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Optimal Lehmer Mean Bounds for the Geometric
and Arithmetic Combinations of Arithmetic and
Seiffert Means

Y.-M. Chu∗, M.-K. Wang, Y.-F. Qiu

Abstract. For any β ∈ (0, 1), we answer the questions: what are the greatest values p
and r, and the least values q and s, such that the inequalities Lp(a, b) < βT (a, b) + (1−
β)A(a, b) < Lq(a, b) and Lr(a, b) < T β(a, b)A1−β(a, b) < Ls(a, b) hold for all a, b > 0
with a 6= b. Here, A(a, b), T (a, b) and Lr(a, b) denote the arithmetic, Seiffert, and r-th
Lehmer means of two positive numbers a and b, respectively.

Key Words and Phrases: Lehmer mean, arithmetic mean, Seiffert mean

2010 Mathematics Subject Classifications: 26E60

1. Introduction

For r ∈ R, the r−th Lehmer mean Lr(a, b) [5] and Seiffert mean T (a, b) [8] of
two positive numbers a and b are defined by

Lr(a, b) =
ar+1 + br+1

ar + br
, (1)

and

T (a, b) =

{
a−b

2 arctan(a−b
a+b

)
, a 6= b,

a, a = b,
(2)

respectively.
It is well known that Lr(a, b) is strictly increasing with respect to r ∈ R for

fixed a, b > 0 with a 6= b. Many means are the special case of Lehmer mean, for
example

A(a, b) = (a+ b)/2 = L0(a, b) is the arithmetic mean,

G(a, b) =
√
ab = L−1/2(a, b) is the geometric mean,

H(a, b) = 2ab/(a+ b) = L−1(a, b) is the harmonic mean.
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Let I(a, b) = 1/e(bb/aa)1/(b−a), L(a, b) = (b−a)/(log b−log a), and Mp(a, b) =
((ap + bp)/2)1/p (p 6= 0) and M0(a, b) =

√
ab be the identric, logarithmic, and

p−th power means of two positive numbers a and b with a 6= b, respectively.
Then

min{a, b} < H(a, b) = L−1(a, b) = M−1(a, b) < G(a, b) = L− 1
2
(a, b) = M0(a, b)

< L(a, b) < I(a, b) < A(a, b) = L0(a, b) = M1(a, b) < max{a, b},

for all a, b > 0 with a 6= b.
Recently, the inequalities for the Lehmer, Seiffert and other bivariate means

were investigated in papers [1], [2], [3], [4], [6], [7], [8], [9], [10].
In [8], Seiffert proved that

M1(a, b) = A(a, b) < T (a, b) < M2(a, b), (3)

for all a, b > 0 with a 6= b.
Chu et al. [3] found the greatest value p = log 3/ log(π/2) = 2.4328 . . . and

least value q = 5/2 such that

Hp(a, b) < T (a, b) < Hq(a, b),

for all a, b > 0 with a 6= b. Here, Hp(a, b) = [(ap + (ab)p/2 + b)/3]1/p (p 6= 0)
and H0(a, b) =

√
ab is the p-th power-type Heron mean of two positive numbers

a and b .
The following sharp upper and lower Lehmer mean bounds for L, I, (LI)1/2,

and (L+ I)/2 were presented in [2]:

L−1/3(a, b) < L(a, b) < L0(a, b),

L−1/6(a, b) < I(a, b) < L0(a, b),

L−1/4(a, b) < I1/2(a, b)L1/2(a, b) < L0(a, b),

and

L−1/4(a, b) <
1

2
(I(a, b) + L(a, b)) < L0(a, b),

for all a, b > 0 with a 6= b.
Very recently, Wang et al. [10] found the following sharp bounds for Seiffert

mean T (a, b) in terms of Lemhmer mean

L0(a, b) < T (a, b) < L1/3(a, b), (4)

for a, b > 0 with a 6= b.

The purpose of this paper is to present the best possible upper and lower
Lehmer mean bounds for the sum βT (a, b) + (1− β)A(a, b) and product T β(a, b)
A1−β(a, b) for any β ∈ (0, 1) and all a, b > 0 with a 6= b.
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2. Main Results

In order to establish our main results we need a lemma, which we present in
this seciton.

Lemma 1. If β ∈ (0, 1), then the double inequality

βL1/3(a, b) + (1− β)A(a, b) < Lβ/3(a, b),

holds for all a, b > 0 with a 6= b.

Proof. Without loss of generality, we assume that a > b. Let α = β/3 ∈
(0, 1/3) and t = 3

√
a/b > 1. Then from (1.1) and (1.2) one has

Lβ/3(a, b)− (1− β)A(a, b)− βL1/3(a, b)

= b

[
1 + t3α+3

1 + t3α
− (1− 3α)

1 + t3

2
− 3α

1 + t4

1 + t

]
= b

[
g(t)

2(1 + t3α)(1 + t)

]
, (5)

where

g(t) = (1− 3α)t3α+4 + (1 + 3α)t3α+3 − (1− 3α)t3α+1 − (1 + 3α)t3α

−(1 + 3α)t4 − (1− 3α)t3 + (1 + 3α)t+ 1− 3α. (6)

Let g1(t) = g′′(t)/(3t), g2(t) = g1
′(t)/(1+ 3α) and g3(t) = t5−3αg2

′(t)/[3α(1−
3α)]. Then simple computations lead to

g(1) = 0, (7)

g′(t) = (1− 3α)(4 + 3α)t3α+3 + 3(1 + 3α)(1 + α)t3α+2 − (1− 3α)(1 + 3α)t3α

−3α(1 + 3α)t3α−1 − 4(1 + 3α)t3 − 3(1− 3α)t2 + 1 + 3α, g′(1) = 0, (8)

g1(t) = (1− 3α)(4 + 3α)(1 + α)t3α+1 + (1 + 3α)(1 + α)(2 + 3α)t3α

−α(1− 3α)(1 + 3α)t3α−2 + α(1 + 3α)(1− 3α)t3α−3

−4(1 + 3α)t− 2(1− 3α),

g1(1) = 0, (9)

g2(t) = (1− 3α)(4 + 3α)(1 + α)t3α + 3α(1 + α)(2 + 3α)t3α−1

+α(1− 3α)(2− 3α)t3α−3 − 3α(1− α)(1− 3α)t3α−4 − 4,
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g2(1) = 0, (10)

and

g3(t) = (4 + 3α)(1 + α)t4 − (1 + α)(2 + 3α)t3 − (1− α)(2− 3α)t

+(1− α)(4− 3α)

> 2(1 + α)t3 − (1− α)(2− 3α)t+ (1− α)(4− 3α)

> α(7− 3α)t+ (1− α)(4− 3α) > 0, (11)

for α ∈ (0, 1/3).
Therefore, Lemma 1 follows from equations (2.1)-(2.6) and inequality (2.7).

J

Theorem 1. If β ∈ (0, 1), then the double inequality

Lp(a, b) < βT (a, b) + (1− β)A(a, b) < Lq(a, b),

holds for all a, b > 0 with a 6= b if and only if p ≤ 0 and q ≥ β/3.

Proof. From inequalities (1.3) and (1.4) together with Lemma 1 we clearly
see that

L0(a, b) = A(a, b) < βT (a, b) + (1− β)A(a, b),

and

Lβ/3(a, b) > βL1/3(a, b) + (1− β)A(a, b) > βT (a, b) + (1− β)A(a, b),

for all a, b > 0 with a 6= b.
Next, we prove that L0(a, b) and Lβ/3(a, b) are the best possible lower and

upper Lehmer mean bounds for the sum (1− β)A(a, b) + βT (a, b).
For any ε > 0 and x > 0, from (1.1) and (1.2) we have

lim
x→+∞

Lε(1, x)

(1− β)A(1, x) + βT (1, x)

= lim
x→+∞

(x−1 + xε)/(1 + xε)

(1− β)(x−1 + 1)/2 + β(1− x−1)/[2arctan((x− 1)/(x+ 1))]

=
2π

π + (4− π)β
> 1, (12)

and

(1− β)A(1, 1 + x) + βT (1, 1 + x)− Lβ/3−ε(1, 1 + x)

= (1− β)(1 +
x

2
) +

βx

2 arctan
(

x
x+2

) − 1 + (1 + x)β/3−ε+1

1 + (1 + x)β/3−ε
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=
J(x)

2[1 + (1 + x)β/3−ε] arctan
(

x
x+2

) , (13)

where J(x) = 2(1− β)(1 + x/2)[1 + (1 + x)β/3−ε] arctan[x/(x+ 2)] + βx[1 + (1 +
x)β/3−ε]− 2[1 + (1 + x)β/3−ε+1] arctan[x/(x+ 2)].

Letting x→ 0 and making use of Taylor expansion one has

J(x) = x(1− β)
(

1 +
x

2

)[
2 +

(
β

3
− ε
)
x+

(β − 3ε)(β − 3ε− 3)

18
x2 + o(x2)

]
×
[
1− 1

2
x+

1

6
x2 + o(x2)

]
+ βx

×
[
2 +

(
β

3
− ε
)
x+

(β − 3ε)(β − 3ε− 3)

18
x2 + o(x2)

]
−x
[
2 +

(
β

3
− ε+ 1

)
x+

(β − 3ε)(β − 3ε+ 3)

18
x2 + o(x2)

]
×
[
1− 1

2
x+

1

6
x2 + o(x2)

]
=

ε

2
x3 + o(x3). (14)

Inequality (2.8) and equations (2.9) and (2.10) imply that for any ε > 0
there exist X1 > 1 and δ1 > 0, such that Lε(1, x) > (1 − β)A(1, x) + βT (1, x)
for x ∈ (X1,+∞) and Lβ/3−ε(1, 1 + x) < (1 − β)A(1, 1 + x) + βT (1, 1 + x) for
x ∈ (0, δ1). J

Theorem 2. If β ∈ (0, 1), then the double inequality

Lr(a, b) < T β(a, b)A1−β(a, b) < Ls(a, b),

holds for all a, b > 0 with a 6= b if and only if r ≤ 0 and s ≥ β/3.

Proof. From (1.3) and Theorem 1 we know that

L0(a, b) < T β(a, b)A1−β(a, b) < Lβ/3(a, b),

for all a, b > 0 with a 6= b.
Next, we prove that L0(a, b) and Lβ/3 are the best possible lower and upper

Lehmer mean bounds for the product A1−β(a, b)T β(a, b).
For any ε > 0 and x > 0, from (1.1) and (1.2) we have

lim
x→+∞

Lε(1, x)

A1−β(1, x)T β(1, x)
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= lim
x→+∞

(x−1 + xε)/(1 + xε)

[(x−1 + 1)/2]1−β{(1− x−1)/ arctan[(x− 1)/(x+ 1)]/2}β

= 2
(π

4

)β
> 1, (15)

and

A1−β(1, 1 + x)T β(1, 1 + x)− Lβ/3−ε(1, 1 + x)

=
(

1 +
x

2

)1−β  x

2 arctan
(

x
x+2

)
β − 1 + (1 + x)β/3−ε+1

1 + (1 + x)β/3−ε

=
H(x)

[1 + (1 + x)β/3−ε][2 arctan
(

x
x+2

)
]β
, (16)

where H(x) = xβ (1 + x/2)1−β [1 + (1 +x)β/3−ε]−{2 arctan[x/(x+ 2)]}β[1 + (1 +
x)β/3−ε+1].

Letting x→ 0 and making use of Taylor expansion one has

H(x) = xβ
[
1 +

1− β
2

x− β(1− β)

8
x2 + o(x2)

]
×
[
2 +

(
β

3
− ε
)
x+

(β − 3ε)(β − 3ε− 3)

18
x2 + o(x2)

]
−xβ

[
2 +

(
β

3
− ε+ 1

)
x+

(β − 3ε)(β − 3ε+ 3)

18
x2 + o(x2)

]
×
[
1− β

2
x+

β(1 + 3β)

24
x2 + o(x2)

]
=

ε

2
xβ+2 + o(xβ+2). (17)

Inequality (2.11) and equations (2.12) and (2.13) imply that for any ε > 0
there exist X2 > 1 and δ2 > 0, such that Lε(1, x) > A1−β(1, x)T β(1, x) for
x ∈ (X2,+∞) and Lβ/3−ε(1, 1 + x) < A1−β(1, 1 + x)T β(1, 1 + x) for x ∈ (0, δ2).
J
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