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On a Class of Nonlinear Elliptic Systems Involving
(p,q)-Laplacian

S.H. Rasouli

Abstract. In this paper we study the existence of positive solutions for the system −∆pu = λf(u, v), x ∈ Ω,
−∆qv = λg(u, v), x ∈ Ω,
u = 0 = v, x ∈ ∂Ω,

where ∆p is the so-called p-Laplacian operator i.e. ∆pz = div(|∇z|p−2∇z), p and q are
real numbers satisfying 1 < p, q < N, λ is a real positive parameter, Ω is a bounded
domain in RN (N ≥ 1) with smooth boundary ∂Ω, and f, g are C1 functions satisfying
lim
s→∞

f(s, t) = ∞ = lim
t→∞

g(s, t), where each limit is uniform with respect to the other

variable, lim
|(s,t)|→∞

f(s,t)
sp−1 = σ, and lim

|(s,t)|→∞
g(s,t)
tq−1 = δ. In particular we do not assume any

sign conditions on f(0, 0) or g(0, 0). For λ large we prove the existence of a large positive
solution. Our approach is based on the method of sub-super.
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1. Introduction

The aim of this article is to study the existence of positive solutions for
some nonlinear elliptic systems of the form

−∆pu = λf(u, v), x ∈ Ω,
−∆qv = λg(u, v), x ∈ Ω,
u = 0 = v, x ∈ ∂Ω,

(1)

here ∆p is the so-called p-Laplacian operator i.e. ∆pz = div (|∇z|p−2∇z), p
and q are real numbers satisfying 1 < p, q < N, λ is a real positive parameter,
Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω, and f, g :
[0,∞)× [0,∞)→ R are C1 functions satisfying the following assumptions:
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(A1) lim
s→∞

f(s, t) = ∞ = lim
t→∞

g(s, t), where each limit is uniform with respect

to the other variable;

(A2) lim
|(s,t)|→∞

f(s,t)
sp−1 = σ, and lim

|(s,t)|→∞
g(s,t)
tq−1 = δ;

(A3) s 7→ f(s, t) and s 7→ g(s, t) are nondecreasing for every t > 0;

(A4) t 7→ f(s, t) and t 7→ g(s, t) are nondecreasing for every s > 0.

Let ζ1(x), ζ2(x) be the positive solutions, respectively, of the problems

{
−∆p ζ1 = 1, x ∈ Ω,
ζ1 = 0, x ∈ ∂Ω,

and {
−∆q ζ2 = 1, x ∈ Ω,
ζ2 = 0, x ∈ ∂Ω,

where Ω is as before. Let l1 = ||ζ1||∞, l2 = ||ζ2||∞, and we assume that

σ <
1

lp−1
1

, δ <
1

lq−1
2

, (2)

where σ and δ is in (A2).

The problem (1) arises in the theory of quasiregular and quasiconformal map-
pings or in the study of non-Newtonian fluids [2]. In the later case the quantity p
is a characteristic of the medium. Media with p > 2 are called dilatant fluid and
those with p < 2 are called pseudoplastics.

The solvability of system (1) has been studied by various methods, fibering
[4], bifurcation [9], via the mountain pass theorem [3]. See [1, 5] where the au-
thors discussed the system (1) when p = q = 2, f(u, v) = f̃(u), g(u, v) = g̃(u),
f̃ , g̃ are increasing and f̃ , g̃ ≥ 0. In [11], the authors extended the study of [5],
to the case when no sign conditions on f(0) or g(0) were required and in [12]
they extend this study to the case when p = q > 1. Here we focus on further
extending the study in [12] for the quasilinear elliptic systems with much stronger
coupling. Due to this strong coupling conditions, the extensions are challenging
and nontrivial. Our approach is based on the method of sub-super solutions, see
[8]. We refer to [6, 7, 10, 13] for additional results on elliptic problems.
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2. Existence results

To prove our existence results we use the method of sub-super solutions.
To do so, we now define sub and super solutions of (1). Let W 1,s

0 = W 1,s
0 (Ω), s > 1,

denote the usual Sobolev space.

Definition 1. A pair of nonnegative functions (ψ1, ψ2), (z1, z2) in W 1,p
0 ×W 1,q

0

are called a weak subsolution and supersolution of (1) if they satisfy ψi(x) ≤ zi(x)
in Ω for i = 1, 2, and∫

Ω
|∇ψ1|p−2∇ψ1∇w1dx ≤ λ

∫
Ω
f(ψ1, ψ2)w1dx, (3)∫

Ω
|∇ψ2|q−2∇ψ2∇w2dx ≤ λ

∫
Ω
g(ψ1, ψ1)w2dx, (4)∫

Ω
|∇z1|p−2∇z1∇w1dx ≥ λ

∫
Ω
f(z1, z2)w1dx, (5)

and ∫
Ω
|∇z2|q−2∇z2∇w2dx ≥ λ

∫
Ω
g(z1, z2)w2dx, (6)

for all w1(x) ∈W 1,p
0 , w2(x) ∈W 1,q

0 , with w1, w2,≥ 0.

We shall obtain the existence of positive solution to system (1) by construct-
ing a positive subsolution (ψ1, ψ2) and supersolution (z1, z2).

Our main result is formulate in the following theorem.

Theorem 1. Assume that hypotheses (A1)−(A4) and (2) hold. Then there exists
a positive number λ0 such that (1) has a large positive solution (u, v) for λ > λ0.

Proof. Let λ1 and λ2 be the first eigenvalue of the problems, respectively,

−∆pφ1 = λ1φ
p−1
1 , x ∈ Ω, φ1 = 0, x ∈ ∂Ω,

−∆qφ2 = λ2φ
q−1
2 , x ∈ Ω, φ2 = 0, x ∈ ∂Ω,

where φ1 and φ2 denote the corresponding positive eigenfunctions, respectively,
satisfying ||φi||∞ = 1 for i = 1, 2, . By (A1) we can take a1, a1 > 0 such that

f(s, t) > −a1, g(s, t) > −a2,
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for all s, t ≥ 0. Let b1, b2 > 0 be such that

λ1φ
p
1 − |∇φ1|p ≤ −b1, λ2φ

q
2 − |∇φ2|q ≤ −b2, x ∈ Ω̄η,

where Ω̄η = {x ∈ Ω | dist (x, ∂Ω) ≤ η}. (This is possible since |∇φi|r 6= 0 on ∂Ω
while φi = 0 on ∂Ω for r = p, q and i = 1, 2). We shall verify that

(ψ1, ψ2) = ((
λ a1

b1
)

1
p−1 (

p− 1

p
)φ

p
p−1

1 , (
λ a2

b2
)

1
q−1 (

q − 1

q
)φ

q
q−1

2 ),

is a subsolution of (1) for λ large. Let the test function w1(x) ∈ W 1,p
0 , with

w1 ≥ 0. Then it follows from (3) that

∫
Ω
|∇ψ1|p−2∇ψ1.∇w1 =

λ a1

b1

∫
Ω
φ1|∇φ1|p−2∇φ1∇w1dxdx

=
λ a1

b1
{
∫

Ω
|∇φ1|p−2∇φ1∇(φ1w1)dx−

∫
Ω
|∇φ1|pw1dx}

=
λ a1

b1

∫
Ω

(λ1φ
p
1 − |∇φ1|p)w1dx.

Since on Ω̄η we have λ1φ
p
1 − |∇φ1|p ≤ −b1, which implies that

a1

b1
(λ1φ

p
1 − |∇φ1|p) ≤ f(ψ1, ψ2).

It is well known that ∂φi
∂n < 0 on ∂Ω where n is the unit outward normal for

i = 1, 2. Hence there exists β > 0 such that φ1 ≥ β > 0 in Ω0 = Ω \ Ω̄η.
Therefore, from (A1) for λ large, we have

a1

b1
(λ1φ

p
1 − |∇φ1|p) ≤

a1

b1
λ1 ≤ f(ψ1, ψ2).

Hence ∫
Ω
|∇ψ1|p−2∇ψ1∇w1dx ≤ λ

∫
Ω
f(ψ1, ψ2)w1dx.

Similarly, we have

∫
Ω
|∇ψ2|q−2∇ψ2.∇w2dx ≤ λ

∫
Ω
g(ψ1, ψ1)w2dx,

for all w2(x) ∈W 1,q
0 , with w2 ≥ 0. Thus, (ψ,ψ) is a subsolution of (1).

Next, we construct a supersolution (z1, z2) of (1). We denote
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(z1, z2) = (λ
1

p−1 C1 ζ1, λ
1

q−1 C2 ζ2),

where ζ1, ζ2 are as before, and C1, C2 > 0 are large enough such that

λ f(λ
1

p−1 C1 l1, λ
1

q−1 C2 l2) ≤ (C1 λ
1/p−1)p−1, (7)

and

λ g(λ
1

p−1 C1 l1, λ
1

q−1 C2 l2) ≤ (C2 λ
1/q−1)q−1. (8)

Here (7) and (8) are possible by (A2), and (2). We shall verify that (z1, z2)
is a supersolution of (1). To this end, let w1(x) ∈ W 1,p

0 , w2(x) ∈ W 1,q
0 , with

w1, w2,≥ 0. Then we obtain from (7), (8), (A3) and (A4), that∫
Ω
|∇z1|p−2∇z1∇w1dx = λCp−1

1

∫
Ω
|∇ζ1|p−2∇ζ1∇w1dx

= λCp−1
1

∫
Ω
w1dx

≥ λ

∫
Ω
f(λ

1
p−1 C1 l1, λ

1
q−1 C2 l2)w1dx

≥ λ

∫
Ω
f(λ

1
p−1 C1 ζ1, λ

1
q−1 C2 ζ2)w1dx

= λ

∫
Ω
f(z1, z2)w1dx.

Similarly we have

∫
Ω
|∇z2|q−2∇z2∇w2dx ≥ λ

∫
Ω
g(z1, z2)w2dx.

Thus, (z1, z2) is a supersolution of (1) with zi ≥ ψi in Ω for large C1, C2, i = 1, 2.
Thus, by the comparison principle, there exists a solution (u, v, ) of (1) with
ψ1 ≤ u ≤ z1, ψ2 ≤ v ≤ z2. This completes the proof of Theorem 1.J
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