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Embedding between variable exponent Lebesgue

spaces with measures

R.A. Bandaliev

Abstract. In this paper a necessary and sufficient condition for validity of the continu-
ously embedding between variable exponent Lebesgue space with the different measures
is found.
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1. Introduction

It is well known that the variable exponent Lebesgue space appeared in the
literature for the first time already in a 1931 by Orlicz [11]. In [11] the Hölder’s
inequality for variable exponent discrete Lebesgue space was proved. Orlicz also
considered the variable exponent Lebesgue space on the real line, and proved the
Hölder inequality in this setting.

However, after this paper, Orlicz abandoned the study of variable exponent
Lebesgue spaces, to concentrate on the theory of the Orlicz spaces (see also [8]).
Further development of this theory was connected with the theory of modular
function spaces. The first systematic study of modular spaces is due to Nakano
[9]. In the appendix, Nakano mentions explicitly variable exponent Lebesgue
spaces as an example of the more general spaces he considers. Somewhat later,
a more explicit version of these spaces, namely modular function spaces, were
investigated by many mathematicians (see [8]).

The next step in the investigation of variable exponent spaces was given in the
paper by Sharapudinov [14] and Kováčik and Rákosńık [7]. The study of these
spaces has been stimulated by problems of elasticity, fluid dynamics, calculus of
variations and differential equations with non-standard growth conditions (see [1],
[12], [15]). In the papers [6] and [7] was proved the criterion for Hardy inequality
on weight functions.

http://www.azjm.org 119 c© 2010 AZJM All rights reserved.
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The idea of considering such problems stems from the work [10], in connection
with a boundedness of Hardy-Littlewood maximal function. Therefore in [10] was
proved a embeddings theorem between discrete weighted Lebesgue spaces with
variable exponent. We derive a continuous version of the result by A. Nekvinda
in [10]. The approach is different than in the work [10]. Also, note that Theorem
3 of this paper isn’t investigated in the [10].

2. Preliminaries

Let S be an arbitrary set and Σ be an σ−algebra of subsets of S. Let (S, Σ, µ)
and (S, Σ, ν) be σ− finite, complete measure spaces. By P (S) we define the set
all µ-measurable functions such that p : S → [1,∞) . Also by Q (S) we define the
set all ν-measurable functions q : S → [1,∞) . The functions p ∈ P (S) and q ∈
Q (S) are called exponents on S. Assume p = ess inf

x∈S
p(x) and p = ess sup

x∈S
p(x).

Let p′(x) be the conjugate exponent function defined by
1

p(x)
+

1

p′(x)
= 1, x ∈

S. Obviously, sup
x∈S

p′(x) = p′ =
p

p− 1
and inf

x∈S
p′(x) = p′ =

p

p− 1
. The Lebesgue

measure of a set A ⊂ S will be denoted by |A|.

Definition 1. Let p ∈ P (S) . By Lp(x), µ(S) we denote the space of µ-measurable
functions f on S such that for some λ0 > 0

∫

S

(

|f(x)|

λ0

)p(x)

dµ(x) < ∞.

This set becomes a Banach function space(see [4]) when equipped with the norm

‖f‖Lp(x), µ(S) = ‖f‖p(·), µ = inf







λ > 0 :

∫

S

∣

∣

∣

∣

f(x)

λ

∣

∣

∣

∣

p(x)

dµ(x) ≤ 1







.

For the absolutely continuous measures the space Lp(x), µ (S) coincides with
the weighted variable Lebesgue spaces Lp(x), ω (S) , where ω is a weight function
on S.

The following theorem is characterizes the dual space of Lp(x), µ(S).

Theorem 1. [4] Let p ∈ P (S) with p < ∞. Then
(

Lp(x), µ(S)
)

∗ ∼= Lp′(x), µ(S)
and

‖f‖Lp′(·), µ(S)
≤ ‖Tf‖(Lp(x), µ(S))

∗ ≤ 2 ‖f‖Lp′(·), µ(S)
,

where f ∈ Lp′(x), µ (S) . Hereby, Tf is given by < Tf , h >=
∫

S f(x)h(x) dµ(x) for
h ∈ Lp(x), µ(S).
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It is obvious that, the mapping Tf : h 7→
∫

S f(x)h(x) dµ(x) is a continuous,

linear functional on Lp(x), µ (S) , i.e. Tf ∈
(

Lp(x), µ(S)
)

∗
.

In [13] it was proved the following lemma.

Lemma 1. Let 1 ≤ α(x) ≤ β(x) ≤ β < ∞, x ∈ Ω ⊂ Rn. Then

‖f‖αβ ≤ ‖fα‖β/α ≤ ‖f‖
α
β , if ‖f‖β ≤ 1,

‖f‖
α
β ≤ ‖fα‖β/α ≤ ‖f‖αβ , if ‖f‖β ≥ 1,

where fβ = |f(x)|β(x), α = sup
x∈Ω

α(x) and α = inf
x∈Ω

α(x). If α(x) and β(x) are

continuous on Ω, there exists a point x0 ∈ Ω depending on f such that ‖fα‖β/α =

‖f‖
α(x0)
β .

Remark 1. Let α, β ∈ P (S) and 1 ≤ α(x) ≤ β(x) ≤ β < ∞, where x ∈ S. Then
analog of Lemma 1 is proved in the same way.

Hereby, we say that a function is simple if it is the finite linear combination
of characteristic functions of µ-measurable sets with finite measure, i.e. g is finite
if g(x) =

∑n
i=1 aiχAi

(x) with µ (A1) , . . . , µ (An) < ∞, a1, . . . , an ∈ R.
In [4] it was proved the following lemma.

Lemma 2. Let p ∈ P (S) with p < ∞. Then the set of all µ-measurable simple
functions on S is dense in Lp(x), µ(S).

Remark 2. Note that in the case when µ is Lebesgue measure the Lemma 2 was
proved in [5] (see also [13]).

3. Main results

Assume that the embedding Lq(x), ν (S) ↪→ Lp(x), µ (S) holds.Then we show
that µ is absolutely continuous with respect to ν. Indeed, if there is a set E ⊂ Σ
such that ν(E) = 0 and µ(E) > 0, then the function

f(x) =

{

+∞, for x ∈ E
0, for x ∈ S \E

belongs to Lq(x), ν (S) , but f /∈ Lp(x), µ (S) , i.e. Lq(x), ν (S) 9 Lp(x), µ (S) . There-
fore, it suffices to consider the case when µ is absolutely continuous with respect
to ν.
Theorem 2. Let p ∈ P (S) , q ∈ Q (S) and 1 ≤ p(x) ≤ q(x) ≤ q < ∞. Then the
following conditions are equivalent:
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(a)Lq(x), ν (S) ↪→ Lp(x), µ (S) , i.e. ‖f‖p(·), µ ≤ M ‖f‖q(·), ν for some M > 0;

(b)
dµ

dν
∈ Lr(x),ν (S), where r(x) = q(x)

q(x)−p(x) .

Proof. (a) ⇒ (b) : Let ‖f‖p(·), µ ≤ M ‖f‖q(·), ν for all f ∈ Lq(x), ν (S) . By

Remark 1 from f ∈ Lq(x), ν (S) implies |f |p(x) ∈ L q(x)
p(x)

, ν
(S) . Then the functional

ρp(·)(f) =

∫

S

|f(x)|p(x) dµ(x),

is defined on L q(x)
p(x)

, ν
(S) and is bounded. By Radon-Nikodym theorem, we have

ρp(·)(f) =

∫

S

|f(x)|p(x) dµ(x) =

∫

S

|f(x)|p(x)
dµ

dν
(x) dν(x).

Since |f |p(x) ∈ L q(x)
p(x)

, ν
(S) , by Theorem 1

dµ

dν
∈ Lr(x), ν (S).

This proves the first part.
(b) ⇒ (a) : By virtue of Young’s inequality we have

ab ≤
at(x)

t(x)
+

bt
′(x)

t′(x)
,

where a, b ≥ 0, t(x) ≥ 1 and t′(x) =
t(x)

t(x)− 1
. Taking

a =

(

|f(x)|

‖f‖q(·), ν

)p(x)

, b =
dµ

dν
/

∥

∥

∥

∥

dµ

dν

∥

∥

∥

∥

r(·), ν

,

t(x) =
q(x)

p(x)
and t′(x) =

q(x)

q(x)− p(x)
= r(x)

and applying Young’s inequality we get

(

|f(x)|

‖f‖q(·), ν

)p(x) dµ
dν

∥

∥

∥

dµ
dν

∥

∥

∥

r(·), ν

≤
1

t(x)

(

|f(x)|

‖f‖q(·), ν

)q(x)

+
1

r(x)







dµ
dν

∥

∥

∥

dµ
dν

∥

∥

∥

r(·), ν







r(x)

≤

(

sup
x∈S

1

t(x)

) (

|f(x)|

‖f‖q(·), ν

)q(x)

+

(

sup
x∈S

1

r(x)

)







dµ
dν

∥

∥

∥

dµ
dν

∥

∥

∥

r(·), ν







r(x)

.
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Obviously, 1 ≤ sup
x∈S

1

t(x)
+ sup

x∈S

1

r(x)
≤ 2. Integrating by S, using the definition of

the norm we get

∫

S

(

|f(x)|

‖f‖q(·), ν

)p(x) dµ
dν (x)

∥

∥

∥

dµ
dν

∥

∥

∥

r(·), ν

dν(x) =
1

∥

∥

∥

dµ
dν

∥

∥

∥

r(·), ν

∫

S

(

|f(x)|

‖f‖q(·), ν

)p(x)

dµ(x) ≤

(

sup
x∈S

1

t(x)

) ∫

S

(

|f(x)|

‖f‖q(·), ν

)q(x)

dν(x)+

(

sup
x∈S

1

r(x)

) ∫

S







dµ
dν

∥

∥

∥

dµ
dν

∥

∥

∥

r(·), ν







r(x)

dν(x) ≤

sup
x∈S

1

t(x)
+ sup

x∈S

1

r(x)
= A1 +A2.

Thus
∫

S

(

|f(x)|

‖f‖q(·), ν

)p(x)

dµ(x) ≤ (A1 +A2)

∥

∥

∥

∥

dµ

dν

∥

∥

∥

∥

r(·), ν

. (1)

Let (A1 +A2)

∥

∥

∥

∥

dµ

dν

∥

∥

∥

∥

r(·), ν

≤ 1. Then by (1)

∫

S

(

|f(x)|

‖f‖q(·), ν

)p(x)

dµ(x) ≤ 1.

Therefore ‖f‖p(·), µ ≤ ‖f‖q(·), ν .

Let (A1 +A2)

∥

∥

∥

∥

dµ

dν

∥

∥

∥

∥

r(·), ν

> 1. Then by the convexity of ρp(·) and by (1), we

get

ρp(·)







f

(A1 +A2)
∥

∥

∥

dµ
dν

∥

∥

∥

r(·), ν
‖f‖q(·), ν






=

=

∫

S







|f(x)|

(A1 +A2)
∥

∥

∥

dµ
dν

∥

∥

∥

r(·), ν
‖f‖q(·), ν







p(x)

dµ(x) ≤

1

(A1 +A2)
∥

∥

∥

dµ
dν

∥

∥

∥

r(·), ν

∫

S

(

|f(x)|

‖f‖q(·), ν

)p(x)

dµ(x) ≤ 1.
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Thus, we conclude that

‖f‖p(·), µ ≤ max

{

1, (A1 +A2)

∥

∥

∥

∥

dµ

dν

∥

∥

∥

∥

r(·), ν

}

‖f‖q(·), ν ,

where M = max

{

1, (A1 +A2)
∥

∥

∥

dµ
dν

∥

∥

∥

r(·), ν

}

.

For p(x) = q(x) suppose that Lr(x), ν = L∞, ν .

The proof of Theorem 2 is complete.J

Remark 3. Note that in the case µ = ν under conditions 1 ∈ Lr(x), µ(S) and
atom-less of µ the Theorem 2 was proved in [4] (see also [3]). In the case S = [0, 1]
and when µ and ν are Lebesgue measures Theorem 2 was proved in [14]. In the
case S = Ω ⊂ Rn and when µ and ν are Lebesgue measures with |Ω| < ∞ Theorem
2 was proved in [5] (see also [13]). In this paper was found positive response on
P. Hästö on embedding theorem between discrete weighted Lebesgue spaces with
variable exponent.

Remark 4. Let p, q, ν, µ : Z 7→ (0,∞). Then the embedding `qn(νn) ↪→ `pn(µn)
was proved in [10].

For weighted Lebesgue spaces with variable exponent the analog of Theorem
2 has the following form.

Corollary 1. [2] Let 1 ≤ p(x) ≤ q(x),
1

s(x)
=

1

p(x)
−

1

q(x)
a.e. x ∈ Ω. Suppose

that v1(x) and v2(x) are weights in Ω ⊂ Rn satisfying the condition

∥

∥

∥

∥

v2
v1

∥

∥

∥

∥

Ls(·), v1
(Ω)

< ∞.

Then

Lq(x), v1(x)(Ω) ↪→ Lp(x), v2(x)(Ω),

i.e.

‖f‖Lp(·), v2
(Ω) ≤

{

max 1, d

∥

∥

∥

∥

v2
v1

∥

∥

∥

∥

Ls(·), v1
(Ω)

}

‖f‖Lq(·), v1
(Ω),

and d = sup
x∈Ω

p(x)

s(x)
+ sup

x∈Ω

p(x)

q(x)
.

Now we prove the following theorem.
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Theorem 3. Let p ∈ P (S) , q ∈ Q (S) and 1 ≤ q(x) ≤ p(x) ≤ p < ∞. Then the
following conditions are equivalent:

(a)Lq(x), ν (S) ↪→ Lp(x), µ (S) , i.e. ‖f‖p(·), µ ≤ C ‖f‖q(·), ν for some C > 0;

(b) ‖χE‖p(·), µ ≤ M ‖χE‖q(·), ν for all E ∈ S with ν(E) < ∞, where χE is the
characteristic function of a set E and constant M > 0 is independent of E.

Proof. (a) ⇒ (b) : Let Lq(x), ν (S) ↪→ Lp(x), µ (S) , E ∈ Σ with χE ∈ Lq(x), ν (S) .
Then there exists a constant C > 0 such that ‖χE‖p(·), µ ≤ C ‖χE‖q(·), ν , where
a constant C > 0 is independent of E and M = C.

(b) ⇒ (a) : Let now ‖χE‖p(·), µ ≤ M ‖χE‖q(·), ν for all E ∈ S with ν(E) < ∞.
We prove that ‖f‖p(·), µ ≤ C ‖f‖q(·), ν , where f is ν-measurable, simple function
and ν-integrable on S. Since µ is absolutely continuous with respect to ν, then f
is µ-measurable, simple function and µ-integrable on S. Therefore f is equivalent

to the some ν-measurable (also µ-measurable) simple function g =
n
∑

i=1
ai χEi

,

where ν (Ei) < ∞ and i = 1, 2, . . . , n. Consequently, we have

‖g‖p(·), µ ≤
n
∑

i=1

|ai| ‖χEi
‖p(·), µ ≤ M

n
∑

i=1

|ai| ‖χEi
‖q(·), ν < ∞.

Therefore, by virtue of Lemma 2 the proof of Theorem 3 is completed.J
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