliminaries, we study 3 dimensional Kenmotsu manifold with η-parallel Ricci tensor and cyclic parallel Ricci tensor with respect to the quater-symmetric metric connection.In the next section , we characterize locally ϕ-symmetric Kenmotsu manifold with respect to the quater-symmetric metric connection.Finally we construct an example of a 3-dimensional Kenmotsu manifold

2. Preliminaries

Let M be a connected almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g), that is, ϕ is an $(1,1)$ tensor field, ξ is a vector field,η is a 1 - form and g is a compatible Riemannian metric such that

$$
\begin{equation*}
\phi^{2}(X)=-X+\eta(X) \xi, \eta(\xi)=1, \phi \xi=0, \eta \phi=0 \tag{2.1}
\end{equation*}
$$

$$
\begin{gather*}
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.2}\\
g(X, \xi)=\eta(X) \tag{2.3}
\end{gather*}
$$

for all $\mathrm{X}, \mathrm{Y} \in \mathrm{T}(\mathrm{M})([2],[3])$.
If an almost contact metric manifold satisfies

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=g(\phi X, Y) \xi-\eta(Y) \phi X \tag{2.4}
\end{equation*}
$$

then M is called a Kenmotsu manifold [10], where ∇ is the Levi-Civita connection of g .From the above equation it follows that

$$
\begin{equation*}
\nabla_{X} \xi=X-\eta(X) \xi \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\nabla_{X} \eta\right) Y=g(X, Y)-\eta(X) \eta(Y) \tag{2.6}
\end{equation*}
$$

Moreover, the curvature tensor R and the Ricci tensor S satisfy

$$
\begin{equation*}
R(X, Y) \xi=\eta(X) Y-\eta(Y) X \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
S(X, \xi)=-(n-1) \eta(X) \tag{2.8}
\end{equation*}
$$

From [5] we know that for a 3-dimensional Kenmotsu manifold

$$
\begin{align*}
R(X, Y) Z= & \left(\frac{r+4}{2}\right)[g(Y, Z) X-g(X, Z) Y]- \tag{2.9}\\
& -\left(\frac{r+6}{2}\right)[g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi+ \\
& +\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y] \\
S(X, Y)= & \frac{1}{2}[(r+2) g(X, Y)-(r+6) \eta(X) \eta(Y)] \tag{2.10}
\end{align*}
$$

where S is the Ricci tensor of type $(0,2), R$ is the curvature tensor of type $(1,3)$ and r is the scalar curvature of the manifold M .

3. η - parallel Ricci tensor

Definition 1. The Ricci tensor S of a Kenmotsu manifold is said to be η-parallel if it satisfies

$$
\begin{equation*}
\left(\nabla_{X} S\right)(\phi Y, \phi Z)=0 \tag{3.1}
\end{equation*}
$$

for all vector fields X, Y and Z.

Let M be a 3 -dimensional Kenmotsu manifold. From [16] we know that for a quatersymmetric metric connection in a Kenmotu manifold

$$
\begin{equation*}
\widetilde{\nabla}_{X} Y=\nabla_{X} Y-\eta(X) \phi Y \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{S}(Y, Z)=S(Y, Z)+g(\phi Y, Z), \tag{3.3}
\end{equation*}
$$

where $\widetilde{\nabla}$ be a quater-symmetric metric connection in M and \widetilde{S} is the Ricci tensor of the connection $\widetilde{\nabla}$.
We know that

$$
\begin{align*}
\left(\widetilde{\nabla}_{X} \widetilde{S}\right)(Y, Z)= & \widetilde{\nabla}_{X} \widetilde{S}(Y, Z)- \\
& -\widetilde{S}\left(\widetilde{\nabla}_{X} Y, Z\right)-\widetilde{S}\left(Y, \widetilde{\nabla}_{X} Z\right) \tag{3.4}
\end{align*}
$$

Using (3.2) and (3.3) from (3.4), we have

$$
\begin{align*}
\left(\widetilde{\nabla}_{X} \widetilde{S}\right)(Y, Z)= & \nabla_{X} S(Y, Z)+\nabla_{X} g(\phi Y, Z)-S\left(\nabla_{X} Y, Z\right)+ \\
& +\eta(X) S(\phi Y, Z)-g\left(\phi \nabla_{X} Y, Z\right)+ \\
& +\eta(X) g\left(\phi^{2} Y, Z\right)-S\left(Y, \nabla_{X} Z\right)+ \\
& +\eta(X) S(Y, \phi Z)-g\left(\phi Y, \nabla_{X} Z\right)+ \\
& +\eta(X) g(\phi Y, \phi Z) . \tag{3.5}
\end{align*}
$$

Now using (2.1),(3.5)yields

$$
\begin{align*}
\left(\widetilde{\nabla}_{X} \widetilde{S}\right)(Y, Z)= & \left(\nabla_{X} S\right)(Y, Z)+\eta(X)[S(\phi Y, Z)+S(Y, \phi Z)]+ \\
& +\eta(Z) g(\phi X, Y)-\eta(Y) g(\phi X, Z) . \tag{3.6}
\end{align*}
$$

In (3.6) replacing Y by $\phi \mathrm{Y}, \mathrm{Z}$ by $\phi \mathrm{Z}$ and using (2.1)we get

$$
\begin{align*}
\left(\widetilde{\nabla}_{X} \widetilde{S}\right)(\phi Y, \phi Z)= & \left(\nabla_{X} S\right)(\phi Y, \phi Z)+ \\
& +\eta(X)[-S(Y, \phi Z)+\eta(Y) S(\xi, \phi Z)- \\
& -S(\phi Y, Z)+\eta(Z) S(\phi Y, \xi)] . \tag{3.7}
\end{align*}
$$

Now using (2.10),(3.7) yields

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} \widetilde{S}\right)(\phi Y, \phi Z)=\left(\nabla_{X} S\right)(\phi Y, \phi Z) \tag{3.8}
\end{equation*}
$$

Hence we can state the following:

Theorem 1. In a 3-dimensional Kenmotsu manifold, η-parallelity of the Ricci tensor with respect to the quater-symmetric metric connection and the Levi-Civita connection are equivalent.

4. Cyclic Parallel Ricci tensor

A.Gray [8] introduced two classes of Riemannian manifolds determined by the covariant differentiation of the Ricci tensor. The class A consisting of all Riemannian manifolds whose Ricci tensor S is a Codazzi tensor, that is

$$
\left(\nabla_{X} S\right)(Y, Z)=\left(\nabla_{Y} S\right)(X, Z)
$$

The class B consisting of all Riemannian manifolds whose Ricci tensor is cyclic parallel,that is, $\left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(Z, X)+\left(\nabla_{Z} S\right)(X, Y)=0$.
Let M be a 3 -dimensional Kenmotsu manifold. Then its Ricci tensor \widetilde{S} is given by (3.3).Now using (3.6)we have

$$
\begin{array}{r}
\left(\widetilde{\nabla}_{X} \widetilde{S}\right)(Y, Z)+\left(\widetilde{\nabla}_{Y} \widetilde{S}\right)(Z, X)+\left(\widetilde{\nabla}_{Z} \widetilde{S}\right)(X, Y)= \\
=\left(\nabla_{X} S\right)(Y, Z)+ \\
\left(\nabla_{Y} S\right)(Z, X)+\left(\nabla_{Z} S\right)(X, Y)+ \\
\\
+\eta(X)[S(\phi Y, Z)+S(Y, \phi Z)]+ \tag{4.1}\\
+ \\
+\eta(Y)[S(\phi Z, X)+S(Z, \phi X)]+ \\
\\
+\eta(Z)[S(\phi X, Y)+S(X, \phi Y)] .
\end{array}
$$

Now using (2.10),(4.1)yields

$$
\begin{align*}
& \left(\widetilde{\nabla}_{X} \widetilde{S}\right)(Y, Z)+\left(\widetilde{\nabla}_{Y} \widetilde{S}\right)(Z, X)+\left(\widetilde{\nabla}_{Z} \widetilde{S}\right)(X, Y)= \\
& =\left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(Z, X)+\left(\nabla_{Z} S\right)(X, Y) \tag{4.2}
\end{align*}
$$

Hence we can state the following:
Theorem 2. Cyclic Ricci tensor of a 3-dimensional Kenmotsu manifold with respect to the quater-symmetric metric connection and the Levi-Civita connection are equivalent.

5. Locally ϕ-symmetric Kenmotsu manifolds

Definition 2. A Sasakian manifold is said to be locally ϕ-symmetric if

$$
\begin{equation*}
\phi^{2}\left(\nabla_{W} R\right)(X, Y) Z=0, \tag{5.1}
\end{equation*}
$$

for all vector fields W, X, Y, Z orthogonal to ξ.
This notion was introduced for Sasakian manifolds by Takahashi [18].
Analogous to the definition of ϕ-symmetric Sasakian manifold with respect to the Riemannian connection, we define locally ϕ-symmetric Kenmotsu manifold with respect to the quater-symmetric metric connection by

$$
\begin{equation*}
\phi^{2}\left(\widetilde{\nabla}_{W} \widetilde{R}\right)(X, Y) Z=0 \tag{5.2}
\end{equation*}
$$

for all vector fields $\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ orthogonal to ξ.
Using (3.2) we can write

$$
\begin{equation*}
\left(\widetilde{\nabla}_{W} \widetilde{R}\right)(X, Y) Z=\left(\nabla_{W} \widetilde{R}\right)(X, Y) Z-\eta(W) \phi \widetilde{R}(X, Y) Z \tag{5.3}
\end{equation*}
$$

From [17] we know that for a Kenmotsu manifold

$$
\begin{array}{r}
\widetilde{R}(X, Y) Z=R(X, Y) Z+\eta(X) g(\phi Y, Z) \xi- \\
-\eta(Y) g(\phi X, Z) \xi-\eta(X) \eta(Z) \phi Y+ \\
+\eta(Y) \eta(Z) \phi X . \tag{5.4}
\end{array}
$$

Using (2.9),(5.4) yields

$$
\begin{array}{r}
\widetilde{R}(X, Y) Z=\left(\frac{r+4}{2}\right)[g(Y, Z) X-g(X, Z) Y]- \\
-\left(\frac{r+6}{2}\right)[g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi+ \\
+\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y]+ \\
+\eta(X) g(\phi Y, Z) \xi- \\
-\eta(Y) g(\phi X, Z) \xi-\eta(X) \eta(Z) \phi Y+ \\
+\eta(Y) \eta(Z) \phi X . \tag{5.5}
\end{array}
$$

Now differentiating (5.5) with respect to W and using (2.4), we get from (5.3)

$$
\begin{array}{r}
\left(\widetilde{\nabla}_{W} \widetilde{R}\right)(X, Y) Z=\frac{d r(W)}{2}[g(Y, Z) X-g(X, Z) Y]- \\
-\frac{d r(W)}{2}[g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi+ \\
+\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y]- \\
-\left(\frac{r+6}{2}\right)\left[g(Y, Z)\left(\nabla_{W} \eta\right)(X) \xi-g(X, Z)\left(\nabla_{W} \eta\right)(Y) \xi+\right. \\
+g(Y, Z) \eta(X) \nabla_{W} \xi-g(X, Z) \eta(Y) \nabla_{W} \xi+ \\
+\left(\nabla_{W} \eta\right)(Y) \eta(Z) X+\eta(Y)\left(\nabla_{W} \eta\right)(Z) X- \\
\left.-\left(\nabla_{W} \eta\right)(X) \eta(Z) Y-\eta(X)\left(\nabla_{W} \eta\right)(Z) Y\right]+ \\
+\left(\nabla_{W} \eta\right)(X) g(\phi Y, Z) \xi+\eta(X) g(\phi Y, Z) W- \\
-\eta(X) g(\phi Y, Z) \eta(W) \xi-\left(\nabla_{W} \eta\right)(Y) g(\phi X, Z) \xi- \\
-\eta(Y) g(\phi X, Z) W+\eta(Y) g(\phi X, Z) \eta(W) \xi- \\
-g(W, X) \eta(Z) \phi Y+2 \eta(W) \eta(X) \eta(Z) \phi Y- \\
-\eta(X) g(W, Z) \phi Y-\eta(X) \eta(Z) g(\phi W, Y) \xi+ \\
+g(W, Y) \eta(Z) \phi X-2 \eta(W) \eta(Y) \eta(Z) \phi X+ \\
+\eta(Y) g(W, Z) \phi X+\eta(Y) \eta(Z) g(\phi W, X) \xi- \\
-\eta(W) \phi \widetilde{R}(X, Y) Z \tag{5.6}
\end{array}
$$

Now taking $\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are horizontal vector fields, that is, $\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are orthogonal to ξ,then we get from the above

$$
\begin{equation*}
\phi^{2}\left(\widetilde{\nabla}_{W} \widetilde{R}\right)(X, Y) Z=-\frac{d r(W)}{2}[g(Y, Z) X-g(X, Z) Y] . \tag{5.7}
\end{equation*}
$$

Hence we can state the following :

Theorem 3. A 3-dimensional Kenmotsu manifold is locally ϕ-symmetric with respect to the quater-symmetric connection if and only if the scalar curvature r is constant.

6. Example of a 3-dimensional Kenmotsu manifold

We consider the 3 -dimensional manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3}, z \neq 0\right\}$, where (x, y, z) are standard coordinate of \mathbb{R}^{3}.

The vector fields

$$
e_{1}=z \frac{\partial}{\partial x}, \quad e_{2}=z \frac{\partial}{\partial y}, \quad e_{3}=-z \frac{\partial}{\partial z},
$$

are linearly independent at each point of M.
Let g be the Riemannian metric defined by

$$
\begin{aligned}
& g\left(e_{1}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=0, \\
& g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1 .
\end{aligned}
$$

Let η be the 1 -form defined by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \varepsilon \chi(M)$. Let ϕ be the $(1,1)$ tensor field defined by

$$
\phi\left(e_{1}\right)=-e_{2}, \quad \phi\left(e_{2}\right)=e_{1}, \quad \phi\left(e_{3}\right)=0 .
$$

Then using the linearity of ϕ and g, we have

$$
\begin{gathered}
\eta\left(e_{3}\right)=1, \\
\phi^{2} Z=-Z+\eta(Z) e_{3} \\
g(\phi Z, \phi W)=g(Z, W)-\eta(Z) \eta(W),
\end{gathered}
$$

for any $Z, W \varepsilon \chi(M)$. Then for $e_{3}=\xi$, the structure (ϕ, ξ, η, g) defines an almost contact metric structure on M.

Let ∇ be the Levi-Civita connection with respect to metric g. Then we have

$$
\begin{array}{r}
{\left[e_{1}, e_{3}\right]=e_{1} e_{3}-e_{3} e_{1}=} \\
=z \frac{\partial}{\partial x}\left(-z \frac{\partial}{\partial z}\right)-\left(-z \frac{\partial}{\partial z}\right)\left(z \frac{\partial}{\partial x}\right)= \\
=-z^{2} \frac{\partial^{2}}{\partial x \partial z}+z^{2} \frac{\partial^{2}}{\partial z \partial x}+z \frac{\partial}{\partial x}= \\
=e_{1} .
\end{array}
$$

Similarly

$$
\left[e_{1}, e_{2}\right]=0 \quad \text { and } \quad\left[e_{2}, e_{3}\right]=e_{2}
$$

The Riemannian connection ∇ of the metric g is given by

$$
2 g\left(\nabla_{X} Y, Z\right)=X g(Y, Z)+Y g(Z, X)-Z g(X, Y)-
$$

\qquad

$$
\begin{equation*}
-g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y]), \tag{6.1}
\end{equation*}
$$

which known as Koszul's formula.
Using (6.1) we have

$$
\begin{array}{r}
2 g\left(\nabla_{e_{1}} e_{3}, e_{1}\right)=-2 g\left(e_{1},-e_{1}\right)= \\
=2 g\left(e_{1}, e_{1}\right) \tag{6.2}
\end{array}
$$

Again by (6.1)

$$
\begin{equation*}
2 g\left(\nabla_{e_{1}} e_{3}, e_{2}\right)=0=2 g\left(e_{1}, e_{2}\right), \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
2 g\left(\nabla_{e_{1}} e_{3}, e_{3}\right)=0=2 g\left(e_{1}, e_{3}\right) . \tag{6.4}
\end{equation*}
$$

From (6.2), (6.3) and (6.4) we obtain

$$
2 g\left(\nabla_{e_{1}} e_{3}, X\right)=2 g\left(e_{1}, X\right)
$$

for all $X \varepsilon \chi(M)$. Thus

$$
\nabla_{e_{1}} e_{3}=e_{1} .
$$

Therefore, (6.1) further yields

$$
\begin{array}{ccc}
\nabla_{e_{1}} e_{3}=e_{1}, & \nabla_{e_{1}} e_{2}, & \nabla_{e_{1}} e_{1}=-e_{3} \\
\nabla_{e_{2}} e_{3}=e_{2}, & \nabla_{e_{2}} e_{2}=e_{3}, & \nabla_{e_{2}} e_{1}=0 \\
\nabla_{e_{3}} e_{3}=0, & \nabla_{e_{3}} e_{2}=0, & \nabla_{e_{3}} e_{1}=0 \tag{6.5}
\end{array}
$$

From the above it follows that the manifold satisfies $\nabla_{X} \xi=X-\eta(X) \xi$, for $\xi=e_{3}$. Hence the manifold is a Kenmotsu manifold. It is known that

$$
\begin{equation*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \tag{6.6}
\end{equation*}
$$

With the help of the above results and using (6.6), it can be easily verified that

$$
\begin{gathered}
R\left(e_{1}, e_{2}\right) e_{3}=0, \quad R\left(e_{2}, e_{3}\right) e_{3}=-e_{2}, \quad R\left(e_{1}, e_{3}\right) e_{3}=-e_{1}, \\
R\left(e_{1}, e_{2}\right) e_{2}=-e_{1}, \quad R\left(e_{2}, e_{3}\right) e_{2}=e_{3}, \quad R\left(e_{1}, e_{3}\right) e_{2}=0 \\
R\left(e_{1}, e_{2}\right) e_{1}=e_{2}, \quad R\left(e_{2}, e_{3}\right) e_{1}=0, \quad R\left(e_{1}, e_{3}\right) e_{1}=e_{3}
\end{gathered}
$$

From the equation (3.2), we find

$$
\begin{array}{lll}
\tilde{\nabla}_{e_{1}} e_{3}=e_{1}, & \tilde{\nabla}_{e_{1}} e_{2}, & \tilde{\nabla}_{e_{1}} e_{1}=-e_{3}, \\
\widetilde{\nabla}_{e_{2}} e_{3}=e_{2}, & \widetilde{\nabla}_{e_{2}} e_{2}=-e_{3}, & \widetilde{\nabla}_{e_{2}} e_{1}=0 \\
\widetilde{\nabla}_{e_{3}} e_{3}=0, & \widetilde{\nabla}_{e_{3}} e_{2}=-e_{1}, & \widetilde{\nabla}_{e_{3}} e_{1}=e_{2} \tag{6.7}
\end{array}
$$

Using (5.4)in (6.7), we obtain

$$
\begin{array}{cc}
\widetilde{R}\left(e_{1}, e_{2}\right) e_{3}=0, \quad \widetilde{R}\left(e_{2}, e_{3}\right) e_{3}=-e_{2}, & \widetilde{R}\left(e_{1}, e_{3}\right) e_{3}=-e_{1}, \\
\widetilde{R}\left(e_{1}, e_{2}\right) e_{2}=-e_{1}, \quad \widetilde{R}\left(e_{2}, e_{3}\right) e_{2}=e_{3}, & \widetilde{R}\left(e_{1}, e_{3}\right) e_{2}=e_{3} \\
\widetilde{R}\left(e_{1}, e_{2}\right) e_{1}=e_{2}, \quad \widetilde{R}\left(e_{2}, e_{3}\right) e_{1}=-e_{3}, & \widetilde{R}\left(e_{1}, e_{3}\right) e_{1}=e_{3}
\end{array}
$$

From the above expressions of the curvature tensor R we obtain

$$
\begin{aligned}
& S\left(e_{1}, e_{1}\right)=g\left(R\left(e_{1}, e_{2}\right) e_{2}, e_{1}\right)+g\left(R\left(e_{1}, e_{3}\right) e_{3}, e_{1}\right)= \\
& \quad=-2 .
\end{aligned}
$$

Similarly, we have

$$
S\left(e_{2}, e_{2}\right)=S\left(e_{3}, e_{3}\right)=-2 .
$$

Therefore

$$
r=S\left(e_{1}, e_{1}\right)+S\left(e_{2}, e_{2}\right)+S\left(e_{3}, e_{3}\right)=-6
$$

Again from the above expressions of the curvature tensor \widetilde{R} we obtain

$$
\begin{aligned}
& \widetilde{S}\left(e_{1}, e_{1}\right)=g\left(\widetilde{R}\left(e_{1}, e_{2}\right) e_{2}, e_{1}\right)+g\left(\widetilde{R}\left(e_{1}, e_{3}\right) e_{3}, e_{1}\right)= \\
& \quad=-2 .
\end{aligned}
$$

Similarly, we have

$$
\widetilde{S}\left(e_{2}, e_{2}\right)=\widetilde{S}\left(e_{3}, e_{3}\right)=-2 .
$$

Therefore

$$
\widetilde{r}=\widetilde{S}\left(e_{1}, e_{1}\right)+\widetilde{S}\left(e_{2}, e_{2}\right)+\widetilde{S}\left(e_{3}, e_{3}\right)=-6 .
$$

We note that here r and \widetilde{r} are all constants.Since $\mathrm{S}=\widetilde{S}=-2$,therefore theorem 1 and 2 are verified.

From the expressions of \widetilde{R}, it follows that $\phi^{2}\left(\widetilde{\nabla}_{W} \widetilde{R}\right)(X, Y) Z=0$.Also the scalar curvature is constant.Hence the 3 - dimensional Kenmotsu manifold is locally ϕ-symmetric.Thus Theorem 3 is verified.

Acknowledgement.

The authors are thankful to the referee for his suggestions in the improvement of this paper.

References

[1] S. C. Biswas and U. C. De. Quater-symmetric metric connection in an SP-Sasakian manifold. Commun. Fac. Sci. Univ. Ank. Series, 46:49-56, 1997.
[2] D. E. Blair. Contact manifolds in riemannian geometry. Lecture Note in Mathematics, 509,Springer-Verlag, Berlin-New York, 1976.
[3] D. E. Blair. Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, 2002.
[4] U. C. De and A. K. Mondal. Quater-symmetric metric connection on a Sasakian manifold. Bull. Math. Analysis and Application, 1:99-108, 2009.
[5] U. C. De and G. Pathak. On 3-dimensional kenmotsu manifold. Indian J. pure appl. Math., 35(2):159-165, 2004.
[6] A. Friedman and J. A. Schouten. Uber die Geometrie der halbsymmetrischen Ubertragung. Math. Zeitschr., 21:211-223, 1924.
[7] S. Golab. On semi-symmetric and quater-symmetric linear connections. Tensor N. S., 29:249-254, 1975.
[8] A. Gray. Einstein -like manifolds which are not einstein. Geom. Dedicata, 7(3):259280, 1998.
[9] S. Ianus and D. Smaranda. Some remarkable structures on the products of an almost contact metric manifold with the real line. Papers from the National Coll. on Geometry and Topology, Univ. Timisoara, 107-110, 1997.
[10] K. Kenmotsu. A class of almost contact riemannian manifolds. Tohoku Math. J., 24(2):93-103, 1972.
[11] R. S. Mishra and S. N. Pandey. On quater-symmetric metric F-connection. Tensor, N. S., 34:1-7, 1980.
[12] S. Mukhopadhyay, A .K. Roy, and B. Barua. Some properties of a quater-symmetric metric connection on a riemannian manifold. Soochow J. of Math., 17(2):205-211, 1991.
[13] J. A. Oubina. New classes of almost contact metric structures. Publ. Math. Debrecen, 32(3-4):187-193, 1985.
[14] S. C. Rastogi. On quater-symmetric connection. C. R. Acad. Sci. Bulgar, 31:811-814, 1978.
[15] S. C. Rastogi. On quarter-symmetric metric connection. Tensor, 44(2):133-141, 1987.
[16] J. A. Schouten. Ricci-Calculus. An introduction to Tensor Calculus and its Geometric Application. Springer Verlag, Berlin, 1954.
[17] S. Sulgar, C. Özg"ur, and U. C. De. Quarter-symmetric metric connection in a kenmotsu manifold. SUT Journal of mathematics, 44(2):297-306, 2008.
[18] T. Takahashi. Sasakian ϕ-symmetric spaces. Tohoku Math. J. 2, 29(1):91-113, 1977.
[19] S. Tanno. The automorphism groups of almost contact Riemannian manifolds. Tohoku Math. J., 21:221-228, 1969.
[20] K. Yano and T. Imai. Quater-symmetric metric connections and their curvature tensors. Tensor, N. S., 38:13-18, 1982.

Uday Chand De
Department of Pure Mathematics, Calcutta University, 35 Ballygunge Circular Road Kol 700019, West Bengal, India.
E-mail: uc_de@yahoo.com
Krishnendu De
Konnagar High School(H.S.), 68 G.T. Road (West),Konnagar,Hooghly, Pin. 712235, West Bengal, India.
E-mail: krishnendu_de@yahoo.com
Received 18 March 2011
Published 06 June 2011

[^0]: *Corresponding author.

