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On boundedness of sublinear operators in weighted
Morrey spaces
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Abstract. In this paper we provide conditions on functions ω1 and ω2 which ensures
the boundedness of sublinear operators from one weighted Morrey space Mp,w1

(v) to
another Mp,w2

(v), where weight function v belongs to Muckenhoupt classes Ap.
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1. Introduction

The well-known Morrey spaces Mp,λ introduced by C. Morrey in 1938 [12],
in relation to the study of partial differential equations, were widely investigated
during last decades, including the study of classical operators of Harmonic Analy-
sis - maximal, singular and potential operators - in generalizations of these spaces
(”so-called” Morrey-type spaces). It is well known that many classical operators
in Harmonic Analysis are bounded on the weighted space Lp,v, 1 < p <∞, pro-
vided a weight v satisfies the Ap condition. Meanwhile the boundedness of these
operators on weighted Morrey spaces was not studied good enough. We can refer
to few works in this direction (see [7], [10], [11], for instance).

For this purpose we first recall the definition of weighted Morrey spaceMp,ω(v).

Definition 1 (see [10], for instance). (Weighted Morrey spaces) Let 1 ≤ p < ∞
and ω(x, r) be a positive continuous function on Rn × (0,∞). Let v be a weight
function on Rn. We denote by Mp,ω(v) =Mp,ω(Rn, v) a weighted Morrey space,
the space of all functions f ∈ Lloc

p,v(Rn) with finite quasinorm

‖f‖Mp,ω(v) = sup
x∈Rn, r>0

ω(x, r)
− 1
p ‖f‖Lp,v(B(x,r)),

where B(x, r) denotes the open ball centered at x of radius r.
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In case v ≡ 1, Mp,ω(v) is the generalized Morrey space Mp,ω, which are
introduced by Nakai in [13]. Moreover, if ω(x, r) ≡ 1, then Mp,ω(v) = Lp; if
ω(x, r) = rλ, 0 < λ < n, then Mp,ω(v) is just the standart Morrey space Mp,λ;
and if ω(x, r) is independent of x, then Mp,ω(v) is the generalized Morrey space
introduced by Mizuhara in [9].

Suppose that T represents a linear or a sublinear operator, which satisfies
that for any f ∈ L1(Rn) with compact support and x 6∈ supp f :

|Tf(x)| ≤ c0
∫
Rn

|f(y)|
|x− y|n

dy, (1)

where c0 is independent of f and x.
We point out that the condition (1) was first introduced by Soria and Weiss in

[14]. The condition (1) are satisfied by many interesting operators in Harmonic
Analysis, such as the Calderón-Zygmund singular integral operators, Carleson’s
maximal operators, Hardy-Littlewood maximal operators, C. Fefferman’s singular
multipliers, R. Fefferman’s singular integrals, Ricci-Stein’s oscillatory singular
integrals, the Bochner-Riesz means and so on (see also [4], [8], [14]-[17] for details).

In the present paper we study the boundedness of sublinear operators on
weighted Morrey spaces Mp,w(v). Method of investigation is based on obtaining
weighted Lp-estimates over balls for these operators and applying the bounded-
ness of appropriate Hardy operator in weighted Lp-spaces on the cone of non-
negative non-increasing functions, which is the extension to the weighted case of
one used for investigation of the boundedness of maximal, singular and potential
operators in Morrey-type spaces (see, for instance, [1], [2], [3]).

2. Definitions and Preliminary Results

Now we make some conventions. Throughout the paper we always denote by
c or C a positive constant, which is independent of main parameters, but it may
vary from line to line. By A . B we mean that A ≤ cB with some positive
constant c independent of appropriate quantities. If A . B and B . A, we write
A ≈ B and say that A and B are equivalent. Constant, with subscript such as
c1, does not change in different occurrences. For a measurable set E, χE denotes
the characteristic function of E. We define the Lebesgue measure of E by |E|.
Given λ > 0 and a cube Q, λQ denotes the cube with the same center as Q and
whose side is λ times that of Q. For a fixed p with p ∈ [1,∞), p′ denotes the
dual exponent of p, namely, p′ = p/(p − 1). For any measurable set E and any
integrable function f on E, we denote by fQ the mean value of f over E, that is,
fQ = (1/|Q|)

∫
E f(x)dx.

A weight is a locally integrable function on Rn, which takes values in (0,∞)
almost everywhere. For a weight w and a measurable set E we define w(E) =
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E w(x)dx. The weighted Lebesgue spaces with respect to the measure w(x)dx

are denoted by Lp,w with 0 < p <∞. Given a weight w, we say that w satisfies
the doubling condition if there exists a constant D > 0 such that for any cube Q
we have w(2Q) ≤ Dw(Q). When w satisfies this condition, we denote w ∈ D, for
short.

Denote

Lloc
p,v(Rn) := {f : Rn → R measurable | f ∈ Lp,v(K) for all compact subsets

K of Rn}.

When v ≡ 1, we will omit v in the notation of Lloc
p,v(Rn) and denote it by Lloc

p (Rn).

Let f ∈ Lloc
1 (Rn). The Hardy-Littlewood maximal operator M is defined by

Mf(x) = sup
t>0

1

|B(x, t)|

∫
B(x,t)

|f(y)|dy.

For the sake of completeness we recall the definition of spaces, we are going
to use, and some properties of them.

We consider weights in the Muckenhoupt classes Ap, 1 ≤ p ≤ ∞, which are
defined as follows. Let w be a weight function and 1 ≤ p < ∞. We say that
w ∈ Ap if there exists a constant cp > 0 such that for every ball B ⊂ Rn:(∫

B
w(x)dx

)(∫
B
w(x)1−p

′
dx

)p−1
≤ cp|B|p,

when 1 < p <∞, and for p = 1:∫
B
w(y)dy ≤ c1|B|w(x), for a.e. x ∈ B,

which can be equivalently written as Mw(x) ≤ c1w(x) for a.e. x ∈ Rn. The
smallest possible cp here is denoted by [w]Ap . Finally, we set A∞ =

⋃
p≥1Ap. It

is well known that the Muckenhoupt classes characterize the boundedness of the
Hardy-Littlewood maximal function M on weighted Lebesgue spaces. Namely,
M is bounded on Lp,w(Rn) if and only if w ∈ Ap, 1 < p <∞.

Lemma 1 ([5]). (1) If w ∈ Ap for some 1 ≤ p <∞, then w ∈ D. More precisely,
for all λ > 1 we have

w(λQ) ≤ λnp[w]Apw(Q).

(2) If w ∈ Ap for some 1 ≤ p <∞, then there exist c > 0 and δ > 0 such that
for any cube Q and a measurable set S ⊂ Q:

w(S)

w(Q)
≤ c

(
|S|
|Q|

)δ
.
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Definition 2 ([10]). Let p ∈ (0,∞) and v be a weight on Rn. We say that the
pair (ω1, ω2) of positive measurable functions defined on Rn × (0,∞) belongs to
the class Zp,n(v), if there is a constant c > 0 such that for any x ∈ Rn and for
any t > 0: (∫ ∞

t

(
ess infr<s<∞ ω1(x, s)

‖v‖L1(B(x,r))

) 1
p dr

r

)p
≤ c ω2(x, t)

‖v‖L1(B(x,t))
. (2)

We need the following statement on the boundedness of the Copson operator

(H∗g)(t) :=

∫ ∞
t

g(r)dr, 0 < t <∞.

Theorem 1. Let v1, v2 and w be a weight functions on (0,∞). The inequality

ess sup
t>0

v1(t)

∫ ∞
t

g(s)w(s)ds ≤ c ess sup
t>0

v2(t)g(t), (3)

holds for all non-negative and non-decreasing g on (0,∞) if and only if

A := ess sup
t>0

v1(t)

∫ ∞
t

w(s)ds

ess sups<x<∞ v2(x)
<∞, (4)

and c ≈ A.

Proof. Sufficiency. Assume that (4) holds. Whenever F, G are non-negative
functions on (0,∞) and F is non-decreasing, then

ess sup
t∈(0,∞)

F (t)G(t) = ess sup
t∈(0,∞)

F (t) ess sup
s∈(t,∞)

G(s), t ∈ (0,∞). (5)

By (5) we have

ess sup
t>0

v1(t)

∫ ∞
t

g(s)w(s)ds

= ess sup
t>0

v1(t)

∫ ∞
t

g(s)w(s)
ess sups<r<∞ v2(r)

ess sups<r<∞ v2(r)
ds

≤ ess sup
t>0

v1(t)

∫ ∞
t

w(s)

ess sups<r<∞ v2(r)
ds · sup

t>0
g(t) ess sup

t<r<∞
v2(r)

= ess sup
t>0

v1(t)

∫ ∞
t

w(s)

ess sups<r<∞ v2(r)
ds · sup

t>0
g(t)v2(t)

≤ A sup
t>0

g(t)v2(t).
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Necessity. Assume that the inequality (3) holds. The function

g(t) = (ess sup
t<r<∞

v2(r))
−1,

is nonnegative and non-decreasing on (0,∞). Thus

sup
t>0

v1(t)

∫ ∞
t

w(s)ds

ess sups<τ<∞ v2(τ)
≤ c sup

t>0
v2(t)(ess sup

t<r<∞
v2(r))

−1 ≤ c. J

3. Local Lp,v-estimates of sublinear operators

In this section we present estimates of Lp,v-norms of sublinear operator over
balls.

Lemma 2. Let 1 < p <∞, v ∈ Ap, T be a sublinear operator satisfying condition
(1) and bounded on Lp,v(Rn). Then for any ball B = B(x0, r) in Rn the following
inequality holds

‖Tf‖Lp,v(B) ≤ c (v(B))
1
p

∫ ∞
r

(v(B(x0, t)))
− 1
p ‖f‖Lp,v(B(x0,t))

dt

t
, (6)

where constant c > 0 does not depend on B and f .

Proof. Let B = B(x0, r) be any ball in Rn. We write f(y) = f1(y)+f2(y) with
f1(y) = f(y)χ2B(y) and f2(y) =

∑∞
k=1 f(y)χ2k+1B\2kB(y). Taking into account

the sublinearity of T , we have

‖Tf‖Lp,v(B) ≤ ‖Tf1‖Lp,v(B) + ‖Tf2‖Lp,v(B). (7)

Since f1 ∈ Lp,v(Rn), the boundedness of T in Lp,v(Rn) implies that

‖Tf1‖Lp,v(B) ≤ ‖Tf1‖Lp,v(Rn) ≤ c‖f1‖Lp,v(Rn) = c‖f‖Lp,v(2B), (8)

where c is independent of B and f . Note that

|B| ≈ ‖v‖
1
p

L1(B)‖v
− 1
p ‖Lp′ (B). (9)

Using (9) and

‖f‖Lp,v(2B) ≈ rn‖f‖Lp,v(2B)

∫ ∞
2r

dt

tn+1
. rn

∫ ∞
2r
‖f‖Lp,v(B(x0,t))

dt

tn+1
,
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we get

‖f‖Lp,v(2B) . ‖v‖
1
p

L1(B)

∫ ∞
2r
‖f‖Lp,v(B(x0,t))‖v

− 1
p ‖Lp′ (B(x0,t)

dt

tn+1

≈ ‖v‖
1
p

L1(B)

∫ ∞
2r
‖f‖Lp,v(B(x0,t))‖v‖

− 1
p

L1(B(x0,t))

dt

t
.

(10)

By (8) and (10) we obtain

‖Tf1‖Lp,v(B) . ‖v‖
1
p

L1(B)

∫ ∞
2r
‖f‖Lp,v(B(x0,t))‖v‖

− 1
p

L1(B(x0,t))

dt

t
. (11)

By inequality (1) we have for x ∈ B

|Tf2(x)| ≤
∞∑
k=1

|Tfk(x)| ≤ c0
∞∑
k=1

∫
2k+1\2kB

|f(y)|
|x− y|n

dy = c0

∫
Rn\(2B)

|f(y)|
|x− y|n

dy.

It’s clear that x ∈ B, y ∈ Rn\(2B) implies 1/2|x0−y| ≤ |x−y| ≤ 3/2|x0−y|.
Therefore we get

‖Tf2‖Lp,v(B) . ‖v‖
1
p

L1(B)

∫
Rn\(2B)

|f(y)|
|x0 − y|n

dy.

By Fubini’s theorem we have∫
Rn\(2B)

|f(y)|
|x0 − y|n

dy ≈
∫
Rn\(2B)

|f(y)|

(∫ ∞
|x0−y|

dt

tn+1

)
dy

≈
∫ ∞
2r

(∫
2r≤|x0−y|≤t

|f(y)|dy

)
dt

tn+1

.
∫ ∞
2r

(∫
B(x0,t)

|f(y)|dy

)
dt

tn+1
.

Applying Hölder’s inequality, in view of (9), we get∫
Rn\(2B)

|f(y)|
|x0 − y|n

dy .
∫ ∞
2r
‖f‖Lp,v(B(x0,t))‖v

− 1
p ‖Lp′ (B(x0,t)

dt

tn+1

≈
∫ ∞
2r
‖f‖Lp,v(B(x0,t))‖v‖

− 1
p

L1(B(x0,t))

dt

t
.

Thus,

‖Tf2‖Lp,v(B) . ‖v‖
1
p

L1(B)

∫ ∞
2r
‖f‖Lp,v(B(x0,t))‖v‖

− 1
p

L1(B(x0,t))

dt

t
. (12)

Finally, by (7), (11) and (12), we arrive at (6).J

Remark 1. Note that Lemma 2 is new even for v = 1.
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4. Boundedness of sublinear operators in weighted Morrey
spaces

The boundedness of sublinear operators on generalized Morrey spaces Mp,ω

was established in [4].

Theorem 2 ([4], Theorem 1). Assume that there is a constant C > 0 such that
for any x ∈ Rn and any r > 0:

r ≤ t ≤ 2r ⇒ C−1 ≤ ω(x, t)/ω(x, r) ≤ C, (13)∫ ∞
r

ω(x, t)

tn+1
dt ≤ Cω(x, r)

rn
. (14)

Let p ∈ (1,∞). If a sublinear operator T , satisfying (1), is bounded on Lp(Rn),
then T is also bounded on Mp,ω.

Note that in [4] the statement of the Theorem 2 was proved for more general
sublinear operators, namely, for sublinear operators with rough kernel.

Now we prove the main result of the present paper. In the following theorem
we present sufficient conditions on functions ω1 and ω2 which ensures the bound-
edness of sublinear operators fromMp,w1(v) toMp,w2(v), where weight function
v belongs to Muckenhoupt classes Ap. The conditions for the boundedness of
sublinear operators are given in terms of Zygmund-type integral inequalities on
(ω1, ω2), which do not assume any assumption on monotonicity of ω1, ω2 in r.

Theorem 3. Let 1 < p < ∞, v ∈ Ap, (ω1, ω2) ∈ Zp,n(v), T be a sublinear
operator satisfying condition (1) and bounded on Lp,v(Rn). Then operator T is
bounded from Mp,ω1(v) to Mp,ω2(v) and

‖Tf‖Mp,ω2 (v)
≤ c‖f‖Mp,ω1 (v)

, (15)

constant c > 0 does not depend on f .

Proof. By Lemma 2 and Theorem 1 we have

‖Tf‖Mp,ω2 (v)
. sup

x∈Rn, r>0
ω2(x, r)

− 1
p ‖v‖

1
p

L1(B(x,r))

∫ ∞
r
‖f‖Lp,v(B(x,t))‖v‖

− 1
p

L1(B(x,t))

dt

t

. sup
x∈Rn, r>0

ω1(x, r)
− 1
p ‖f‖Lp,v(B(x,r)) = ‖f‖Mp,ω1 (v)

. J

For further argumentation we need the following lemma.



On boundedness of sublinear operators in weighted Morrey spaces 73

Lemma 3 (see [13], for instance). Suppose ϕ : R+ → R+. If there is a constant
c > 0 such that for any t > 0:∫ ∞

t
ϕ(r)

dr

r
≤ cϕ(t),

then there are constants ε > 0 and c > 0 such that for any t > 0:∫ ∞
t

rεϕ(r)
dr

r
≤ c tεϕ(t). (16)

Remark 2. Note that if the condition (14) holds, then (ω, ω) ∈ Zp,n(v).

Indeed, assume that the condition (14) holds. By Lemma 3, there are con-
stants ε > 0 and C > 0 such that for any x ∈ Rn and t > 0∫ ∞

t
rε
ω(x, r)

rn
dr

r
≤ C tεω(x, t)

tn
. (17)

Applying Hölder’s inequality, we get(∫ ∞
t

(
ess infr<s<∞ ω(x, s)

rn

) 1
p dr

r

)p
≤

(∫ ∞
t

(
ω(x, r)

rn

) 1
p dr

r

)p
=

=

(∫ ∞
t

r
− ε
p r

ε
p

(
ω(x, r)

rn

) 1
p dr

r

)p
=

=

(∫ ∞
t

r
−ε p

′
p
dr

r

) p
p′
∫ ∞
t

rε
ω(x, r)

rn
dr

r
≈

≈ t−ε
∫ ∞
t

rε
ω(x, r)

rn
dr

r
. (18)

In view of inequalities (18) and (17), we obtain that (ω, ω) ∈ Zp,n(v).
In the recent work by Komori and Shirai the boundedness of the Hardy-

Littlewood maximal function and a Calderón-Zygmund singular integral operator
on weighted Morrey spaces was proved.

Theorem 4. [7, Theorem 3.2 and Theorem 3.3] If 1 < p < ∞, 0 < κ < 1, and
w ∈ Ap, then the maximal operator M and a Calderón-Zygmund singular integral
operator T are bounded on Lp,κ, where weighted Morrey space Lp,κ is defined by

Lp,κ :=

{
f ∈ Llocp,w : ‖f‖Lp,κ(w) := sup

Q

(
1

w(Q)κ

∫
Q
|f(x)|pw(x)dx

) 1
p

<∞

}
,

and the supremum is taken over all cubes Q in Rn.
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Remark 3. Theorem 3 contains Theorem 4 as a special case. To show this let
1 < p <∞, 0 < κ < 1, v ∈ Ap and let ω1(x, t) = ω2(x, t) = v(B(x, t))κ.

By Lemma 1 there exists c > 0 such that for all x ∈ Rn and r > t:

v(B(x, r)) ≥ c
(r
t

)nδ
v(B(x, t)),

thus (∫ ∞
t

(
infr<s<∞ ω1(x, s)

v(B(x, r))

) 1
p dr

r

)p
=

(∫ ∞
t

(v(B(x, r)))
κ−1
p
dr

r

)p
.

(∫ ∞
t

((r
t

)nδ
v(B(x, t))

)κ−1
p dr

r

)p

≈ v(B(x, t))κ−1
(∫ ∞

t

(r
t

)nδ κ−1
p dr

r

)p
≈ v(B(x, t))κ−1 ≈ (v(B(x, t)))−1ω2(x, t),

that is (ω1, ω2) ∈ Zp,n(v).

Remark 4. Let us consider weights of the form v(x) = |x|α, −n < α < n(p−1).
We divide all balls B(x0, R) in Rn into two categories: balls of type I that satisfy
|x0| ≥ 3R and type II that satisfy |x0| < 3R (see, [6, p. 285], for instance).

For balls of type I we observe that

νnR
n

{
(|x0| −R)α when α ≥ 0,

(|x0|+R)α when α < 0,
≤

∫
B(x0,R)

|x|αdx ≤ νnRn
{

(|x0|+R)α when α ≥ 0,

(|x0| −R)α when α < 0.

If |x0| ≥ 3R, we have |x0| + R ≤ 4(|x0| − R) and |x0| − R ≥ 1/4(|x0| + R),
from which by previous inequalities we get∫

B(x0,R)

|x|αdx ≈ Rn

{
(|x0|+R)α when α ≥ 0,

(|x0| −R)α when α < 0.
(19)

For balls of type II we have∫
B(x0,R)

|x|αdx ≈ Rn+α. (20)
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The following theorem follows from Theorem 3.

Theorem 5. Let 1 < p <∞, 0 < λ < n, λ− n < α < n(p− 1), T be a sublinear
operator, satisfying condition (1) and bounded on Lp,v(Rn). Then operator T is
bounded on Mp,λ(| · |α) and

‖Tf‖Mp,λ(|·|α) ≤ c‖f‖Mp,λ(|·|α), (21)

with constant c > 0 independent of f .

Proof. Let us check that (ω1, ω2) ∈ Zp,n(v), where ω1(x, t) = ω2(x, t) = tλ,
0 < λ < n and v(x) = |x|α, λ − n < α < n(p − 1). Then the statement follows
from Theorem 3.

Consider positive and negative values of α separately.
a) Let 0 < α < n(p− 1). If |x| < 3t, then, by inequalities (20), we get for the

left hand side of (2)(∫ ∞
t

(
infr<s<∞ ω1(x, s)

‖v‖L1(B(x,r))

) 1
p dr

r

)p
≈
(∫ ∞

t
r
λ−n−α

p
dr

r

)p
.

We have ∫ ∞
t

r
λ−n−α

p
dr

r
≈ t

λ−n−α
p ,

since λ− n− α < 0. Therefore(∫ ∞
t

(
infr<s<∞ ω1(x, s)

‖v‖L1(B(x,r))

) 1
p dr

r

)p
. tλ−n−α. (22)

On the other hand, for the right hand side of the inequality (2), we have

ω2(x, t)

‖v‖L1(B(x,t))
≈ tλ−n−α. (23)

We have used inequalities (20), since |x| < 3t.
Inequalities (22) and (23) imply that the inequality (2) holds, when |x| < 3t.
If |x| ≥ 3t, then, by inequalities (19) and (20), we get for the left hand side

of (2) (∫ ∞
t

(
infr<s<∞ ω1(x, s)

‖v‖L1(B(x,r))

) 1
p dr

r

)p
≈

(∫ |x|
3

t

(
rλ−n

(|x|+ r)α

) 1
p dr

r

)p

+

(∫ ∞
|x|
3

r
λ−n−α

p
dr

r

)p
.
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Taking into account that (|x| + r)−1 ≈ |x|−1, when t < r < |x|
3 , for both

integrals on the right hand side of previous relation, we obtain(∫ |x|
3

t

(
rλ−n

(|x|+ r)α

) 1
p dr

r

)p
≈ |x|−α

(∫ |x|
3

t
r
λ−n
p
dr

r

)p
.

|x|−α
(∫ ∞

t
r
λ−n
p
dr

r

)p
≈ |x|−αtλ−n

and (∫ ∞
|x|
3

r
λ−n−α

p
dr

r

)p
. |x|λ−n−α. (24)

Thus (∫ ∞
t

(
infr<s<∞ ω1(x, s)

‖v‖L1(B(x,r))

) 1
p dr

r

)p
.
tλ−n + |x|λ−n

|x|α
. (25)

On the other hand, by (19), for the right hand side of the inequality (2), we
have

ω2(x, t)

‖v‖L1(B(x,t))
≈

tλ−n

(|x|+ t)α
, (26)

since |x| ≥ 3t.

Obviously

tλ−n + |x|λ−n

|x|α
.

tλ−n

(|x|+ t)α
, when |x| ≥ 3t. (27)

In view of inequalities (25), (26) and (27), the inequality (2) holds, when |x| ≥ 3t.
Thus, (ω1, ω2) ∈ Zp,n(v).

b) Let λ − n < α < 0. If |x| < 3t, then the inequality (2) holds, since, by
(20), ‖v‖L1(B(x,t)) ≈ tn+α (see item (a)).

If |x| ≥ 3t, then, by inequalities (19) and (20), we get for the left hand side
of (2) (∫ ∞

t

(
infr<s<∞ ω1(x, s)

‖v‖L1(B(x,r))

) 1
p dr

r

)p
≈

(∫ |x|
3

t

(
rλ−n

(|x| − r)α

) 1
p dr

r

)p
+

+

(∫ ∞
|x|
3

r
λ−n−α

p
dr

r

)p
.
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Taking into account that 2/3|x| ≤ (|x| − r) ≤ |x|, when t < r < |x|
3 , for the first

integral on the right hand side of previous relation, we obtain(∫ |x|
3

t

(
rλ−n

(|x| − r)α

) 1
p dr

r

)p
. |x|−α

(∫ |x|
3

t
r
λ−n
p
dr

r

)p
.

|x|−α
(∫ ∞

t
r
λ−n
p
dr

r

)p
≈ |x|−αtλ−n.

In view of (24) we arrive at (25).

On the other hand, by (19), for the right hand side of the inequality (2), we
have

ω2(x, t)

‖v‖L1(B(x,t))
≈

tλ−n

(|x| − t)α
, (28)

since |x| ≥ 3t.

Obviously

tλ−n + |x|λ−n

|x|α
.

tλ−n

(|x| − t)α
, when |x| ≥ 3t. (29)

In view of inequalities (25), (28) and (29) the inequality (2) holds, when |x| ≥ 3t.
Thus, (ω1, ω2) ∈ Zp,n(v).J
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