On Hardy type inequality in variable exponent Lebesgue space $L^{p(.)}(0, l)$

F. I. Mamedov

Abstract

We study a variable exponent Hardy type inequality $$
\left\|x^{-1} H f\right\|_{L^{p(.)}(0, l)} \leq C\|f\|_{L^{p(.)}(0, l)} ; f \geq 0
$$ in the norms of variable exponent Lebesgue spaces $L^{p(.)}(0, l)$. In terms of regularity conditions for $p:(0, l) \rightarrow(1, \infty)$, we derive necessary and sufficient conditions for this inequality to hold for all $f \in L^{p(.)}(0, l)$. Key Words and Phrases: Hardy operator, Hardy type inequality, variable exponent, weighted inequality 2010 Mathematics Subject Classifications: 42A05; 42B25; 26D10; 35A23

1. Introduction

In this paper, we study a variable exponent Hardy type inequality

$$
\begin{equation*}
\left\|x^{-1} H f\right\|_{L^{p(.)}(0, l)} \leq C\|f\|_{L^{p(.)}(0, l)} ; f \geq 0 \tag{1}
\end{equation*}
$$

where $\operatorname{Hf}(x)=\int_{0}^{x} f(t) d t, l>0$, the constant $C>0$ depends on l and the function p. This topic was a subject of recent works [2], [4], [5], [8], [9], [10], [11], [12], [13], [14], [15]. According to those works (see, e.g. [4], [9], [10], [13]), the condition

$$
\begin{equation*}
A:=\limsup _{x \rightarrow 0}|p(x)-p(0)| \ln \frac{1}{x}<\infty \tag{2}
\end{equation*}
$$

is sufficient for the inequality (1) to hold if the $p:(0 ; l) \rightarrow[1 ; \infty)$ is a measurable function on $(0, l)$ and is separate from zero and infinity. In Theorem 1, we prove some extension of this result, where the condition

$$
\begin{equation*}
B:=\limsup _{x \rightarrow 0}\left|p(x)-p\left(\frac{x}{2}\right)\right| \ln \frac{1}{x}<\infty \tag{3}
\end{equation*}
$$

is assumed for the exponent function.
In [9], an example of exponent function p was constructed such that the inequality (1) and the condition (2) are violated for that simultaneously. Though, that example indicates essentiality of condition (2) for the exponent p, it does not proves, in general, its necessity. In this paper, we prove that the condition (3) is necessary if the function p increases near the origin (see, Theorem 2).

It is not difficult to show that no condition of logariphmic type is needed for the exponent when the exponent p is non increasing near the origin.

From the trivial inequality

$$
\left|p(x)-p\left(\frac{x}{2}\right)\right| \ln \frac{1}{x} \leq|p(x)-p(0)| \ln \frac{1}{x}+\left|p\left(\frac{x}{2}\right)-p(0)\right| \ln \frac{1}{x}
$$

it follows that the condition (3) is weaker (2). For example, the function

$$
p(x)=p(0)+\frac{C_{1}}{\sqrt{\ln \frac{l}{2 x}}}
$$

satisfies to condition (3) but does not satisfy to the condition (2).
In our results, we prove sufficiency of condition (3) for sufficiently large values of $p(0)$. In other words, we assert that the condition (2) is necessary and sufficient if the value $p(0)$ is sufficiently large (or equivalently, B is sufficiently small). One can suppose about the case if the condition (2) satisfied but (3) does not. I connection, we claim the following assertion that prevents this case in some sense.
Proposition 1. Let $A<\infty$ and the limit $b:=\lim _{x \rightarrow 0}\left|p(x)-p\left(\frac{x}{2}\right)\right| \ln \frac{1}{x}$ exists, then $b=0$.

Proof. Let $\left\{x_{n}\right\}$ be a sequence such that $\lim _{n \rightarrow \infty}\left[p\left(\frac{x_{n}}{2}\right)-p(0)\right] \ln \frac{2}{x_{n}}=A$. Tending $n \rightarrow \infty$ in the identity

$$
\begin{aligned}
& {\left[p\left(x_{n}\right)-p(0)\right] \ln \frac{1}{x_{n}}=\left[p\left(x_{n}\right)-p\left(\frac{x_{n}}{2}\right)\right] \ln \frac{1}{x_{n}}} \\
& \quad+\left[p\left(\frac{x_{n}}{2}\right)-p(0)\right]\left(\ln \frac{2}{x_{n}}\right)\left(\frac{\ln \frac{1}{x_{n}}}{\ln \frac{2}{x_{n}}}\right)
\end{aligned}
$$

we infer $A=A+\lim _{n \rightarrow \infty}\left[p\left(x_{n}\right)-p\left(\frac{x_{n}}{2}\right)\right] \ln \frac{1}{x_{n}}$, i.e. $\lim _{n \rightarrow \infty}\left[p\left(x_{n}\right)-p\left(\frac{x_{n}}{2}\right)\right] \ln \frac{1}{x_{n}}=$ 0 . Now using the existence of limit $\lim _{x \rightarrow 0}\left|p(x)-p\left(\frac{x}{2}\right)\right| \ln \frac{1}{x}$, we find $b=0$.

Also in the Theorems 3 and 4 we prove other necessity conditions for case of more general exponents p. In Theorem 5, we obtain some necessary and sufficient condition on boundedness of Hardy's operator. Note, the necessity of condition $p(0)>1$ was considered in [9].

We refer to [3] and references therein for full description of variable exponent Lebesgue spaces and boundedness of classical integral operators there. Also there arise a new extension or refinement for such operators in different function spaces (see e.g. [16], [7]).

2. Notations

As to the basic properties of spaces $L^{p(.)}$, we refer to [6]. Throughout this paper, it is assumed that $p(x)$ is a measurable function in $(0, l)$, taking its values from the interval $[1, \infty)$ with $p^{+}=\sup \{p(x): x \in(0, l)\}<\infty$. The space of functions $L^{p(.)}(0, l)$ is introduced as the class of measurable functions $f(x)$ in $(0, l)$ which have a finite $I_{p(.)}(f)=\int_{0}^{l}|f|^{p(x)} d x$ modular. A norm in $L^{p(.)}(0, l)$ is given in the form

$$
\|f\|=\left\{\lambda>0: I_{p(.)}\left(\frac{f}{\lambda}\right) \leq 1\right\}
$$

For $1<p^{-}, p^{+}<\infty$ the space $L^{p(.)}(0, l)$ is a reflexive Banach space.
Denote by $\Lambda(B)$ a class of measurable functions $f:(0, l) \rightarrow \mathbb{R}$ satisfying the condition (3). For the function $1<p(x)<\infty \quad p \prime(x)$ denotes the conjugate function of $p(x), \frac{1}{p(x)}+\frac{1}{p \prime(x)}=1$. We denote by C, C_{1}, C_{2}, \ldots various positive constants whose values may vary at each appearance. $B(x, r)$ denotes a onedimensional ball with center at x and radius $r>0$, i.e. $B(x, r)=(x-r, x+r)$. We write $u \sim v$ if there exist positive constants C_{1}, C_{2} such that $C_{1} u(x) \leq v(x) \leq$ $C_{1} u(x)$. By χ_{E} we denote the characteristic function of the set E.

3. Main Results

In this paper, following main results are obtained.
Theorem 1. Let the function $p(x)$ be nondecreasing on some little neighborhood of zero and measurable on $(0, l)$ and such that $1<p^{-} \leq p(x) \leq p^{+}<\infty$. Then for the inequality (1) to hold it is sufficient that $p \in \Lambda(B)$ with

$$
\begin{equation*}
B<p(0)(p(0)-1) \tag{4}
\end{equation*}
$$

Theorem 2. Let $1<p^{-} \leq p(x) \leq p^{+}<\infty$ be a nondecreasing function on $(0, l)$. Then for the inequality (1) to hold it is necessary that $p \in \Lambda(B)$ by some $B \neq \infty$.

Also the following two theorems take place on necessity condition for the inequality (1).

Theorem 3. Let $1<p^{-} \leq p(x) \leq p^{+}<\infty$ be a nondecreasing function on $(0, l)$. Then for the inequality (1) to hold it is necessary that

$$
\begin{equation*}
\left\|x^{-1}\right\|_{p(.) ;(a, l)} \leq C a^{-\frac{1}{p^{\prime}(a)}} ; a \in(0, l) \tag{5}
\end{equation*}
$$

Theorem 4. Let $1<p^{-} \leq p(x) \leq p^{+}<\infty$ be a measurable function on $(0, l)$. Then for the inequality (1) to hold it is necessary that

$$
\begin{equation*}
\left\|x^{-1}\right\|_{p(.) ;(a, l)} \leq C_{1} a^{-\frac{1}{\overline{\bar{p}_{a}^{\prime}}}} ; a \in(0, l) \tag{6}
\end{equation*}
$$

where $\frac{1}{\overline{\bar{p}}_{a}^{\prime}}:=\frac{1}{a} \int_{0}^{a} \frac{d y}{p^{\prime}(y)}$.
Theorem 5. Let $1<p^{-} \leq p(x) \leq p^{+}<\infty$ be a nondecreasing function on $(0, l)$. Then for the inequality

$$
\left\|x^{-1} H f\right\|_{L^{\frac{p(.)}{\varepsilon}}(0, l)} \leq C\|f\|_{L^{\frac{p(.)}{\varepsilon}(0, l)}} \quad ; f \geq 0
$$

to hold by some $\varepsilon \in(0,1)$ it is necessary and sufficient that $p \in \Lambda(B)$ by some $B \neq \infty$.

4. Proof of Main Results

Proof of Theorem 1.

Let $f(x) \geq 0$ be a measurable function such that $\|f\|_{L^{p(.)}(0, l)} \leq 1$. Then

$$
\begin{equation*}
I_{p(.)}(f) \leq 1 \tag{7}
\end{equation*}
$$

In order to prove Theorem 1 we have to prove

$$
\left\|x^{-1} H f\right\|_{L^{p(.)}(0, l)} \leq C_{1}
$$

This inequality follows from the inequality

$$
\begin{equation*}
I_{p(.)}\left(x^{-1} H f\right) \leq C_{2} \tag{8}
\end{equation*}
$$

By Minkowski inequality, for $L^{p(.)}$ norms, we get

$$
\begin{gathered}
\left\|x^{-1} H f\right\|_{L^{p(.)}(0, l)} \leq\left\|x^{-1} H f\right\|_{L^{p(.)}(0, \delta)}+\left\|x^{-1} H f\right\|_{L^{p(.)}(\delta, l)} \\
:=i_{1}+i_{2}
\end{gathered}
$$

where δ is such that the condition (4) provides a similar condition in $(0, \delta)$:

$$
B<p(x)(p(x)-1)
$$

The estimate near zero (i_{1}).

By triangle property of $p($.$) norms, we have the inequalities$

$$
\begin{align*}
& i_{1} \leq\left\|x^{-\frac{1}{p(x)}-\frac{1}{p(x)}} \sum_{n=0}^{\infty} \int_{2^{-n-1} x}^{2^{-n} x} f(t) d t\right\|_{L^{p(\cdot)}(0, \delta)} \\
& \leq \sum_{n=0}^{\infty}\left\|x^{-\frac{1}{p(x)}-\frac{1}{p^{p(x)}}} \int_{2^{-n-1} x}^{2^{-n} x} f(t) d t\right\|_{L^{p(\cdot)}(0, \delta)} \tag{9}
\end{align*}
$$

Denote $B_{x, n}=\left(2^{-n-1} x, 2^{-n} x\right]$ and $p_{x, n}=\inf \left\{p(t): t \in B_{x, n}\right\} ; n=1,2, \ldots$ Put $\varphi(t)=t^{\frac{1}{p^{(t)}}}$. Since the condition (4) holds, it is not difficult to show that the function $\varphi(t)$ satisfies ∇_{2} condition: $\exists 0<\eta<1, \varphi(\eta s)<\frac{1}{2} \varphi(s), s \in(0, \delta)$. Therefore [1], there exists an $\alpha=\alpha(\delta) \in(0,1)$ such that

$$
\begin{equation*}
\frac{\varphi(s)}{s^{\alpha}} \leq C \frac{\varphi(r)}{r^{\alpha}}, 0<s<r<\delta . \tag{10}
\end{equation*}
$$

Then by (10) we have

$$
\begin{equation*}
\frac{\varphi(t)}{t^{\alpha}} \leq C \frac{\varphi(x)}{x^{\alpha}} \tag{11}
\end{equation*}
$$

where t is a point in $B_{x, n}, 0<x<\delta$ and the constant C does not depend on n.
By using inequality (11) and $2^{-n-1} x<t<2^{-n} x$ we have the estimates

$$
t^{\frac{1}{p^{\prime}(t)}}=t^{\alpha} t^{\frac{1}{p^{\prime}(t)}-\alpha} \leq C t^{\alpha} x^{\frac{1}{p^{\prime}(x)}-\alpha} \leq C 2^{-n \alpha} x^{\frac{1}{p^{(x)}}} .
$$

Hence

$$
x^{-\frac{1}{p(x)}} \leq C 2^{-n \alpha} t^{-\frac{1}{p(t)}}
$$

Therefore, and due to Holder's inequality, for $x \in B(0, \delta)$, we get

$$
x^{-\frac{1}{p(x)}-\frac{1}{p(x)}} \sum_{n=0}^{\infty} \int_{2^{-n-1} x}^{2^{-n} x} f(t) d t
$$

$$
\begin{gather*}
\leq C 2^{-n \alpha} x^{-\frac{1}{p(x)}} t^{-\frac{1}{p^{p}(t)}} \int_{2^{-n-1} x}^{2^{-n} x} f(t) d t \\
\leq C 2^{-n \alpha} x^{-\frac{1}{p(x)}} t^{-\frac{1}{p(t)}}\left(\int_{2^{-n-1} x}^{2^{-n} x} f(t)^{-\overline{x, n}} d t\right)^{\frac{1}{p_{\bar{x}, n}}}\left(2^{-n} x\right)^{\frac{1}{)^{\frac{1}{x, n}}\right)}} . \tag{12}
\end{gather*}
$$

It follows from the condition $p \in \Lambda(B)$ that

$$
\begin{equation*}
\left(2^{-n} x\right)^{\frac{1}{\left(p_{\bar{x}, n}\right)}} \leq 2^{-\frac{1}{\left(p_{\bar{x}, n}\right)^{\prime}} t^{\frac{1}{\left(p^{\bar{x}, n}\right)}} \leq C_{1} t^{\frac{1}{p^{(t)}}}, ., ~} \tag{13}
\end{equation*}
$$

where C depends only p, δ.
Let us demonstrate the details of (13). There exists a point $y \in B_{x, n}$ such that $p_{x, n}^{-} \sim p(y)$. Obviously, the point y depends on x, n. Hence $t^{\frac{1}{\left(p_{\bar{x}, n}\right.}} \leq t^{\frac{1}{p(y)}}$. By virtue of $2^{-n-1} x<y<2^{-n} x$ we have $\frac{t}{2}<y<2 t$. Therefore, and by virtue of the condition (3), $t^{\frac{1}{p(y)}} \sim t^{\frac{1}{p(t)}}$.

Combining (12) and (13) we get

$$
\begin{equation*}
x^{-\frac{1}{p(x)}-\frac{1}{p(x)}} \sum_{n=0}^{\infty} \int_{2^{-n-1} x}^{2^{-n} x} f(t) d t \leq C 2^{-n \alpha} x^{-\frac{1}{p(x)}}\left(\int_{2^{-n-1} x}^{2^{-n} x} f(t)^{p_{\bar{x}, n}} d t\right)^{\frac{1}{p_{\bar{x}, n}}} \tag{14}
\end{equation*}
$$

where $0<x<\delta, n=1,2, \ldots$ and the constant C_{2} does not depend on n, x.
Simultaneously

$$
\int_{2^{-n-1} x}^{2^{-n} x} f(t)^{p_{\bar{x}, n}} d t \leq \int_{2^{-n-1} x}^{2^{-n} x} f(t)^{p(t)} \chi_{\{f(t) \geq 1\}} d t+\int_{2^{-n-1} x}^{2^{-n} x} d t \leq 1+2^{-n} \delta \leq C_{3} .
$$

By the last inequality and (14), we have

$$
\begin{gathered}
I_{p(.) ;(0, \delta)}\left(x^{-\frac{1}{p(x)}-\frac{1}{p(x)}} \int_{2^{-n-1} x}^{2^{-n} x} f(t) d t\right) \leq C_{4} 2^{-n \alpha p^{-}} \int_{0}^{\delta} x^{-1}\left(\int_{2^{-n-1} x}^{2^{-n} x} f(t)^{p_{\bar{x}, n}} d t\right)^{\frac{p(x)}{p_{\bar{x}, n}}} d x \\
\leq C_{4} C_{3}^{\frac{p^{+}}{p^{-}}-1} 2^{-n \alpha p^{-}} \int_{0}^{\delta} x^{-1}\left(\int_{2^{-n-1} x}^{2^{-n} x}\left(f(t)^{p(t)}+1\right) d t\right) d x
\end{gathered}
$$

which, due to Fubini's theorem, yields

$$
\begin{gather*}
\leq C_{4} C_{3}^{\frac{p^{+}}{p^{-}-1}} 2^{-n \alpha p^{-}} \ln 2 \int_{0}^{2^{-n} \delta}\left(\int_{2^{-n-1} x}^{2^{-n} x} x^{-1} d x\right)\left(f(t)^{p(t)}+1\right) d t \\
=C_{5} 2^{-n \alpha p^{-}} \ln 2 \int_{0}^{2^{-n} \delta}\left(f(t)^{p(t)}+1\right) d t \leq C_{6} 2^{-n \alpha p^{-}} \tag{15}
\end{gather*}
$$

Therefore

$$
\left\|x^{-\frac{1}{p(x)}-\frac{1}{p^{\prime}(x)}} \int_{2^{-n-1} x}^{2^{-n} x} f(t) d t\right\|_{L^{p(.)}(0, \delta)} \leq C 2^{-\frac{n \alpha p^{-}}{p^{+}}}
$$

By (15) and (9), we get

$$
\begin{equation*}
i_{1} \leq C \sum_{n=0}^{\infty} 2^{-\frac{n \alpha p^{-}}{p^{+}}} \leq C_{1} \tag{16}
\end{equation*}
$$

The estimate of \boldsymbol{i}_{2}. We have

$$
\begin{gather*}
i_{2} \leq\left\|x^{-1} H f\right\|_{L^{p(.)}(\delta, l)} \\
\leq\left(\int_{0}^{l} f(t) d t\right)\left\|x^{-1}\right\|_{L^{p(\cdot)}(\delta, l)} \tag{17}
\end{gather*}
$$

from which by virtue of Holder's inequality, for $p(x)$-norms by the condition (7) we obtain

$$
\int_{0}^{l} f(t) d t \leq\|f\|_{L^{p(.)}(0, l)}\|1\|_{L^{p^{\prime}(.)}(0, l)}=C_{1}
$$

From (17) and the last inequality we infer

$$
\begin{equation*}
i_{2} \leq C \tag{18}
\end{equation*}
$$

Now using (18) and (16) from (9) derive the estimate (8).
This completes the proof of Theorem 1

Proof of Theorems 2, 3 and 4.

Let $a \in(0, l)$ be a fixed number. Put $f(x)=a^{-\frac{1}{p(x)}} \chi_{(0, a)}(x)$ in the inequality (1). We have $I_{p(.) ;(0, l)}(f)=1$. Then $\|f\|_{p(.) ;(0, l)} \leq 1$. It follows from the inequality (1) that $I_{p(.) ;(0, l)}\left(\frac{1}{x} H f\right) \leq C$. Therefore

$$
\begin{equation*}
\int_{a}^{1} x^{-p(x)}\left(\int_{0}^{a} a^{-\frac{1}{p(y)}} d y\right)^{p(x)} d x \leq C \tag{19}
\end{equation*}
$$

Using Young's inequality, we have

$$
a^{1-\frac{1}{a}} \int_{0}^{a} \frac{d y}{p(y)} \leq \int_{0}^{a} a^{-\frac{1}{p(y)}} d y
$$

Now, using this inequality from (19) we infer

$$
\begin{equation*}
\int_{a}^{1}\left(\frac{a}{x}\right)^{p(x)} a^{-\frac{p(x)}{a}} \int_{0}^{a} \frac{d y}{p(y)} d x \leq C \tag{20}
\end{equation*}
$$

Denote $\frac{1}{\bar{p}_{a}}=\frac{1}{a} \int_{0}^{a} \frac{d y}{p(y)}$ then $\frac{1}{\overline{\bar{p}_{a}^{\prime}}}=\frac{1}{a} \int_{0}^{a} \frac{d y}{\bar{p}^{\prime}(y)}$. It follows from the inequality (20) that

$$
\begin{equation*}
\int_{a}^{1}\left(\frac{x^{-1}}{a^{-\frac{1}{p_{a}^{a}}}}\right)^{p(x)} d x \leq C \tag{21}
\end{equation*}
$$

According to (21):

$$
\left\|x^{-1}\right\|_{p(.) ;(a, l)} \leq C_{1} a^{-\frac{1}{\bar{p}_{a}^{\prime}}}
$$

or

$$
\begin{equation*}
\left\|x^{-1}\right\|_{p(.) ;(a, l)} \leq C_{1} a^{-\frac{1}{a}} \int_{0}^{a} \frac{d y}{p^{\prime}(y)} \tag{22}
\end{equation*}
$$

This proves Theorem 4.
Since p is monotone, we have $\frac{1}{a} \int_{0}^{a} \frac{d y}{p^{\prime}(y)} \leq \frac{1}{p^{\prime}(a)}$. Then from (22) we find

$$
\begin{equation*}
\left\|x^{-1}\right\|_{p(.) ;(a, l)} \leq C_{1} a^{-\frac{1}{p^{\prime}(a)}} \tag{23}
\end{equation*}
$$

This proves Theorem 3.
We conjecture that the condition (23) is a really necessary condition. But unfortunately, we can not prove its sufficiency.

Because we shall deduce the condition (3) from (23). In this way, we have

$$
\begin{equation*}
\left\|x^{-1}\right\|_{p(.) ;(a, l)} \geq\left\|x^{-1}\right\|_{p(.) ;(2 a, 3 a)} \geq \frac{1}{3 a}\|1\|_{p(.) ;(2 a, 3 a)} . \tag{24}
\end{equation*}
$$

Using increment of the function p, we have

$$
\begin{gathered}
1 \geq \int_{2 a}^{3 a}\left(\frac{1}{\|1\|_{p(.) ;(2 a, 3 a)}}\right)^{p(x)} d x \geq \int_{2 a}^{3 a}\left(\frac{1}{\|1\|_{p(.) ;(2 a, 3 a)}}\right)^{p(2 a)} d x \geq \\
\geq a\left(\frac{1}{\|1\|_{p(.) ;(2 a, 3 a)}}\right)^{p(2 a)} .
\end{gathered}
$$

This means that

$$
\begin{equation*}
\|1\|_{p(.) ;(2 a, 3 a)} \geq a^{\frac{1}{p(2 a)}} . \tag{25}
\end{equation*}
$$

From (25), (24) and (23) we find

$$
\left(\frac{1}{a}\right)^{\frac{1}{p(a)}-\frac{1}{p(2 a)}} \leq C_{1},
$$

or

$$
\left[\frac{1}{p(a)}-\frac{1}{p(2 a)}\right] \ln \frac{1}{a} \leq C_{2} .
$$

This implies the condition (3) by the constant $B=p(0)^{2} C C_{1}$, where C is the constant in the inequality (1), C_{1} does nor depends on the p.

This completes the proof of Theorem 2.

Proof of Theorem 5.

Sufficiency. Put $p_{1}(x)=\frac{p(x)}{\varepsilon}$. The condition $p \in \Lambda(B)$ imply $p_{1} \in \Lambda\left(\frac{B}{\varepsilon}\right)$ and the condition (4) for p_{1} implies $0<\varepsilon<\frac{p(0)^{2}}{B+p(0)}$. Choosing ε such and applying Theorem 1 with the exponent p_{1}, we finish the sufficiency part.

Necessity. Let the inequality (1) holds by some $\varepsilon \in(0,1)$ and the exponent $p_{1}(x)=\frac{p(x)}{\varepsilon}$. Then, using Theorem 2, we find $p_{1} \in \Lambda(B)$, where B_{1} depends on p, ε.

This completes the proof of Theorem 5.

References

[1] N.K. Bari and S.B. Stechkin. Best approximations and differential properties of two conjugate functions (in Russian). Proceedings of Moscow Math. Soc., 5:483-522, 1956.
[2] D. Cruz.-Uribe, SFO and F. I. Mamedov. On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces. Revista Mat.Comp.DOI: 10.1007/s13163-011-0076-5.
[3] L. Diening, P. Harjulehto, P. Hasto, M. Ruzicka,: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Berlin (2011).
[4] L. Diening and S. Samko, Hardy inequality in variable exponent Lebesgue spaces. Fract. Calc. and Appl. Anal., 10(1) (2007), 1-17
[5] D. E. Edmunds, V. Kokilashvili and A. Meskhi, On the boundedness and compactness of the weighted Hardy operators in spaces. Georgian Math. J., 12(1) (2005), 27-44.
[6] X. L. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$. J.Math. Anal. Appl., 263 (2001), 424-446.
[7] M. Gao and X. Gao, A Hilbert integral type inequality wiyh non homogeneous kernels. Azerb J. Math., 1(2) (2011).
[8] P. Harjulehto, P.Hasto and M. Koskinoja, Hardy's inequality in variable exponent Sobolev spaces. Georgian Math. J., 12(3) (2005), 431-442.
[9] A. Harman and, F.I. Mamedov, On boundedness of weighted Hardy operator in $L^{p(.)}$ and regularity condition. Journal Ineq. Appl., vol. 2010(1), Article ID 837951, 14 pages.
[10] Mamedov F.I., Harman A, On a weighted inequality of Hardy type in spaces $L^{p(.)}$. J. Math. Anal. Appl., 353(2) (2009), 521-530 .
[11] F.I. Mamedov and A. Harman, On a Hardy type general weighted inequality in spaces $L^{p(.)}$. Integral Equat.and Oper. Theor., 66(4) (2010), 565-592
[12] F.I. Mamedov and Y.Zeren, On equivalent conditions for the general weighted Hardy type inequality in space $L^{p(.)}$. Z. Anal. Anw., 31(1) (2012), 55-74.
[13] R. Mashiyev, B. Cekic, F. I. Mamedov and S. Ogrash, Hardy's inequality in power-type weighted $L^{p(.)}$ spaces. J. Math. Anal. Appl., 334(1) (2007), 289-298
[14] H. Rafeiro, S. G. Samko, Hardy inequality in variable Lebesgue spaces. Ann. Acad. Sci. Fen.-Math., 34 (1) (2009), 279-289.
[15] S. G. Samko, Hardy inequality in the generalized Lebesgue spaces. Fract. Calc. Appl. Anal. 6 (4) (2003), 355-362.
[16] S. G. Samko and S. M. Umarkhadzhiev, On Iwaniek-Sbordone spaces on sets which may have infinite measures. Azerb. J. Math. 1(1) (2010), 6784.

Farman I. Mamedov
Institute Mathematics and Mechanics of Nat.Acad.Sci., Azerbaijan
E-mail: farman-m@mail.ru
Received 14 October 2011
Accepted 28 December 2011

