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Inverse Scattering Problem for a Difference Sturm-
Liouville Equation on the Line
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Abstract. We study the inverse scattering problem for a difference Sturm-Liouville
equation on the real axis, where scattering occurs only in one direction. We derive a
necessary and a sufficient condition on the scattering data so that the inverse problem is
uniquely solvable.
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1. Introduction

Consider the following difference Sturm-Liouville equation on the real axis

an−1yn−1 + bnyn + anyn+1 = λyn, n ∈ Z, (1)

where an > 0 and bn are real coefficients. In the case when the coefficients
an, bn guarantee scattering in both directions, the inverse scattering problem
for equation (1) has been investigated in various contexts by many authors (see
[1]-[15] and the bibliography therein).

However, in the case of scattering problem for equation (1) has been studied
enough.

We will study the inverse scattering problem for equation (1), where the
coefficients an and bn satisfy the following assumption:

A. The usual condition for the existence of scattering holds on the negative
half-line (see, e.g. [8], [15])∑

n<0

|n| {|an − 1|+ |bn|} <∞ . (2)
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B. The boundary problem

an−1yn−1 + bnyn + anyn+1 = λyn, n ≥ 0,

y−1 = 0,

generates a self-adjoint operator L0 in `2 [0, ∞) with a bounded pure discrete
spectrum σ(L0), which has only a finite number of limit points.

Note that assumption B holds only if an → 0 and bn → 0 as n→ +∞.

In the case of unbounded coefficients the inverse problem was studied in [3],
using the spectral matrix of equation (1). However, the technique developed in
[3] is, in general, not applicable to the inverse problem in the class A,B. Also,
the work [12] should be mentioned, in which the inverse problem for the equa-
tion (1) with bounded coefficients and continuous spectrum of multiplicity 2 is
investigated, using right and left Weyl functions and the known coefficient a−1.

In this paper we derive conditions on the scattering data which are neces-
sary and sufficient for the existence of unique coefficients an > 0, bn satisfying
assumptions A and B. To solve the scattering problem we use the Weyl solution
instead of the Jost solution referenced to +∞. In addition, there is no Marchenko-
type main equation at the right end. For these reasons some classical arguments
needed to be modified considerably.

Note that in the case when scattering occurs only at the right end, the inverse
problem for the Sturm-Liouville equation was studied in [13].

2. The direct scattering problem

The spaces `2 [N, ∞) , `2 (−∞, N) , `2 (−∞,∞) with the corresponding in-
ner products < · , · > are taken in the conventional way (see, for instance, [3]).
We denote by Ω the set-of limit points of the spectrum σ(L0).

For the sake of simplicity, in what follows we assume that the set σ(L0)
⋃

Ω
lies in the interval (−2, 2).

It is known (see [3], [17]) the eigenvalues λn, n = 1, 2, . . . , of the self –adjoint
operator L0 are simple. Consequently, the spectral function of the operator L0,
which we denote by ρ(λ), is a step function concentrated at the points λn, n =
1, 2, . . . .

Denote by Pn(λ), Qn(λ) the solutions of equation (1) satisfying the conditions

P−1(λ) = Q0(λ) = 0, P0(λ) = 1, Q1(λ) = a−1
0 .

Consider the spectral function
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ρ(λ) =
∑
λn<λ

1

αn
,

where

αn =

∞∑
k=0

P 2
k (λn),

∞∑
n=1

1

αn
= 1.

Following [3], [17], [18], we introduce the Weyl function m(λ) =< Rλδ, δ > of the
operator L0, where Rλ is the resolvent of the operator L0 and δ = (1, 0, 0, ...) ∈
`2 [0,∞). The Weyl function is related to the spectral function (see [1],[3]) by
the equality

m(λ) =

∞∫
−∞

dρ(τ)

τ − λ
,

which implies that

m(λ) =
∞∑
n=1

1

αn(λn − λ)
. (3)

Note that the Weyl function m(λ) may be used to reconstruct the spectral
function ρ(λ). Indeed, by the Stieltjes-Perron formula (see [1], ch.3, §4), for
λ 6= λn, n = 1, 2, ..., we have

ρ(λ) =
1

π
lim
ε→+0

∫ λ

−1
Imm(τ + iε)dτ. (3′)

At the points λn, n = 1, 2, ..., we define the function by left continuity, that is,
by the formula

ρ(λn) = lim
λ→λn−0

ρ(λ). (3′′)

We also introduce the Weyl solution

ψn(λ) = Qn(λ) +m(λ)Pn(λ), n ∈ Z, (4)

of equation (1). By (3) and (4), the Weyl solution is analytic on the whole
complex λ–plane except for the simple poles λk, k = 1, 2, . . . , (the point λ = 0
is a nonisolated singularity of the Weyl solution). In addition, it is known (see, for
instance, [3] or [18]) that for the equality ψn(λ) = (Rλδ)n is valid. Consequently,
for every N > −∞ the Weyl solution belongs to `2 [N, ∞) with respect to the
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variable n. By virtue of the well-known relation d
dλRλ = R2

λ this last property is

also shared by d
dλψn(λ).

Now consider equation (1) with parameter λ = z + z−1, where |z| ≤ 1.
Throughout what follows we assume that λn = zn + z−1

n , where |zn| = 1, Imzn >
0, zn → i as n→∞. We introduce the notation

M(z) = m
(
z + z−1

)
, (5)

Ψn(z) = ψn
(
z + z−1

)
. (6)

Now suppose that condition (2) is satisfied. Then equation (1) with parameter
λ = z + 1

z possesses a Jost solution fn(z) (see, for example, [8] and [15]), which
can be represented in the form

fn(z) =
∑
m≤n

K(n,m)z−m, n ∈ Z, (7)

where the kernel K(n,m) satisfies the relations

K(n, n) > 0, K(n, n)→ 1 as n→ −∞,

K(n,m) = O(
∑

r<[n+m
2

]

{|ar − 1|+ |br|)}), (8)

as n+m→ −∞,

here, [·] denotes the integer part of a number. Consider the Jost solution fn(z).
According to (7), (8), for any n the solution fn(z) is an analytic function of
z in the disc |z| < 1 it is continuous up to its boundary. For all such that
|z| = 1, z2 6= 1 the pairs fn(z), fn(z) = fn

(
1
z

)
form the fundamental sys-

tems of solutions of equation (1) because their Wronskian W
[
fn(z), fn(z)

]
=

an

(
fn(z)fn+1(z)− fn+1(z)fn(z)

)
is equal to z − z−1 (see [8], [15]). Hence, the

solution Ψn(z) may be represented as a linear combination of them. On the
other hand, by virtue of (4), (6), the solution takes real values for |z| = 1, z∈ Ω.
Therefore, for |z| = 1, z2 6= 1, z∈ Ω, the following expansions are valid

Ψn(z) = a(z)fn(z) + a(z)fn(z). (9)

Setting n = −1 and n = 0 in (9) we find that

a(z) =
f0(z) + a−1M(z)f−1(z)

z − z−1
. (10)
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Obviously, a(z) is continuous for |z| = 1, z∈ Ω, may be except at the points
z = ±1.

Consider the function M(z). By virtue (3),(5) we have

M(z) = z
∞∑
n=1

zn
αn(z − zn)(1− zzn)

, (11)

which means that the function M(z) is analytic in the disc |z| < 1. Taking into

account that
∞∑
n=1

1
αn

= 1, we find from (11) that

M(z)z−1 → −1 as z → 0. (12)

By virtue of the properties of the functions fn(z) and M(z) established above,
the function a(z) may be extended by analytic continuation to the disc |z| < 1.

Lemma 1. The function a(z) can only have a finite number of zeros in the disc
|z| < 1. All these zeros are real and simple.

Proof. Note that the zeros of the function a(z) are eigenvalues of the operator
defined on `2 (−∞,∞) by the equation (1). By virtue of assumption A,B this
operator is self-adjoint. Consequently, the zeros of the function a(z) are real .

Denote the greatest lower bound of the distances between the neighbouring
zeros of the function a(z) by r. We shall show that r > 0. Assuming the contrary
we see that there exist subsequences æ̂k,æk of zeros such that

lim
k→∞

æ̂k = lim
k→∞

æk = æ0,

where −1 ≤ æ0 ≤ 1. According to (10) the function a(z) may be extended by
analytic continuation to the disc |z| < 1. Therefore, if −1 ≤ æ0 ≤ 1 then by the
identity theorem for analytic function we obtain a(z) ≡ 0, which is impossible
. Now suppose, for instance, that æ0 = 1. Without loss of generality we can
assume that æ̂k > æk >

1
2 , k = 1, 2, .... Using (7) –(8) we choose a number N > 0

such that for all n ≤ −N the inequality fn(z) > 1
2z
−n be valid. Then we have

∑
n≤−N

fn(æk)fn(æ̂k) >
1

4

∑
n≤−N

æ−2n
k =

1

4

æ2N
k

1− æ2
k

>
1

4N+1
.

As the eigenfunctions in the discrete spectrum are orthogonal, using the equalities

fn(æk) = c(æk)Ψn(æk), fn(æ̂k) = c(æ̂k)Ψn(æ̂k),

which are obvious, implies that
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0 =
∑
n∈Z

fn(æk)fn(æ̂k) =
∑

n≤−N
fn(æk)fn(æ̂k)+

+
−1∑

n=1−N
fn(æk)fn(æ̂k) + c(æk)c(æ̂k)

∑
n≥0

Ψn(æk)Ψn(æ̂k) . (13)

Since

lim
k→∞

fn(æ̂k) = lim
k→∞

fn(æk) = fn(1),

we have

lim
k→∞

c(æk)c(æ̂k) = f2
−1(1)Ψ2

−1(1) ≥ 0,

lim
k→∞

−1∑
n=1−N

fn(æk)fn(æ̂k) =
−1∑

n=1−N
f2
n(1) > 0,

lim
k→∞

∑
n≥0

Ψn(æk)Ψn(æ̂k) = ‖Rλδ‖2 |λ=1 > 0.

Hence, passing to the limit as k → ∞ on both sides of (13), we arrive at 0 >
4−N−1, which is false. Thus, the assumption made above (r = 0) is wrong and
the function a(z) can only have a finite number of zeros æ1,æ2, ...,æp.

Now we will show that these zeros are simple. Let

fn(æk) = ckΨn(æk), k = 1, ..., p, (14)

Consider the relations(
1− z−2

)
unϑn = W [u̇n−1, ϑn−1]−W [u̇n, ϑn] =

= W
[
ϑ̇n−1, un−1

]
−W

[
ϑ̇n, un

]
,

whereW [un, ϑn] = an [unϑn+1 − un+1ϑn] and the dot denotes differentiation with
respect to z. Summing these equalities for un = Ψn(z), ϑn = fn(z), z = æk and
taking (14) into account we obtain

W
[
Ψ̇n(æk), fn(æk)

]
=
(
1− æ−2

k

)
c−1
k

∞∑
m=n+1

|fm(æk)|2 ,

W
[
Ψn(æk), ḟn(æk)

]
=
(
1− æ−2

k

)
c−1
k

n∑
m=−∞

|fm(æk)|2 .

Consequently
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dW [Ψn(z), fn(z)]

dz

∣∣∣∣
z=æk

=
(
1− æ−2

k

)
c−1
k m−2

k .

On the other hand, it follows from (9) that

a(z) =
W [Ψn(z), fn(z)]

z−1 − z
.

Since a(æk) = 0, the last two equalities imply

æk
da(æk)

dz
= −c−1

k m−2
k , (15)

and this means the zeros of the function a(z) are simple.

The proof of lemma is complete.J

It follows from the lemma that the function t(z) = a−1(z) can only have a
finite number of simple real poles æk, k = 1, ..., p in the disc |z| < 1.

On the other hand, if we consider the boundary value problem

a
(N)
n−1yn−1 + b

(N)
n yn + a

(N)
n yn+1 = λyn, n ≤ N,

yN+1 = 0,

where

a(N)
n =

{
an for |n| ≤ N,
1 for n < −N, b(N)

n =

{
bn for |n| ≤ N,
1 for n < −N,

and, following the notation introduced above, set

m(N)(λ) =

N+1∑
k=1

1(
λ

(N)
k − λ

) N∑
j=1

p2
j

(
λ

(N)
k

) ,
where pN+1

(
λ

(N)
k

)
= 0, k = 1, ..., N + 1, and

M (N)(z) = m(N)
(
z + z−1

)
, a(N)(z) =

f
(N)
0 (z) + a−1M

(N)(z)f
(N)
−1 (z)

z − z−1
,

then we find that M (N)(z) → M(z) (see [3]) and f
(N)
n (z) → fn(z) (see [8]) as

N → ∞. This means that a(N)(z) → a(z) as N → ∞. It is easily seen that the
function 1

a(N)(z)
is bounded near the points z = ±1. Now passing to the limit we
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establish that the function t(z) = a−1(z) is also bounded near the points z = ±1

and, hence, the function za−1(z)
p∏

k=1

z−æk
1−ækz

is bounded in the disc |z| < 1.

The function t(z) = a−1(z) is referred to as the transmission coefficient. Set-
ting n = −1 in (9) we obtain the relation

− 1

a−1
= a(z)f−1(z) + a(z)f−1(z),

according to which a(z) 6= 0 for |z| = 1, z∈ Ω. Taking (10) into account this
means that the transmission coefficient t(z) is a continuous function for |z| = 1,
z∈Ω, except possibly at the points z = ±1.

We shall demonstrate that at the points of the set Ω̄\Ω. Suppose æ∈Ω. It
is known (see [12 ]) that between two poles of the Weyl function m(λ) there is
exactly one zero of this function. Consequently, there exists a sequence z̃nsuch
that |z̃n| = 1, z̃n → æ as n → ∞ and t (z̃n) → æ−æ−1

f0(æ) as n → ∞. Here,

f0 (æ) 6= 0. Indeed, fn (æ) and fn (æ) form a fundamental system of solutions for
the equation (1) with λ = æ + 1

æ ; hence Pn (æ) can be written as a nontrivial
linear combination of them. As a result, by virtue of the condition P0 (æ) = 1 we
obtain f0 (æ) 6= 0.

On the other hand, t (zn)→ 0 as n→∞. Thus, it has been established that
there no exists lim

z→æ
t(z).

Consider formula (10). By virtue of properties of the function a(z) established
above, the function t(z) is analytic at the points of the disc |z| < 1 at which a(z)
is nonzero.

Moreover, by virtue of (7), (10), (12), we have the asymptotic formula

zt(z) = K−1(0, 0) as z → 0. (16)

Let us virtue out some of the properties proved above in the form of a condition
that will be needed in what follows.

Condition 1. The function t(z) = a−1(z) is continuous for |z| = 1, may be
except at the points z = ±1 and at the points of the finite set Ω. At the points
z ∈ Ω it has no limit. The following relations hold

t(z) = t

(
1

z

)
, t(zn) = 0, n = 1, 2, ....

The function t(z) may be extended by analytic continuation to the disc |z| < 1
except possibly for a simple pole z = 0 and, perhaps, a finite number of simple
real poles æ1,æ2, ...,æp in this case, zt(z) → d > 0 as z → 0 and the function

zt(z)
p∏

k=1

z−æk
1−ækz

is bounded in the disc |z| < 1.
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The collection of quantities{
t(z) = a−1(z) , |z| = 1; æk, 0 < æ2

k < 1; mk > 0, k = 1, ...., p} ,
is called the scattering data for equation (1). The inverse scattering problem
for equation (1) is to recover the coefficients an, bn of this equation from the
scattering data.

For our problem, we introduce equations relating the scattering data to the
Kernel K (n, m):

F (n) =
1

2πi

∫
|z|=1

a(z)

a(z)
z−n−1dz +

p∑
k=1

m2
kæ
−n
k . (17)

Theorem 1. The following relations hold

F (n+m) +
K(n,m)

K(n, n)
+
∑
r<n

K(n, r)

K(n, n)
F (r +m) = 0, m < n ≤ 0 , (18)

K−2(n, n) = 1 + F (2n) +
∑
r<n

K(n, r)

K(n, n)
F (r + n), n ≤ 0 . (19)

Proof. Consider identity (9) for n ≤ 0. We substitute the representation (7)
into it, multiply it by 1

2πi
1

a(z)z
−(m+1), m ≤ n , and integrate along the circle

|z| = 1. Then, using (4)-(6), (11) taking due account of the fact that

Ψn(z)z−(n+1) → hn as z → 0,

where

hn =

{
−1 for n = 0,
− 1
an...a−1

for n ≤ −1,

and applying the reside theorem we obtain relations (18) and (19).J

Relation (18) is called Marchenko- type main equation. Applying research
techniques available for Marchenko-type equation (see [8]), we can obtain the
following necessary condition on the scattering data.

Condition 2. The following estimate holds∑
n≤−1

|n| |F (n+ 2)− F (n)| <∞ .

Now we find the relation between the transmission coefficient and the spectral
function of L0. Specifically, applying (5), (10) gives another necessary condition
on the scattering data.



Inverse Scattering Problem for a Difference Sturm-Liouville Equation on the Line 33

Condition 3. The function m(λ) defined by formulas (5) and (10) is analytic
on the whole complex plane, except at the simple poles λn = zn + z−1

n takes real
values on the real axis. Moreover, the function ρ(λ), defined by (3’), (3”) is the
spectral function of some self – adjoint difference Stur Liouville operator L0 on
the positive half-axis with the boundary condition y−1 = 0.

3. The inverse scattering problem

In the previous sections, we obtained the necessary Conditions 1-3 on the
scattering data. Let us prove that these conditions are also sufficient for uniquely
recovering the coefficients from the scattering data.

Theorem 2. Suppose that the conditions 1 and 2 are satisfied. Then for any
n, with n ≤ 0 equation (18) has a unique solution in `p (−∞, n− 1] , p = 1, 2.

Proof. First of all, we note that by virtue of Condition 2, equation (18) is gen-
erated by a completely continuous operator on `p (−∞, n− 1] , p = 1, 2. There-
fore, in accordance with the Fredholm alternative, equation (18) has a unique
solution `p (−∞, n− 1] in if the homogeneous equation has no nontrivial solu-
tions in `p (−∞, n− 1].

Consider the homogeneous equation

hm +
∑
r<n

F (m+ r)hr = 0, m < n ≤ 0. (20)

Since F (n) is real –valued, it may be assumed that all the hm are real.
Moreover, since each solution of equation (20) from `1 (−∞, n− 1] also be-
longs to `2 (−∞, n− 1] it suffices to show that (20) only has the zero solution in
`2 (−∞, n− 1]. Let hm be a solution of (2.1) from `2 (−∞, n− 1]. We introduce
the function

g(z) =
∑
r<n

hrz
−r, |z| < 1. (21)

The function g(z) obviously belongs to the class H2 (see [16], ch.2, p.175).
Now multiplying both sides of equation (20) by hm and summing over m from

−∞ to n− 1, in similar way to [8] and [15], we establish that the function

g0(z) = ig(z), (22)

satisfies the relations

g0(z)

a(z)
=
g0(z)

a(z)
for almost all z, |z| = 1, (23)
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g0(æk) = 0, k = 1, ..., p.

By the generalized reflection principle (see, f.i., [11] ch.3, §2 ) the function

g1(z) =
g0(z)

a(z)
, (24)

is analytic in the whole complex plane and

g1(z) = g1

(
1

z

)
for |z| > 1. (25)

Then, taking account of Condition 1, it follows from (21)-(25) that

g1(z)→ −idhn−1δon as z →∞,
where d > 0 and δon is the Kronecker delta. By Liouville’s theorem we have the
identity

g1(z) ≡ −idhn−1δon ,

according to which g1(z) ≡ 0 for n < 0. Moreover, if n = 0 and h−1 6= 0,then we
have g1(z) ≡ −idhn−1. The last identity contradicts (23). Therefore, h−1 = 0.
Thus, g1(z) ≡ 0 and consequently, hm ≡ 0 for m < n.

The theorem is proved.J

Note that the fact that F (m) is real-valued and equation (18) is uniquely
solvable suggest that K(n,m) are real. In addition, it may be shown similarly
to [2], [6] and [7] that the function fn(z) defined by (7), (18), (19) satisfies an
equation of the form (1) for n < 0 with parameter λ = z + 1

z and coefficients

an = K(n,n)
K(n+1,n+1) ,

bn = K(n,n−1)
K(n,n) −

K(n+1,n)
K(n+1,n+1) ,

(26)

Moreover, by virtue of Condition 2 the assumption A holds true (see, for example,
[8],[15]).

Theorem 3. For a set of quantities

{
t(z) = a−1(z) , |z| = 1; æk, 0 < æ2

k < 0; mk > 0, k = 1, ...., p}

to be the scattering data of some equation of the form (1) with coefficients satis-
fying assumptions A and B, it is necessary and sufficient that Conditions 1-3 be
fulfilled.
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Proof. That Conditions 1-3 are necessary was established in 1. Now let
Conditions 1-3 be satisfied. Then, for each n ≤ 0, equation (18) has a unique
solutionK(n,m). With the help ofK(n,m) we use formulas (26) to find anand bn
for n ≤ −1. We construct f0(z)and f−1(z)according to (7), (18) and (19) and use
them to define the function m(λ) by formulas (5) an (10). As a third necessary
condition, we assume that ρ(λ) given by () and () be the spectral function of
a difference Sturm-Liuville operator L0 on the half-axis. Then the coefficients
anand bn with n ≥ 0 are recovered from the spectral measure dρ(λ), as in [3].
By Condition 3, dρ(λ), is supported by a bounded countable set. Therefore,
assumption B is also satisfied.
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