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Abstract. We give a survey of results concerning various essential spectra of bounded
linear operators in a Banach space. We define the generalized Kato essential spectrum
of an operator, and we also give some relationships between this spectrum and other
essential spectra found in Fredholm theory and the SVEP theory.

Key Words and Phrases: Semi-regular operator, Kato type operator, Generalized
Kato spectrum, Essential spectrum

2010 Mathematics Subject Classifications: 47A10

1. Introduction

Let X be an infinite-dimensional complex Banach space. We denote by L(X)
the set of all bonded linear operators from X into X. Let I denote the iden-
tity operator in X. For T ∈ L(X) we denote by T ∗ the adjoint of T , R(T ) its
range, and N(T ) its null space. An operator T ∈ L(X) is said to be semi-regular
if R(T ) is closed and N(Tn) ⊆ R(T ), for all n ≥ 0. T admits a generalized
Kato decomposition, if there exists a pair of T -invariant closed subspaces (M,N)
such that X = M ⊕ N , where T |M is semi-regular and T |N is quasi-nilpotent.
A bounded operator on X is said to be quasi-nilpotent if its spectrum σ(T ) = {0}.

The Kato decomposition for bounded operator on Banach spaces arises from
the classical treatment of perturbation theory of Kato [32], and its flourishing
has greatly benefited from the work of many authors in the last ten years, in par-
ticular from the work of Mbekhta [41, 43, 44], Aiena [1] and Q. Jiang-H. Zhong
[30]. The operators which satisfy this property form a class which includes the
class of quasi-Fredholm operators, semi-regular, Kato type, semi-Fredholm and
B-Fredholm operators. This concept leads in a natural way to the generalized
Kato spectrum σgk(T ), an important subset of the ordinary spectrum which is
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defined as the set of all λ ∈ C for which λI − T does not admit a generalized
Kato decomposition. It was shown in [30, Corollary 2.3] that σgk(T ) is a com-
pact subset of C. Note that σgk(T ) is not necessarily non-empty. For example, a
quasi-nilpotent operator T has empty generalized Kato spectrum.

The aim of this paper is to define the generalized Kato essential spectrum of
an operator (the essential version of σgk(T )), and we also give some relationships
between this spectrum and other essential spectra found in Fredholm theory and
the SVEP theory. We present a survey of results for various essential spectra and
we consider their stability under some perturbations.

2. The semi-regular spectrum and its essential version

The semi-regular spectrum was first introduced by Apostol [2] for operators
on Hilbert spaces and successively studied by several authors Muller[47] and
Rakocevic [54], Mbekhta and Ouahab [45] and Mbekhta [42] in the more general
context of operators acting on Banach spaces. Trivial examples of semi-regular
operators are surjective operators as well as injective operators with closed range,
Fredholm operators and semi-Fredholm operators with jump equal zero (for more
details see [1]). Some other examples of semi-regular operators may be found
in Mbekhta [45] and Labrousse [37]. For an essential version of semi-regular
operators we use the following notation, for subspacesM,L ⊂ X we writeM ⊂e L
if there exists a finite-dimensional subspace F of X for which M ⊂ L + F .
Obviously

M ⊂e L⇔ dim
M

M ∩ L
<∞

An operator T ∈ L(X) is called essentially semi-regular if R(T ) is closed and
N(Tn) ⊂e R(T ), for all integers n ≥ 0.

The semi-regular spectrum of a bounded operator T on X is defined by

σse(T ) := {λ ∈ C : λI − T is not semi-regular}

and its essential version by

σes(T ) := {λ ∈ C : λI − T is not essentially semi-regular}

The sets σse(T ) and σes(T ) are always non-empty compact subsets of the com-
plex plane, σse(f(T )) = f(σse(T )) and σes(f(T )) = f(σes(T )) for any analytic
function f in a neighborhood of σ(T )(See [54]). Now we recall some results about
σse(T ) and σes(T )

Theorem 1 ([54]). Let T ∈ L(X).
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1. σse(T ) = σse(T
∗) and σes(T ) = σes(T

∗).

2. ∂σ(T ) ⊆ σse(T ); where ∂σ(T ) is the boundary of the spectrum of T .

3. λ ∈ σse(T ) \ σes(T ) if and only if λ is an isolated point of σse(T ),

sup
n∈N

dim
N(λI − T ) +N((λI − T )n)

N(λI − T )
<∞ and R(T − λI) is closed.

Let K(X) the closed two-sided ideal in L(X) of all compact operators and
F (X) denotes the set of all finite rank operators on X.

Theorem 2 ([54]). Let T ∈ L(X). Then

σes(T ) =
⋂

K∈K(X),KT=TK

σse(T +K)

=
⋂

F∈F (X),FT=TF

σse(T + F )

Let us mention that the mappings T → σse(T ) and T → σes(T ) are not upper
semi-continuous at T in general [54, Remark 4.4].

Theorem 3 ([54]). Let T, Tn ∈ L(X). and TTn = TnT for each positive integer
n. Then

lim sup
n∈N

σse(Tn) ⊂ σse(T ) and lim sup
n∈N

σes(Tn) ⊂ σes(T )

3. Generalized Kato spectrum and its essential version

Now, we introduce an important class of bounded operators which involves
the concept of semi-regularity.

Definition 1. An operator T ∈ L(X), is said to admit a generalized Kato de-
composition, if there exists a pair of closed subspaces (M,N) of X such that
:

1. X = M ⊕N .

2. T (M) ⊂M and T |M is semi-regular.

3. T (N) ⊂ N and T |N is quasi-nilpotent (i.e σ(T |N) = {0}.

(M,N) is said a generalized Kato decomposition of T , abbreviated as GKD(M,N).
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If we assume in the definition above that T |N is nilpotent, then there exists
d ∈ N for which (T |N)d = 0. In this case T is said to be of Kato type of order
d. Clearly, every semi-regular operator is Kato type with M = X and N = {0}
and a quasi-nilpotent operator has a GKD with M = {0} and N = X. Note that
if T is essentialy semi-regular then N is finite-dimensional and T |N is nilpotent,
since every quasi-nilpotent operator on a finite-dimensional space is nilpotent.
Discussions of operators which admit a generalized decomposition may be found
in [43, 44].
For every operator T ∈ L(X), let us define the Kato type spectrum and the
generalized Kato spectrum as follows respectively:

σk(T ) := {λ ∈ C : λI − T is not of Kato type}

σgk(T ) := {λ ∈ C : λI−T does not admit a generalized Kato decomposition}

σgk(T ) is not necessarily non-empty. For example, each quasi-nilpotent oper-
ator T has empty generalized Kato spectrum.
The following results shows that the generalized Kato spectrum of a bounded
operator is a closed subset of the spectra σ(T ) of T . The next theorem is due to
Q. Jiang , H. Zhong ([30, Theorem 2.2] ) :

Theorem 4. Suppose that T ∈ L(X), admits a GKD(M,N). Then there exists
an open disc D(0, ε) for which λI − T is semi-regular for all λ ∈ D(0, ε) \ {0}

Since σgk(T ) ⊆ σk(T ) ⊆ σes(T ) ⊆ σse(T ), as a straightforward consequence
of Theorem 4, we easily obtain that these spectra differ from each other on at
most countably many isolated points.

Proposition 1 ([1, 30]). The sets σse(T )\σgk(T ), σse(T )\σk(T ), σes(T )\σk(T ),
σes(T ) \ σgk(T ) and σk(T ) \ σgk(T ) are at most countable.

For T ∈ L(X), there are two linear subspaces of X defined in [43], the quasi-
nilpotent part H0(T ) of T :

H0(T ) =
{
x ∈ X : lim

n→∞
‖Tnx‖

1
n = 0

}
and the analytical core K(T ) of T :

K(T ) = {x ∈ X : there exist a sequence (xn) in X and a constant δ > 0

such that

Tx1 = x, Txn+1 = xn and ‖xn‖ ≤ δn‖x‖ for all n ∈ N}
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It easily follows, from the definitions, that H0(T ) and K(T ) are generally
not closed and T (K(T )) = K(T ). Observe that if Y is a closed subspace of X
such that T (Y ) = Y , then Y ⊂ K(T ) [60, Proposition 2]. Furthermore if T is
quasi-nilpotent then H0(T ) = X and K(T ) = {0}.

Theorem 5 ([1]). Suppose that (M,N) is a GKD for T ∈ L(X). Then we have:

1. K(T ) = K(T |M) and K(T ) is closed;

2. K(T ) ∩N(T ) = N(T |M).

Theorem 6 ([1]). Assume that T ∈ L(X), admits a GKD (M,N). Then

H0(T ) = H0(T |M)⊕H0(T |N) = H0(T |M)⊕N (1)

Theorem 7 ([20]). Assume that T ∈ L(X), X a Banach space. The following
assertions are equivalent:

1. 0 is an isolated point in σ(T );

2. K(T ) is closed and X = K(T )⊕H0(T )

3. H0(T ) is closed and X = K(T )⊕H0(T )

4. there is a bounded projection P on X such that R(P ) = K(T ) and N(P ) =
H0(T ).

Here ⊕ denotes the algebraic direct sum.

Definition 2. Let T ∈ L(X). The generalized Kato essential spectrum is defined
by

σeg(T ) = {λ ∈ C;λI − T is not admits a GKD and R(T ) is not closed}

Note that by Theorem 4 the generalized Kato essential spectrum is a closed
set of the spectrum σ(T ) of T and σeg(T ) ⊆ σgk(T ). Moreover σgk(T ) \ σeg(T ) is
at most countable, this is a direct consequence of the following theorem:

Theorem 8 ([5]). The symmetric difference σgk(T )∆σec(T ) is at most countable,
where σec(T ) = {λ ∈ C ; R(λI − T ) is not closed}.

Theorem 9 ([4]). The symmetric difference σk(T )∆σec(T ) is at most countable.

Proposition 2. The sets σgk(T )\σeg(T ), σec(T )\σeg(T ), σk(T )\σeg(T ), σes(T )\
σeg(T ), and σse(T ) \ σeg(T ) are at most countable.
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Proof. We have by definition of σeg(T ),

σgk(T ) \ σeg(T ) ⊆ σgk(T )∆σec(T ) and σec(T ) \ σeg(T ) ⊆ σgk(T )∆σec(T )

Then by Theorem 8 we obtain the result.

Proposition 3. If λ ∈ ∂σ(T ) is non-isolated point, then λ ∈ σeg(T ).

Proof. Let λ ∈ ∂σ(T ) a non-isolated point. Since ∂σ(T ) ⊆ σse(T ), then
λ ∈ σse(T ) is non-isolated point, hence λ ∈ σeg(T ).

Now we want to study the influence of perturbations on the spectrum. Our
hope is that at least some parts of the spectrum remain invariant.

We will consider for every T ∈ L(X) the following properties :

(P1) σi(T ) 6= ∅.
(P2) σi(T ) is closed.

(P3) σi(T + U) = σi(T ) whenever TU = UT and ‖U‖ < ε for some ε > 0.

(P4) σi(T + F ) = σi(T ) for every F ∈ F (X) commuting with T .

(P5) σi(T +K) = σi(T ) for every K ∈ K(X) commuting with T .

(P6) σi(T +Q) = σi(T ) for every quasi-nilpotent operator Q commuting with T .

(P7) σi(T ) verifies the spectral mapping theorem: f(σi(T )) = σi(f(T )) where f
is an analytic function defined on a neighborhood of σ(T ).
The properties of σi (i = se, es, k, gk, eg) are summarized in the following table:

Table 1:

(P1) (P2) (P3) (P4) (P5) (P6) (P7)

σi 6= ∅ σi closed Small com. com. fin. com. comp. com. quasi sp. map.

pert. rank pert. pert. nilp. pert. theorem

σse(T ) yes yes yes no no yes yes

σes(T ) yes yes yes yes yes yes yes

σk(T ) no yes no ? no no ?

σgk(T ) no yes no ? no yes ?

σeg(T ) no yes no ? no no ?

Comments.

1. It well-known that ∂σ(T ) ⊆ σse(T ) and ∂σef (T ) ⊆ σse(T ), so both are
non-empty (for infinite dimentional Banach spaces). Here σef denotes the
essential Fredholm spectrum (see the next section).
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2. For property (P3) for σse and σes see [48].

3. For semi-regular and essentially semi-regular operators the property (P6)
was proved in [35], for σgk is proved in [6].

4. The stability of essentially semi-regular spectrum under commuting com-
pact perturbation was shown in [54], and under not necessary commuting
finite rank perturbation in [34].

5. Consider the identity operator in a Hilbert space and let P be a 1− dimen-
sional orthogonal projection. Then I − P is not onto and (P4) and (P5)
fail for semi-regular operators.

6. The boxes marked by ”?” represent open problems.

4. Fredholm, Weyl, and Browder spectra

We introduce some important classes of operators in Fredholm theory. In
the sequel, for every operator T ∈ L(X), we shall denote by α(T ) the nullity of
T , defined as α(T ) := dimN(T ), whilst the deficiency β(T ) of T is defined by
β(T ) := codimR(T ) and the number ind(T ) := α(T ) − β(T ). is called the index
of T . We recall (see, for example [26]) that for T ∈ L(X), the ascent p(T ) and
the descent q(T ) of T are respectively defined by

p(T ) = min{p ∈ N : N(T p) = N(T p+1)}

and

q(T ) = min{q ∈ N : R(T q) = R(T q+1)}

The set of upper semi-Fredholm operators is defined by

Φ+(X) := {T ∈ L(X)such that α(T ) <∞ and R(T ) is closed },

the set of lower semi-Fredholm operators is defined by

Φ−(X) := {T ∈ C(X) : β(T ) <∞},

the set of semi-Fredholm operators is defined by

Φ±(X) := Φ+(X) ∪ Φ−(X),

the set of Fredholm operators is defined by

Φ(X) := Φ+(X) ∩ Φ−(X),
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the set of upper semi-Weyl operators is defined by

W+(X) := {T ∈ Φ+(X) : ind(T ) ≤ 0},

the set of lower semi-Weyl operators is defined by

W−(X) := {T ∈ Φ−(X) : ind(T ) ≥ 0},

the set of Weyl operators is defined by

W(X) :=W+(X) ∩W−(X) = {T ∈ Φ(X) : ind(T ) = 0},

the set of upper semi-Browder operators operators is defined by

B+(X) := {T ∈ Φ+(X) : p(T ) <∞},

the set of lower semi-Browder operators is defined by

B−(X) := {T ∈ Φ−(X) : q(T ) <∞},

the set of Browder operators is defined by

B(X) := B+(X) ∩ B−(X) = {T ∈ Φ(X) : p(T ), q(T ) <∞},

Theses various classes of operators motivate the definition of several essential
spectra:

• σuf (T ) := {λ ∈ C : λI − T /∈ Φ+(X)},

• σlf (T ) := {λ ∈ C : λI − T /∈ Φ−(X)}

• σsf (T ) = {λ ∈ C : λI − T 6∈ Φ±(X)} = σuf (T ) ∩ σlf (T ),

• σef (T ) := {λ ∈ C : λI − T /∈ Φ(X)} = σuf (T ) ∪ σlf (T ),

• σuw(T ) := {λ ∈ C : λI − T 6∈ W+(X)},

• σlw(T ) := {λ ∈ C : λI − T 6∈ W−(X)},

• σew(T ) := {λ ∈ C : λI − T 6∈ W(X)} = σuw(T ) ∪ σlw(T ),

• σub(T ) := {λ ∈ C : λI − T /∈ B+(X)}.

• σlb(T ) := {λ ∈ C : λI − T /∈ B−(X)}.

• σeb(T ) := {λ ∈ C : λI − T /∈ B(X)} = σub(T ) ∪ σlb(T ).

• σec(T ) := {λ ∈ C : R(λI − T ) is not closed}



Essential spectrum a brief survey of concepts and applications 45

The subsets σuf (.) and σlf (.) are the Gustafson and Weidmann essential spectra
[27]. σsf (.) is defined by Kato [33]. σef (.) is the Wolf essential spectrum [63, 56,
62]. σew(.) is the Schechter essential spectrum [27, 56, 57], and σeb(.) denotes the
Browder essential spectrum [27, 31, 56], σec(T ) is the Goldberg spectrum (see
[25] ). σuw(.) is the essential approximate point spectrum [51, 52]. σlw(.) is the
essential defect spectrum [52]. σuw(.) and σlw(.) was introduced by Rakočević in
[53]. Note that all these sets of essential spectra (except σec(T )) are closed and
in general satisfy the following inclusions

σec(T ) ⊆ σes(T ) ⊆ σsf (T ) ⊆ σef (T ) ⊆ σew(T ) ⊆ σeb(T );

σec(T ) ⊆ σes(T ) ⊆ σse(T );

σeg(T ) ⊆ σgk(T ) ⊆ σk(T ) ⊆ σes(T ) ⊆ σsf (T ).

and
σeg(T ) ⊆ σgk(T ) ⊆ σk(T ) ⊆ σse(T ).

Remark 1. If λ in the continuous spectrum σc(T ) of T then R(λ − T ) is not
closed. Therefore λ ∈ σi(T ), i ∈ Λ = {ec, es, se, lf, uf, ef, ew, eb}. Consequently
we have

σc(A) ⊂
⋂
i∈Λ

σi(A).

Proposition 4 ([1]). The following properties hold:

1. ∂σeb(T ) ⊆ ∂σew(T ) ⊆ ∂σef (T ) ⊆ ∂σsf (T ) .

2. If λ ∈ ∂σef (T ) is a non-isolated point of σef (T ) then λ ∈ σk(T ).
Moreover, similar statements hold if, instead of boundary points of σef (T ),
we consider boundary points of σlf (T ), σuf (T ) and σsf (T ).

Theorem 10 ([59]). Let T ∈ L(X). Then

σew(T ) =
⋂

K∈K(X)

σ(T +K)

=
⋂

F∈F (X)

σ(T + F )

Theorem 11 ([59]). Let T ∈ L(X). Then

σeb(T ) =
⋂

K∈K(X)

σ(T +K)

=
⋂

F∈F (X)

σ(T + F )
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The approximate point spectrum is defined by

σap(T ) := {λ ∈ C : λI − T is not bounded below}
the surjectivity spectrum is defined by

σsu(T ) := {λ ∈ C : λI − T is not surjective}
By the closed range theorem we easily know that the approximate point spec-

trum and the surjectivity spectrum are dual to each other, in the sense that
σap(T ) = σsu(T ∗) and σap(T

∗) = σsu(T ).

Theorem 12 ([55]). Let T ∈ L(X). Then

σub(T ) =
⋂

K∈K(X),KT=TK

σap(T +K)

=
⋂

F∈F (X),FT=TF

σap(T + F )

and

σlb(T ) =
⋂

K∈K(X),KT=TK

σsu(T +K)

=
⋂

F∈F (X),FT=TF

σsu(T + F ).

The properties (P1)-(P7) for these sets of essential spectra defined above are
summarized in the following table:

Table 2:

(P1) (P2) (P3) (P4) (P5) (P6) (P7)

σi 6= ∅ σi closed Small com. com. fin. com. comp. com. quasi sp. map.

pert. rank pert. pert. nilp. pert. theorem

σeb(T ) yes yes yes! yes! yes! yes! yes

σew(T ) yes yes yes! yes! yes! yes! ⊇
σef (T ) yes yes yes! yes! yes! yes! yes

σsf (T ) yes yes yes! yes! yes! yes! ⊆
σuf (T ) yes yes yes! yes ! yes ! yes ! yes

σlf (T ) yes yes yes! yes ! yes! yes ! yes

σub(T ) yes yes yes yes yes yes yes

σlb(T ) yes yes yes yes yes yes yes

σuw(T ) yes yes yes yes no yes ⊇
σlw(T ) yes yes yes yes no yes ⊇
σec(T ) no no no no no no no
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Comments.

1. The boxes marked by ”yes!” means that the commutation is not necessary.

2. The properties (P1)-(P7) when are valid for σi, i ∈ {lb, ub, lw, uw, lf, uf, ef,
eb, ew} see [1], [59], [33] and [48].

3. The property (P7) is valid for σi, i ∈ {lb, ub, lf, uf, ef, eb} by [24], [49],
[55], [50]. The interested reader may find further results on the spectral
mapping Theorem also in Schmoeger [61]. In the same paper Schmoeger
has described the set of all T ∈ L(X) such that property (P7) holds for σi,
i ∈ {lw, uw, sf, ew}.

4. The table 2 is valid for σi(T ), i ∈ {lb, ub, lw, uw, lf, uf, ef, eb, ew} for all
closed densely defined linear operators on X (see [59], [33] and [29]).

5. The closed-range spectrum (or Goldberg spectrum) σec(T ) has not good
properties:

(a) σec(T ) is not necessarily non-empty. For example, T = 0.

(b) σec(T ) may be not closed. There exists an operator A such that R(A)
is closed but R(λI −A) is not closed for all λ ∈ D(0, 1) \ {0}

(c) It is possible that R(A) is closed but R(A2) is not. let A =

(
V I
0 0

)
be an operator defined on `2⊕`2, where V has the following properties
that V 2 = 0 and R(V ) is not closed. Then R(A) is closed, R(A2) is
not closed, A3 = 0.

(d) Conversely, it is also possible that R(A2) is closed but R(A) is not.
Let A be defined on `2 by

A(x1, x2, x3, . . . ) = (0, x1, 0,
1

3
x2, 0,

1

5
x3, 0, . . . )

The operator A is compact and R(A) is not closed, A2 = 0 and R(A2)
is closed.

(e) σec(T ) is unstable under nilpotent perturbation. For example, A = 0
and N the nilpotent operator defined in (4.). Then 0 ∈ σec(A + N)
but 0 /∈ σec(A).

5. B-Fredholm, B-Browder, B-Weyl and quasi-Fredholm spectra

Given n ∈ N, we denote by Tn the restriction of T ∈ L(X) on the sub-
space R(Tn). According Berkani [7], T is said to be semi B-Fredholm (resp.
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B-Fredholm, upper semi B-Fredholm, lower semi B-Fredholm), if for some in-
teger n ≥ 0 the range R(Tn) is closed and Tn, viewed as a operator from the
space R(Tn) in to itself, is a semi-Fredholm operator (resp. Fredholm, upper
semi-Fredholm, lower semi-Fredholm). Analogously, T ∈ L(X) is said to be
B-Browder (resp. upper semi B-Browder, lower semi B-Browder, B-Weyl, up-
per semi B-Weyl, lower semi B-Weyl ), if for some integer n ≥ 0 the range
R(Tn) is closed and Tn is a Browder operator (resp. upper semi-Browder, lower
semi-Browder, Weyl, upper semi-weyl, lower semi-Weyl). T is said to be quasi-
Fredholm if there exists d ∈ N such that

1. R(Tn) ∩N(T ) = R(T d) ∩N(T ) for all n ≥ d.

2. R(T d) ∩N(T ) and R(T d) +N(T ) are closed in X.

This classes of operators motive the definition of several spectra.

The B-Ferdholm spectrum is defined by

σbf (T ) := {λ ∈ C : λI − T is not B-Ferdholm},

the semi B-Fredholm spectrum is defined by

σsbf (T ) := {λ ∈ C : λI − T is not semi B-Fredholm},

the upper semi B-Fredholm spectrum is defined by

σubf (T ) := {λ ∈ C : λI − T is not upper semi B-Fredholm},

the lower semi B-Fredholm spectrum is defined by

σlbf (T ) := {λ ∈ C : λI − T is not lower semi B-Fredholm},

the B-Browder spectrum is defined by

σbb(T ) := {λ ∈ C : λI − T is not B-Browder},

the upper semi B-Browder spectrum is defined by

σubb(T ) := {λ ∈ C : λI − T is not upper semi B-Browder},
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the lower semi B-Browder spectrum is defined by

σlbb(T ) := {λ ∈ C : λI − T is not lower semi B-Browder},

the B-Weyl spectrum is defined by

σbw(T ) := {λ ∈ C : λI − T is not B-Weyl},

the upper semi B-Weyl spectrum is defined by

σubw(T ) := {λ ∈ C : λI − T is not upper semi B-Weyl},

the lower semi B-Weyl spectrum is defined by

σlbw(T ) := {λ ∈ C : λI − T is not lower semi B-Weyl},

while the quasi-Fredholm spectrum is defined by

σqf (T ) := {λ ∈ C : λI − T is not quasi-Fredholm}.

We have

σbf (T ) = σubf (T ) ∪ σlbf (T ),

σbw(T ) = σubw(T ) ∪ σlbw(T ),

σbb(T ) = σubb(T ) ∪ σlbb(T )

and

σqf (T ) ⊆ σbf (T ) ⊆ σbw(T ) ⊆ σbb(T ).

Note that all the B-spectra are compact subsets of C (see [7], [37]) , and may
be empty. This is the case where the spectrum σ(T ) of T is a finite set of poles
of the resolvent. Furthermore

σeg(T ) ⊆ σgk(T ) ⊆ σk(T ) ⊆ σbf (T ) ⊆ σbb(T ) ⊆ σbw(T ).

The properties (P1)-(P7) for these sets of essential spectra defined above are
summarized in the following table:

Comments.
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Table 3:

(P1) (P2) (P3) (P4) (P5) (P6) (P7)

σi 6= ∅ σi closed Small com. com. fin. com. comp. com. quasi sp. map.

pert. rank pert. pert. nilp. pert. theorem

σbb(T ) no yes no yes! no ? yes

σbw(T ) no yes no yes! no ? ⊆
σbf (T ) no yes no yes! no ? yes

σsbf (T ) no yes no yes! no ? yes

σubf (T ) no yes no yes! no ? yes

σlbf (T ) no yes no yes! no ? yes

σubb(T ) no yes no yes no ? yes

σlbb(T ) no yes no yes no ? yes

σubw(T ) no yes no yes no ? ⊇
σlbw(T ) no yes no yes no ? ⊇
σqf (T ) no yes no yes no no yes

1. Since every operators commutes with the zero operator, σqf (T ) cannot have
properties (P1), (P3), (P5) and (P6).

2. All properties (P1)-(P7) for these sets of essential spectra are proved by
Berkani in [7],[8], [9], [10], [11], [12], [14], [15], [16], [17].

3. If K is a compact operator such that R(Kn) is not closed for every positive
integer n, then K is not a B-Fredholm operator. So if F is a finite rank
operator, then F is a B-Fredholm operator, but K+F is not a B-Fredholm
operator, otherwise K = K+F−F would be a B-Fredholm operator. Hence
the class of B-Fredholm operators is not stable under compact perturbation.

4. In the case of Hilbert spaces, the set of quasi-Fredholm operators coincides
with the set of Kato type operators ( see J.P Labrousse [37]). But in the case
of Banach spaces the Kato type operator is also quasi-Fredholm, according
to the remark following Theorem 3.2.2 in [37] the converse is true when
R(T d) ∩ N(T ) and R(T ) + N(T d) are complemented in the Banach space
X. The spectral mapping theorem for σeq in a Hilbert space was proved in
[13]. For Banach spaces the theorem hold for every function f non constant
on each component of its domain of definition (see[36]).

6. Essential spectrum and Drazin invertible operators

An operator T ∈ L(X) is said to be left Drazin invertible if p = p(T ) < ∞
and R(T p+1) is closed, and is said to be right Drazin invertible if q = q(T ) <∞
and R(T q) is closed, while T ∈ L(X) is said to be Drazin invertible if is both left
and right Drazine invertible. The Drazin spectrum is defined by

σD(T ) := {λ ∈ C / λI − T is not Drazin invertible}
The left Drazin spectrum and right Drazin spectrum are defined by

σlD(T ) := {λ ∈ C / λI − T is not left Drazin invertible}
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and
σrD(T ) := {λ ∈ C / λI − T is not right Drazin invertible}

We have
σD(T ) = σlD(T ) ∪ σrD(T )

It is well know that T is Drazin invertible if and only if T is finite ascent and
descent, which is also equivalent to the fact that T = R⊕N where R is invertible
and N is nilpotent (see [40] Corollary 2.2).

Corollary 1. If T ∈ L(X) then σeg(T ) ⊆ σD(T )

Theorem 13 ([9]). Let T ∈ L(X). Then

σbw(T ) =
⋂

F∈F (X)

σD(T + F )

Theorem 14 ([3]). Let T ∈ L(X). If N ∈ L(X) is a nilpotent operator such
that TN = NT . Then

σlD(T ) = σlD(T +N)

7. Essential spectrum and The SVEP theory

Let T ∈ L(X). We say that T has the single-valued extension property at
λ0 ∈ C, abbreviated T has the SVEP at λ0, if for every neighborhood Uλ0 of λ0

the only analytic function f : Uλ0 → X which satisfies the equation

(λI − T )f(λ) = 0, for all λ ∈ Uλ0

is the constant function f ≡ 0.
The operator T is said to have the SVEP if T has the SVEP at every λ ∈ C.

We collect some basic properties of the SVEP (see [1]):

1. Every operator T has the SVEP at an isolated point of the spectrum.

2. If p(λI − T ) <∞, then T has the SVEP at λ.

3. If q(λI − T ) <∞, then T ∗ has the SVEP at λ

For an arbitrary operator T ∈ L(X) let us consider the set

Ξ(T ) = {λ ∈ C : T does not have the SVEP at λ}

The following theorems describe the relationships between an operator which
admits a GKD(M,N) and the points where T , or its adjoint T ∗ have the SVEP.
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Theorem 15 ([1]). Suppose that T ∈ L(X) admits a GKD(M,N). Then the
following assertions are equivalent:

1. T has the SVEP at 0;

2. T |M has the SVEP at 0;

3. T |M is injective;

4. H0(T ) = N ;

5. H0(T ) is closed;

6. H0(T ) ∩K(T ) = {0};

7. H0(T ) ∩K(T ) is closed.

Theorem 16 ([1]). Suppose that T ∈ L(X) admits a GKD(M,N). Then the
following assertions are equivalent:

1. T ∗ has the SVEP at 0;

2. T |M is surjective;

3. K(T ) = M ;

4. X = H0(T ) +K(T );

5. H0(T ) ∩K(T ) = {0};

6. X = H0(T ) +K(T ) is norm dense in X.

Theorem 17 ([1]). Let T ∈ L(X). Then

σeb(T ) = σef (T ) ∪ Ξ(T ) ∪ Ξ(T ∗) (2)

and
σeb(T ) = σew(T ) ∪ Ξ(T ) = σew(T ) ∪ Ξ(T ∗) (3)

Note that
Ξ(T ) ⊆ σap(T ) and σ(T ) = Ξ(T ) ∪ σsu(T )

In particular, if T (resp. T ∗ ) has the SVEP then σ(T ) = σsu(T ) (resp. σ(T ) =
σap(T ) ). In the next theorem we consider a situation which occurs in some
concrete cases.

Theorem 18. Let T ∈ L(X) an operator for which σap(T ) = ∂σ(T ) and every
λ ∈ ∂σ(T ) is non-isolated in σ(T ). Then

σeg(T ) = σgk(T ) = σk(T ) = σes(T ) = σse(T ) = σap(T ).
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Proof. Since λ ∈ ∂σ(T ) is non-isolated, according to Proposition 3, we obtain
the result

Theorem 19. Let T ∈ L(X) an operator for which σsu(T ) = ∂σ(T ) and every
λ ∈ ∂σ(T ) is non-isolated in σ(T ). Then

σeg(T ) = σec(T ) = σes(T ) = σse(T ) = σsu(T ).

Proof. Since λ ∈ ∂σ(T ) is non-isolated, then σsu(T ) cluster in λ. Observe
that T ∗ has the SVEP at λ ∈ ∂σ(T ), then λI − T does not admit a generalized
Kato decomposition and thus λ ∈ σeg(T ). So

σsu(T ) = ∂σ(T ) ⊆ σeg(T ) ⊆ σgk(T ) ⊆ σk(T ) ⊆ σes(T ) ⊆ σse(T ) ⊆ σsu(T ).

Thus we obtain the result

Since the ascent implies the SVEP then we have

Ξ(T ) ⊆ σlD(T ) and Ξ(T ∗) ⊆ σrD(T )

The following theorem proves an equality up to Ξ(T ) between the left Drazin
spectrum and the left B-Fredholm spectrum and by duality we find a similar
result holds for the right Drazin spectrum and the right B-Fredholm spectrum.

Theorem 20 ([3]). Let T ∈ L(X). Then

σlD(T ) = σlbf (T ) ∪ Ξ(T ) (4)

and

σrD(T ) = σrbf (T ) ∪ Ξ(T ∗) (5)

Theorem 21 ([3]). Let T ∈ L(X). Then

σubb(T ) = σqf (T ) ∪ Ξ(T ) = σubw(T ) ∪ Ξ(T ) (6)

and

σlbb(T ) = σqf (T ) ∪ Ξ(T ∗) = σlbw(T ) ∪ Ξ(T ∗) (7)

Moreover,

σbb(T ) = σbw(T ) ∪ Ξ(T ) = σbw(T ) ∪ Ξ(T ∗) (8)

Corollary 2. Let T ∈ L(X). Then we have

1. σeb(T ) = σef (T )∪σeg(T ), σD(T ) = σbw(T )∪σeg(T ) and σbb(T ) = σqf (T )∪
σeg(T ).
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2. If T has the SVEP then

σqf (T ) = σubw(T ) = σubb(T ) (9)

and
σbw(T ) = σbb(T ) = σlbb(T ) = σlbw(T ) (10)

3. If T ∗ has the SVEP then

σqf (T ) = σlbw(T ) = σlbb(T ) (11)

and
σbw(T ) = σbb(T ) = σubb(T ) = σubw(T ) (12)

4. If both T , T ∗ have SVEP then σeg(T ) is empty and

σeb(T ) = σew(T ) = σef (T ) (13)

σqf (T ) = σD(T ) = σubb(T ) =

= σlbb(T ) = σbb(T ) = σlbw(T ) = σubw(T ) = σbw(T ) (14)

From the definition of localized SVEP it is easily seen that Ξ(T ) ⊆ accσap(T );
and dually Ξ(T ∗) ⊆ accσsu(T ), where accK denote the set off all accumulation
points of K ⊆ C.

Theorem 22 ([19]). Let T ∈ L(X) an operator for which σap(T ) = ∂σ(T ) and
every λ ∈ ∂σ(T ) is non-isolated in σ(T ). Then

σqf (T ) = σubb(T ) = σubw(T ) = σap(T ) = σub(T ) = σuw(T ) = σse(T )

By duality we have

Theorem 23 ([19]). Let T ∈ L(X) an operator for which σsu(T ) = ∂σ(T ) and
every λ ∈ ∂σ(T ) is non-isolated in σ(T ). Then

σqf (T ) = σlbb(T ) = σlbw(T ) = σsu(T ) = σlb(T ) = σlw(T ) = σse(T ).

By Theorem 18 and Theorem 22 we have

Corollary 3. Let T ∈ L(X) an operator for which σap(T ) = ∂σ(T ) and every
λ ∈ ∂σ(T ) is non-isolated in σ(T ). Then

σeg(T ) = σqf (T ) = σubb(T ) = σubw(T ) = σap(T ) = σub(T ) = σuw(T ) = σse(T )

= σk(T ) = σec(T ) = σes(T )
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By duality we obtain by Theorem 19 and Theorem 23

Corollary 4. Let T ∈ L(X) an operator for which σsu(T ) = ∂σ(T ) and every
λ ∈ ∂σ(T ) is non-isolated in σ(T ). Then

σeg(T ) = σqf (T ) = σlbb(T ) = σlbw(T ) = σsu(T ) = σlb(T ) = σlw(T ) = σse(T )

= σk(T ) = σec(T ) = σes(T )

Example 1. We consider the Cesaro operator Cp on the classical Hardy space
Hp(D), where D is the open unit disc of C and 1 < p <∞. Cp is defined by

(Cpf)(λ) =
1

λ

∫ λ

0

f(λ)

1− λ
dµ, for all f ∈ Hp(D) and λ ∈ D.

The spectrum of the operator Cp is the closed disc Γp centred at p
2 with radius p

2 ,
see [1], and σef (Cp) ⊆ σap(Cp) = ∂Γp. From Corollary 3 we also have

σeg(Cp) = σqf (Cp) = σlbb(Cp) = σlbw(Cp) = σap(Cp) = σlb(Cp) = σlw(Cp)

= σse(Cp) = σk(Cp) = σec(Cp) = σes(Cp) = σef (Cp = ∂Γp

8. Application of the quasi-nilpotent perturbations to transport
Equations

In this section, we shall apply the results of the quasi-nilpotent perturba-
tions to the one-dimensional transport equation on Lp-spaces, with p ∈ [1, ∞).
Let

Xp = Lp([−a, a]× [−1, 1], dx dξ), a > 0 and p ∈ [1,∞).

We consider the boundary spaces :

Xo
p := Lp[{−a} × [−1, 0], |ξ|dξ]× Lp[{a} × [0, 1], |ξ|dξ] := Xo

1,p ×Xo
2,p

and

Xi
p := Lp[{−a} × [0, 1], |ξ|dξ]× Lp[{a} × [−1, 0], |ξ|dξ] := Xi

1,p ×Xi
2,p

respectively equipped with the norms

‖ψo‖Xo
p

=
(
‖ψo1‖

p
Xo

1,p
+ ‖ψo2‖

p
Xo

2,p

) 1
p

=[∫ 0

−1
|ψ(−a, ξ)|p|ξ| dξ +

∫ 1

0
|ψ(a, ξ)|p|ξ| dξ

] 1
p

and
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‖ψi‖Xi
p

=

(
‖ψi1‖

p

Xi
1,p

+ ‖ψi2‖
p

Xi
2,p

) 1
p

=[∫ 1

0
|ψ(−a, ξ)|p|ξ| dξ +

∫ 0

−1
|ψ(a, ξ)|p|ξ| dξ

] 1
p

.

Let Wp the space defined by:

Wp =

{
ψ ∈ Xp : ξ

∂ψ

∂x
∈ Xp

}
.

It is well-known that any function ψ inWp has traces on −a and a in Xo
p and Xi

p.
They are denoted, respectively by ψo and ψi, and represent the outgoing and the
incoming fluxes.
We define the operator TH by:

TH : D(TH) ⊆ Xp −→ Xp

ψ −→ THψ(x, ξ) = −ξ ∂ψ
∂x

(x, ξ)− σ(ξ)ψ(x, ξ)

D(TH) =
{
ψ ∈ Wp such thatψi = H(ψo)

}
Where σ(.) ∈ L∞(−1, 1) and H is bounded from X0

p to Xi
p.

The function ψ(x, ξ) represents the number density of gas particles having
the position x and the direction cosine of propagation ξ. The variable ξ may be
thought of as the cosine of the angle between the velocity of particles and the
x-direction. The function σ(.), is called the collision frequency.
The spectrum of the operator T0 (i.e., H = 0) was analyzed in [46]. in particular
we have

σ(T0) = σc(T0) = {λ ∈ C : Reλ ≤ −λ∗}, (15)

where σc(T0) is the continuous spectrum of T0 and λ∗ = −lim inf
|ξ|→0

σ(ξ), (for more

detail see [46]).
Combining the inclusions in Remark 1 with Eq. (15) we obtain

σei(T0) = {λ ∈ C : Reλ ≤ −λ∗},

i ∈ {ec, es, se, lf, uf, ef, ew, uw, lw, eb, ub, lb} (16)

Let us now consider the resolvent equation for TH

(λ− TH)ψ = ϕ (17)



Essential spectrum a brief survey of concepts and applications 57

where ϕ is a given element of Xp and the unknown ψ must be found in D(TH).
For Reλ + λ∗ > 0, where λ∗ = −lim inf

|ξ|→0
σ(ξ), the solution of (17) is formally

given by :

ψ(x, ξ) = ψ(−a, ξ) e−
(λ+σ(ξ))|a+x|

|ξ| + 1
|ξ|

∫ x

−a
e
−(λ+σ(ξ))|x−x

′
|

|ξ| ψ(x, ξ′) dx′,

if 0 < ξ < 1,

ψ(x, ξ) = ψ(a, ξ) e
− (λ+σ(ξ))|a−x|

|ξ| +
1

|ξ|

∫ a

x
e
−(λ+σ(ξ))|x−x

′
|

|ξ| ψ(x′, ξ) dx′,

if − 1 < ξ < 0.

where

ψ(a, ξ) = ψ(−a, ξ) e
−2a(λ+σ(ξ))

|ξ| + 1
|ξ|

∫ a

−a
e

2a
−(λ+σ(ξ))
|ξ| ψ(x, ξ) dx′,

if 0 < ξ < 1

ψ(−a, ξ) = ψ(a, ξ) e
− 2a(λ+σ(ξ))

|ξ| + 1
|ξ|

∫ a

x
e
−(λ+σ(ξ))|a−x|

|ξ| ψ(x, ξ) dx,

if − 1 < ξ < 0

In the sequel we shall consider the following operators:



Mλ : Xi
p −→ X0

p ,Mλu := (M+
λ u,M

−
λ u) where

M+
λ u = u(−a, ξ) e

−2a
|ξ| (λ+σ(ξ))

, if − 1 < ξ < 0

M−λ u = u(a, ξ) e
−2a
|ξ| (λ+σ(ξ))

if 0 < ξ < 1



Bλ : Xi
p −→ Xp;Bλ = χ(−1,0)(ξ)B

+
λ u+ χ(0,1)(ξ)B

−
λ u

(B−λ u)(x, ξ) = u(−a, ξ) e
(λ+σ(ξ))
|ξ| |a−x|

if 0 < ξ < 1

B+
λ u(x, ξ) = u(−a, ξ) e

(λ+σ(ξ))
|ξ| |a−x|

if ;−1 < ξ < 0
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Gλ : Xi
p −→ Xp, Gλu := (G+

λ ϕ,G
−
λ ϕ) where

G+
λ ϕ =

1

|ξ|

∫ a

−a
e
−(λ+σ(ξ))
|ξ| |a−x|

ϕ(x, ξ) dx if 0 < ξ < 1

G−λ ϕ =
1

|ξ|

∫ a

−a
e
−(λ+σ(ξ))
|ξ| |a+x|

ϕ(x, ξ) dx if − 1 < ξ < 0



Cλ : Xp −→ Xp;Cλϕ = χ(−1,0)(ξ)C
+
λ ϕ+ χ(0,1)(ξ)C

−
λ ϕ where

C−λ ϕ =
1

|ξ|

∫ x

−a
e
−(λ+σ(ξ))
|ξ| |x′−x|

ϕ(x′, ξ) dx′ if 0 < ξ < 1

C+
λ ϕ =

1

|ξ|

∫ a

x
e
−(λ+σ(ξ))
|ξ| |x′−x|

ϕ(x, ξ) dx if − 1 < ξ < 0

where χ(−1,0) and χ(0,1) denote, respectively the characteristic functions of the in-
tervals (−1, 0) and (0, 1). The operators Mλ, Bλ, Gλ and Cλ are bounded on their

respective domains respectively, by e−2a(Reλ+λ∗), [p(Reλ+λ∗)]
−1
p , [(Reλ+λ∗)]

−1
q

and [(Reλ+λ∗)]−1 where q denotes the conjugate of p. We define the real λ0 by

λ0 =


−λ∗, if ||H|| ≤ 1

1
2a log ||H|| − λ∗ if ||H|| > 1

It follows from the norm estimate of Mλ that, for Reλ > λ0, ||MλH|| < 1 and
consequently

ψ0 =

+∞∑
n=0

(MλH)nGλϕ (18)

On the other hand, we have

ψ = BλHψ0 + Cλϕ

= (BλH

+∞∑
n=0

(MλH)nGλ + Cλ)ϕ

Hence, {λ ∈ C such that Reλ > λ0} ⊂ ρ(TH) and for Reλ > λ0

(λ− TH)−1 = BλH(I −MλH)−1Gλ + Cλ (19)

Theorem 24. Suppose that the boundary operator H is quasi-nilpotent operator,
then

σi(TH) = σi(T0), i = lf, uf, sf, ef, ew, eb.
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Proof. If Reλ > λ0, then λ ∈ ρ(TH) ∩ ρ(T0) and

(λ− TH)−1 − (λ− T0)−1 = Dλ,

where

Dλ = BλH
+∞∑
n=0

(MλH)nGλ

Since H is a quasi-nilpotent operator, then Dλ is quasi-nilpotent. This implies
the statement of theorem.

Next we consider the transport operator

AH = TH +K

where K is the bounded operator given by
K : Xp −→ Xp

ψ −→
∫ ξ

−1
κ(x, ξ, ξ′)ψ(x, ξ′) dξ′

and κ satisfies the following assumptions:

(H1)

{
κ(., ., .) is a measurable function form [−a, a]× [−1, 1]× [−1, 1] to R and
|κ(x, ξ, ξ′)| ≤ c <∞.

Lemma 1. If κ satisfies (H1) then, for any integer n ≥ 1

‖Kn‖ ≤ 2
1
q

+n+1

n!
cn

where 1
p + 1

q = 1.

Proof. Let ψ ∈ Xp. Holder’s inequalities implies that

|Kψ(x, ξ)| =

∣∣∣∣∫ ξ

−1
κ(x, ξ, ξ′)ψ(x, ξ′)dξ′

∣∣∣∣
≤

(∫ ξ

−1

∣∣κ(x, ξ, ξ′)
∣∣q dξ′) 1

q
(∫ 1

−1

∣∣ψ(x, ξ′)
∣∣p dξ′) 1

p

≤ c(ξ + 1)
1
q

(∫ 1

−1

∣∣ψ(x, ξ′)
∣∣p dξ′) 1

p

and
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∣∣K2ψ(x, ξ)
∣∣ =

∣∣∣∣∫ ξ

−1
κ(x, ξ, ξ′)Kψ(x, ξ′)dξ′

∣∣∣∣
≤ c2

∫ ξ

−1
(ξ′ + 1)

1
q dξ′

(∫ 1

−1

∣∣ψ(x, ξ′)
∣∣p dξ′) 1

p

≤ c2 1
1
q + 1

(ξ + 1)
1
q

+1
(∫ 1

−1

∣∣ψ(x, ξ′)
∣∣p dξ′) 1

p

we proceed by induction to obtain

|Knψ(x, ξ)| ≤ cn 1

(1
q + 1)(1

q + 2) . . . (1
q + n)

(ξ + 1)
1
q

+n
(∫ 1

−1

∣∣ψ(x, ξ′)
∣∣p dξ′) 1

p

then, by Fubini’s theorem we deduce

∫ a

−a

∫ 1

−1

∣∣∣∣∫ ξ

−1
κ(x, ξ, ξ′)ψ(x, ξ′)dξ′

∣∣∣∣p dξ′dx ≤ 2cn
1

n!
(ξ + 1)

1
q

+n ‖ψ‖pXp

this shows the result.

Theorem 25. Let p ≥ 1 and suppose that the collision operator satisfies (H1)
on Xp, then

σi(AH) = σi(TH), i = lf, uf, sf, ef, ew, eb.

Furthermore, if the boundary operator H is quasi-nilpotent operator then

σi(AH) = σi(T0) = {λ ∈ C : Reλ ≤ −λ∗}, i = lf, uf, sf, ef, ew, eb.

Proof. Let p ≥ 1. by virtue of Lemma 1 the operator K is quasi-nilpotent.
Then (see Table 2., (P6) page 10)

σi(AH) = σi(TH +K) = σi(TH), i = lf, uf, sf, ef, ew, eb.

Furthermore, if the boundary operator H is quasi-nilpotent, the desired result
follows from the relation (16) and Theorem 24.

Remark 2. Since the differential operator TH not commute with the collusion
operator K, the Theorem 25 is not valid for σi when we need the commutation.
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paranormaux et spectraux. Glasgow Math. J. 29, 159-175, 1987.
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