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Limit behaviour of sample modes for large number
of independent random variables

Harry Yosh

Abstract. Although the estimators of mode on finite independent random variables
are widely used in various engineering fields, the feature regarding limit behaviour of
sample modes for large number of independent random variables is not known except
some special cases. Here we discuss the methodology for estimating the limit behaviour
of sample modes for independent random variables and induce the generic form of it,
which reveals the relation between the local tendency of probability density function
around the mode and the entire behaviour of sample modes. The actual limit behaviour
of sample modes in some examples are estimated by using that form and their properties
are discussed.
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1. Introduction

In statistics, as the measures of central tendency we often use mean, median
and mode. The central limit theorem is widely used for estimating the limit of
mean and variance of identically distributed random variables. The central limit
theory for mean is extended to describe the nature of specific sum of random vari-
ables in various mathematical frameworks such as martingale [2], convex bodies
[7], and Lacunary trigonometric series [5]. Regarding the behavior of sample
modes, various methods such as the kernel density estimation [9][8], Grenander’s
direct estimator [6], and for Brownian motion [4] are known. Those methods
are mainly to estimate the mode itself for the given finite data, while few limit
behaviours of sample modes are known except that under particularly specified
conditions [1].
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Since sometimes mode gives better measure of central tendency than mean
especially when the distribution is multimodal, it is thought useful in such case
to consider the limit behaviour of sample modes to describe the feature of inde-
pendent random variables.

Prior to discuss the limit behaviour of sample modes for independent ran-
dom variables, we assume that the probability density function of those random
variables is continuous and may be multimodal, however at least it must have
unique global maximum. As discussed later, the shape of the probability density
function around the global maximum gives the entire feature of limit behaviour
of sample modes. We deal with two examples having 1) smooth, and 2) cusp-like
peaks at the global maximum of the probability density functions. In the first
case it is shown that the limit behaviour of sample modes does not follow Gauss’s
normal distribution, but is expressed as

f(x) = a · exp(−bx4) (a, b : constants).

Additionally the treatment for the case in which the sample space is finite is
discussed.

2. Relation of deviation from global maximum and limit
behaviour of sample modes

As mentioned in Introduction, we assume that the random variable X dealt
with here has the continuous probability density f(x) which has unique global
maximum but may be multimodal.

Firstly we take equidistant intervals divided at x0, x1, ..., xT on the sample
space. The probability of random variable lying in the interval which includes
the global maximum xM is

Pr(xi ≤ X < xi+1) =

∫ xi+1

xi

f(x) dx, (1)

where [xi, xi+1) is the interval including xM . Let d the width of interval. Then
from the first mean value theorem we know there exists θ such that∫ xi+1

xi

f(x) dx = f(xM + θ)d, (2)

where xi ≤ xM + θ < xi+1. We denote xM + θ as x̄M . After repeating the trial
n times, the probability Py of the event that y random variables lie in [xi, xi+1)
follows the binomial distribution as

Py = nCy(f(x̄M )d)y(1− f(x̄M )d)n−y. (3)
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According to the central limit theorem, the above binomial distribution converges
to the following normal distribution pi(y) when n → ∞.

Py → pi(y) = N(nf(x̄M )d, nf(x̄M )d(1− f(x̄M )d)), (4)

where i is the index of [xi, xi+1) in which the global maximum xM is included.
On the above normal distribution, both mean and variance are infinite when
n → ∞. Transforming y to n· d· y and renormalizing, we get the following normal
distribution

n· d· pi(n· d· y) = N(f(x̄M ),
f(x̄M )(1− f(x̄M )d)

nd
. (5)

We denote n· d· pi(n· d· y) as Ni(y). We can regard it as the probability density
function for y on the interval [xi, xi+1). It has a finite mean and the variance
converges to zero when n → ∞. Therefore intuitively it is expected that the
probability of the event that the number of random variables lying in the interval
which doesn’t include the mode xM is greater than that of the interval which
includes xM converges to zero when n → ∞.

As the global maximum of f(x) is assumed unique, the following inequality
is satisfied by taking sufficiently small interval d.

Pr(xj ≤ X < xj+1) < Pr(xi ≤ X < xi+1), (6)

where i ̸= j and [xi, xi+1) is the interval including xM . Similar to (5), n· d· pj(n· d· y)
corresponding to the interval [xj , xj+1) is expressed as

n· d· pj(n· d· y) = N(f(x̄j),
f(x̄j)(1− f(x̄j)d)

nd
), (7)

where x̄j (xj ≤ x̄j < xj+1) satisfies the following equation∫ xj+1

xj

f(x) dx = f(x̄j)d. (8)

Setting δ as

δ = f(x̄M )− f(x̄j), (9)

the equation (7) is rewritten as

n· d· pj(n· d· y) = N(f(x̄M )− δ,
(f(x̄M )− δ)(1− (f(x̄M )− δ)d)

nd
). (10)

It should be noted that δ is always positive since f(x̄M ) is the global maximum.
We denote n· d· pj(n· d· y) as Nj(y). When n is finite, both distributions Ni(y)
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and Nj(y) are normal distributions and not zero on (−∞,∞). Therefore in some
cases the number of random variables lying in the interval [xj , xj+1) after n trials
may be greater than that of the interval [xi, xi+1) after n trials. We denote that
probability as Pij . When n → ∞, Pij converges as

Pij →
∫ ∞

−∞
dx Ni(x)

∫ ∞

x
dy Nj(y)

=

∫ ∞

−∞
dx Ni(x){1−

∫ x

−∞
dy Nj(y)}

= 1−
∫ ∞

−∞
dx Ni(x)

∫ x

−∞
dy Nj(y). (11)

Since Ni(x) and
∫ x
−∞ dy Nj(y) converge to the delta function δ(x− x̄M ) and step

function χ[x̄M−δ,∞)(x) respectively when n → ∞, Pij converges to zero as long as
δ is positive finite constant.

Now we consider the δ as changing along with n so as to converge to zero
when n → ∞. Actually δ depends on the width d of interval, therefore firstly we
set d as

d = n−ρ, (12)

where ρ is a constant and 0 < ρ < 1. Namely the width of interval shrinks as the
number of trials increases. Although d is the variable of n, d is constant during
the n-time trials. When n → ∞, d converges to zero and [xj , xj+1) converges to
the point xj . In that case the above probability Pij is regarded as the rate of
probability that X = xj becomes the mode to that of X = xM . We set xj and
new variable s = xj − xM so as to satisfy the following expression for δ.

δ = κ(s)n− 1
2
(1−ρ) + o(n− 1

2
(1−ρ)−ν), (13)

where κ(s) is a continuous function and ν is a positive constant. Then the
following theorem is satisfied.

Theorem 1. When the width of equidistance interval shrinks along with the
number of trials n as described in (12) and δ defined in (9) is expressed as (13),
the limit probability density pM (x) that xM + x is the mode when n → ∞ is
expressed as

pM (x) =
1

C
exp(− κ(x)2

2f(xM )
), (14)

where f(x) is the probability density function, f(xM ) is its global maximum and
C is expressed as

C =

∫ ∞

−∞
dx exp(− κ(x)2

2f(xM )
). (15)
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Proof. When n → ∞, converged Pij (11) is expressed with (5) and (10) as

Pij → 1−
∫ ∞

−∞
dx

1√
2πσi

e
− 1

2
(x−µ

σi
)2
∫ x

−∞
dy

1√
2πσj

e
− 1

2
( y+δ−µ

σj
)2

= 1−
∫ ∞

−∞
dx

1√
2πσi

e
− 1

2
(x−µ−δ

σi
)2
∫ x

−∞
dy

1√
2πσj

e
− 1

2
( y−µ

σj
)2

, (16)

where µ and σi are the mean and standard deviation for Ni(y), σj is the standard
deviation for Nj(y) and actually they are expressed as

µ = f(x̄M ) (17)

σi =

√
f(x̄M )(1− f(x̄M )d)

nd
(18)

σj =

√
(f(x̄M )− δ)(1− (f(x̄M )− δ)d)

nd
. (19)

Although both σi and σj converge to zero when n → ∞, here we deal with them
individually for the sake of convenience on the calculation. When σj → 0, Pij

converges to the following expressions.

Pij → 1−
∫ ∞

−∞
dx

1√
2πσi

e
− 1

2
(x−µ−δ

σi
)2

χ[µ,∞)(x)

= 1−
∫ ∞

µ
dx

1√
2πσi

e
− 1

2
(x−µ−δ

σi
)2

=

∫ µ

−∞
dx

1√
2πσi

e
− 1

2
(x−µ−δ

σi
)2

=

∫ δ

−∞
dx

1√
2πσi

e
− 1

2
( x
σi

)2

=

∫ δ
σi

−∞
dx

1√
2π

e−
1
2
x2
, (20)

δ
σi

is expressed with (13) and (18) as

δ

σi
=

κ(s)n− 1
2
(1−ρ) + o(n− 1

2
(1−ρ)−ν)√

f(x̄M )(1−f(x̄M )d)
nd

=
κ(s)n− 1

2
(1−ρ) + o(n− 1

2
(1−ρ)−ν)√

f(x̄M )(1−f(x̄M )d)
n1−ρ

=
κ(s)n− 1

2
(1−ρ) + o(n− 1

2
(1−ρ)−ν)

n− 1
2
(1−ρ)

√
f(x̄M )(1− f(x̄M )d)
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=
κ(s) + o(n−ν)√

f(x̄M )(1− f(x̄M )d)
. (21)

Since f(x̄M ) → f(xM ) and d = n−ρ → 0 when n → ∞, Pij expressed in (20)
converges to the following expression when σi → 0 (i.e. n → ∞).

Pij →
∫ κ(s)√

f(xM )

−∞
dx

1√
2π

e−
1
2
x2
. (22)

Hence the limit of derivative of Pij is expressed as

dPij

dx
→ 1√

2π
exp(− κ(s)2

2f(xM )
). (23)

As mentioned earlier, the limit of Pij is the rate of probability that f(xj) becomes
the mode to that of f(xM ). Since s = xj−xM , the limit probability density pM (x)
that xM + x becomes the mode is obtained by normalizing (23) as

pM (x) =
exp(− κ(x)2

2f(xM ))∫∞
−∞ dx exp(− κ(x)2

2f(xM ))
. J (24)

3. Example of limit behaviour of sample modes (1)

The above theorem indicates that the limit probability density function for
sample modes pM (x) is determined by f(xM ) and κ(x), i.e. the global maximum
of probability density function f(x) and the local deviation around it. Namely
the entire form of pM (x) is determined by the local feature of f(x) around the
global maximum. We discuss on the following two examples how the local feature
of f(x) determines the form of pM (x) practically. Firstly we consider the case
that the probability density function f(x) has continuous second derivative f ′′(x)
around the global maximum f(xM ). In this case f(x) is expanded around xM as

f(x) = f(xM ) +
1

2
f ′′(xM )(x− xM )2 + o((x− xM )2+ν), (25)

where f ′′(xM ) is negative. Then the following corollary is satisfied.
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Corollary 1. Let X̂ = n
1
4
(1−ρ)(X − xM ). When the probability density function

f(x) has the form expressed as (25) around xM , the limit probability density
pM (x̂) that x̂ is the mode when n → ∞ is expressed as

pM (x̂) =
1

C
exp(−f ′′(xM )2

8f(xM )
x̂4), (26)

where C is expressed as

C =

∫ ∞

−∞
dx exp(−f ′′(xM )2

8f(xM )
x̂4). (27)

Proof. From the premiss of the corollary, f(xM+ x̂) is expanded around x̂ = 0
as

f(xM + x̂) = f(xM ) +
1

2
f ′′(xM ) x̂2n− 1

2
(1−ρ) + o(n− 2+ν

4
(1−ρ))

= f(xM ) +
1

2
f ′′(xM ) x̂2n− 1

2
(1−ρ) + o(n− 1

2
(1−ρ)− ν

4
(1−ρ)), (28)

therefore δ is expressed with s = x̂j as

δ = −1

2
f ′′(xM ) s2n− 1

2
(1−ρ) + o(n− 1

2
(1−ρ)− ν

4
(1−ρ)). (29)

This form coincides with that of δ expressed in (13). Substituting −1
2f

′′(xM ) x̂2

in (14) and (15) for κ(x), we obtain pM (x̂) as

pM (x̂) =
1

C
exp(−f ′′(xM )2

8f(xM )
x̂4), (30)

and C as

C =

∫ ∞

−∞
dx exp(−f ′′(xM )2

8f(xM )
x̂4). (31)

As seen in the figure 1, the limit probability density function of sample modes
induced from the above corollary has blunter peak than that of normal distri-
bution. In return, it has much slighter tails. Also it is noteworthy that the
function does not depend on ρ, viz. as far as ρ satisfies the condition: 0 < ρ < 1,
the probability density function of sample modes converges to a unique function.
This property is useful for estimating the limit probability density of mode on the
trials empirically since we can choose arbitrary ρ within (0, 1) for that purpose.

J
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Figure 1: Limit probability density function of mode (1)

4. Example of limit distribution of sample modes (2)

Next we consider the case that the probability density function f(x) around
xM forms a cusp, viz. f ′(x) is not continuous and has two different values at xM
as

lim
∆x→0

f ′(xM + |∆x|) = −α (32)

lim
∆x→0

f ′(xM − |∆x|) = α, (33)

where α is a positive constant. In this case f(x) is expanded around xM as

f(x) = f(xM )− α(x− xM ) + o((x− xM )1+ν) (x ≥ xM ) (34)

= f(xM ) + α(x− xM ) + o((x− xM )1+ν) (x < xM ). (35)

Then the following corollary is satisfied.

Corollary 2. Let X̂ = n
1
2
(1−ρ)(X − xM ). When the probability density function

f(x) has the form expressed as (34) and (35) around xM , the limit probability
density pM (x̂) that x̂ is the mode when n → ∞ is expressed as

pM (x̂) =
α√

2πf(xM )
exp(− α2

2f(xM )
x̂2). (36)

Proof. From the premiss of the corollary, f(xM+ x̂) is expanded around x̂ = 0
as

f(xM + x̂) = f(xM )− αx̂n− 1
2
(1−ρ) + o(n− 1

2
(1−ρ)− ν

2
(1−ρ)) (x̂ ≥ 0)
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= f(xM ) + αx̂n− 1
2
(1−ρ) + o(n− 1

2
(1−ρ)− ν

2
(1−ρ)) (x̂ < 0), (37)

therefore δ is expressed with s = x̂j as

δ = α|s|n− 1
2
(1−ρ) + o(n− 1

2
(1−ρ)− ν

2
(1−ρ)). (38)

This form coincides with that of δ expressed in (13). Substituting α|x̂| in (14)
and (15) for κ(x), we get pM (x̂) as

pM (x̂) =
α√

2πf(xM )
exp(− α2

2f(xM )
x̂2). (39)

In this case the limit probability density function of sample modes follows the
normal distribution. As well as the previous case, the function is independent
from ρ. J

5. Implementation of equidistance intervals

To estimate the limit probability density function of sample modes based
on the above theorem and corollaries, the sample space must be divided with
equidistance intervals properly.

When the sample space has finite range such as [a, b), the space is simply
divided with T = ⌊n−ρ⌋ equidistance intervals where ⌊ ⌋ is floor function as

[x0(= a), x1), [x1, x2), ..., [xT−1, xT (= b)). (40)

After normalizing the sample space, we set the width of interval d as n−ρ.
When the range of the sample space is infinite, we must cut off the tail(s) of

that range in order to provide a finite range of the sample subspace as seen in the
figure 2. Most of random variables must lie in that finite range made by cutting
off the tail(s). The equidistance intervals mentioned in the earlier case is applied
to that finite range, and normalization is carried out on it. Since the mode is
insensitive to outliers in general,[3] the modes obtained by using the above the-
orems on the sample subspaces in which the tails are cut off properly but with
the different manners coincide each other.

6. Applications to engineering fields

The significant difference between the limit behaviours of sample means and
sample modes for independent random variables is in their forms. Namely the
former has Gaussian curve, while the latter has not only Gaussian curve, but also
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Figure 2: Cut off the tails of distribution

other forms of distribution. Moreover the latter behaviour does not depend on
the variance of sample modes as seen in the form of (14). It implies that when
the convergence of sample means is slow, measuring sample modes along with
the methodology described above is useful for removing background noise on the
signal processing since generally it needs quick filtering the received signals under
a certain frequency band width.

In engineering fields the mode is sometimes more appropriate estimator than
mean for acquired data. For example, when the histogram for the data shows
two peaks and their mean is in the valley between those peaks, measuring mean
is generally meaningless. In this case, making the mode, or higher peak between
them represent the data is more reasonable for engineers, and the theorem and its
corollaries mentioned above provides quantitative methodology to evaluate the
behaviour of those sample modes.

7. Summary

The methodology to obtain the limit behaviour of sample modes on the inde-
pendent random variables which has continuous probability density is discussed.
Firstly the sample space is divided with equidistance intervals and the frequency
on each interval is estimated by using a normal distribution as the limit of bi-
nomial distribution, and the probability of the event that a specified interval
becomes the mode is discussed based on that normal distribution.

Next we discuss the generic relation of the deviation from global maximum of
probability density function with the limit behaviour of sample modes when the
interval converges to zero. This generic relation indicates the form of limit be-
haviour of sample modes is determined by the local feature of probability density
function around its global maximum. We survey two specific limit behaviours of
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sample modes derived from the probability density functions having 1) smooth
and 2) cusp-like peak around the global maximum.

The above methodology provides quantitative evaluations for the behaviour
of sample modes in various engineering fields. Further, since the behaviour of
sample modes is independent from the variance of distribution, applying that
methodology under some conditions shows much faster convergence, which is a
useful feature for filtering signals.

Additionally the method for implementing equidistance intervals on the sam-
ple space is discussed. When the sample space consists of infinite range, that
range must be modified by cutting off the tails properly in order to apply the
results mentioned above. We discuss how to cut off the tails of infinite range of
sample space to obtain the sample subspace having finite range.
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