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Potential Like Operators in the Theory of Boundary Value

Problems in Non-Smooth Domains

Vladimir B. Vasilyev

Abstract. We consider a general elliptic pseudo differential equation in a wedge of codimension
2. Under existence of a special factorization for the operator symbol one can obtain an integral
representation for the solution of the equation. It includes potential like operators. A priori
estimates for the solution are given also.
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1. Introduction

In 90th, the author has introduced the concept of wave factorization of elliptic sym-
bol [6],[9] for pseudo differential equations in model non-smooth domains. The solvability
depends on the index of wave factorization, and looks different for some cases. So, particu-
larly, if the index roughly speaking is negative, then for solvability of original equation one
needs some solvability conditions on right hand side. For this purpose, we write a special
integral representation for the solution, which permits to separate these solvability con-
ditions explicitly. The integral representation includes certain special integral operators,
which can be treated as potential like operators.

2. Equations and Factorization

We consider the equation

(Au+)(x) = f+(x), x ∈ W a
+, (1)

where A is a pseudo differential operator with symbol A(ξ), ξ ∈ Rm , satisfying the
condition

c1 ≤ |A(ξ)(1 + |ξ|)−α| ≤ c2,
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c1,c2 are positive constants, and admitting the wave factorization with respect to the
wedge W a

+ = Ca
+ ×Rm−2, Ca

+ = {x ∈ R2: x = (x1, x2), x2 > a|x1|, a > 0}.
So, we represent every (x1, x2, ..., xm) ∈ W a

+ in the form (x1, x2, x
′′), x′′ = (x3, ..., xm), x′′ ∈

Rm−2, m ≥ 3. We seek for the solution u+ ∈ Hs(W a
+).

By definition, Hs(Rm) is the space of distributions with the norm [2]

||u||2s =

∫

Rm

|ũ(ξ)|2(1 + |ξ|)2sdξ < +∞.

Let’s denote by Hs(W a
+) the space of functions whose supports belong to W a

+, H
s
0(W

a
+)

is the space of distributions which admit continuation lf , lf ∈ Hs(Rm), ||f ||+s = inf ||lf ||s,
where infimum is chosen among all continuations l.

We remind the definition of the wave factorization, because it is a key point for our
forthcoming considerations.

Definition 1. Wave factorization of elliptic symbol A(ξ) with respect to the wedge W a
+ is

defined as
A(ξ) = A6=(ξ)A=(ξ),

where the factors A6=(ξ), A=(ξ) should satisfy the following assumptions for almost all
ξ′′ ∈ Rm−2:

1) A6=(ξ), A=(ξ) are defined on the whole of Rm except may be for the points {ξ ∈
Rm: aξ2 = |ξ1|};

2) A6=(ξ), A=(ξ) admit an analytical continuation into radial tube domains T(
∗
Ca
±) over

the cones
∗
Ca
±, respectively [10],

∗
Ca
+ =

{
ξ ∈ R2 : aξ2 > |ξ2|

}
,

∗
Ca
− = −

∗
Ca
+,

and satisfy the estimates
∣∣∣A±1

6= (ξ + iτ)
∣∣∣ ≤ c(1 + |ξ|+ |τ |)±æ,

∣∣A±1
= (ξ ± iτ)

∣∣ ≤ c(1 + |ξ|+ |τ |)±(α−æ), τ ∈
∗
Ca
±.

The number æ ∈ R is called the index of wave factorization. Generally speaking it
may be a complex number, but the solvability picture is defined by its real part only.

Theorem 1. [6, 9] If æ− s = δ, |δ| < 1/2, then the unique solution of pseudo differential
equation(1) can be written with the help of the special integral operator G2. This operator
is defined by the formula

(G2u)(ξ) =
1

2
u(ξ) + lim

τ→0+

∫

R2

u(y1, y2, ξ
′′)dy1dy2

(ξ1 − y1)2 − a2(ξ2 − y2 + iτ)2
,

and we have ũ+ = A−1
6= G2A

−1
= l̃f with a priori estimate ||u||s ≤ c||f ||+s−α.
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If æ− s = n + δ, n ∈ N, |δ| < 1
2 , then the solution of equation (1) is non-unique and

depends on n arbitrary functions from corresponding Sobolev-Slobodetskii spaces defined
on wedge sides. It’s possible to give different boundary conditions for uniquely identifying
these arbitrary functions. The author tried to verify both classical boundary conditions
(and particular, the Dirichlet and Neumann conditions) and other non-local (or integral)
conditions, and found the unique solvability conditions for corresponding boundary value
problems (see [7],[8]).

3. The Potentials

Here we will consider in more detail the case æ − s = n + δ, n ∈ Z, n < 0, |δ| < 1
2 ,

and below we will use the following shortenings. For all points x, ξ ∈ Rm we will write
x = (x1, x2, x

′′), ξ = (ξ1, ξ2, ξ
′′), and we will omit the dependence on the parameters

x′′, ξ′′.

Further, because s−α > æ− δ−α, then if f ∈ Hs−α
0 (W a

+) we have f ∈ Hæ−s−α(W a
+).

Following the previous result, there is the unique solution

w̃+ = A−1
6= G2A

−1
= l̃f . (2)

Let A−1
= l̃f = g̃. We do change of variables and denote

(G2g̃)

(
x2 + x1

2
,
x2 − x1

2a

)
= h̃ (x1, x2) ,

g̃
(y2+y1

2 , y2−y1
2a

)
= g̃1 (y1, y2) . Then, obviously,

h̃(x1x2) = lim
τ→0+

∫

R2

g̃(y1,y2)dy
(x1−y1−aiτ)(x2−y2+iτ).

We decompose the kernel (xj − yj + ib)−1 with the help of the following formula
(b = ±aτ) :

1

x1 − y1 + ib
=

1

(x1 − x2 − i+ ib)(1 − y1−x2−i
x1−x2−i+ib)

=

=

p−1∑

k=0

(y1 − x2 − i)k

(x1 − x2 − i+ ib)k+1
+

+
(y1 − x2 − i)p

(x1 − x2 − i+ ib)p+1
(
1− y1−x2−i

x1−x2−i+ib

) =

=

p−1∑

k=0

Λk(y1, x2)

Λk
b (x1, x2)

+
Λp(y1, x2)

Λp
b(x1, x2)(x1 − y1 + ib)

,

where Λb(x1, x2) ≡ x1 − x2 − i+ ib, Λ(x1, x2) = x1 − x2 + i.

Analogously,
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1

x2 − y2 + ib
=

q−1∑

r=0

Λr(y2, x1)

Λr+1
b (x2, x1)

+
Λq(y2, x1)

Λq
b(x2, x1)(x2 − y2 + ib)

,

Λb(x2, x1) ≡ x2 − x1 + i+ ib).

Then

1

(x1 − y1 − aiτ)(x2 − y2 + aiτ)
=

p−1∑

k=0

q−1∑

r=0

Λk(y1, x2)Λ
r(y2, x1)

Λk+1
−aτ (x1, x2)Λ

r+1
aτ (x2, x1)

+

+

p−1∑

k=0

Λk(y1, x2)Λ
q(y2, x1)

Λk+1
−aτ (x1, x2)Λ

q
aτ (x2, x1)(x2 − y2 + aiτ)

+

+

q−1∑

r=0

Λr(y2, x1)Λ
p(y1, x2)

Λp
−aτ (x1, x2)Λ

r+1
aτ (x2, x1)(x1 − y1 − aiτ)

+

+
Λ7(y1, x2)Λ

q(y2, x1)

Λp
−aτ (x1, x2)Λ

q
aτ (x2, x1)(x1 − y1 − aiτ)(x2 − y2 + aiτ)

.

Let g̃1(y1, y2) ∈ S(Rm). We multiply the last equality by g̃1(y1, y2), integrate over
y1, y2 and pass to the limit as τ → 0+. Then we have

h̃(x1, x2) =

p−1∑

k=0

q−1∑

r=0

Φ−k−1,−r−1(x, x)

∫

R2

Φk,r (y, x)g̃1(y)dy+

+ lim
τ→0+

p−1∑

k=0

Φ−k−1,q(x, x)

∫

R2

Φk,q(y, x)g̃1(y)dy

x2 − y2 + iaτ
+

+ lim
τ→0+

q−1∑

r=0

Φ−p,−r−1(x, x)

∫

R2

Φp,r(y, x)g̃1(y)dy

x1 − y1 − iaτ
+

+Φ−p,−q(x, x) lim
τ→0+

∫

R2

Φp,q(y, x)g̃1(y)dy

(x1 − y1 − iaτ)(x2 − y2 + iaτ)
,

where Φp,q(y, x) ≡ Λp(y1, x2)Λ
q(y2, x1) ≡ (y1 − x2 − i)p(y2 − x1 + i)q is a polynomial

of order less or equal p+ q with respect to the variables x1, x2, y1, y2.
Let’s write:

h̃ =

p−1∑

k=0

q−1∑

r=0

Φ−k−1,−r−1Π
′

Φk,r g̃1 +

p−1∑

k=0

Φ−k−1,−qΠ
(2)
+ Π

′

1Φk,q g̃1+

+

q−1∑

r=0

Φ−p,−r−1Π
(1)
− Π

′

2Φp,r g̃1 +Φ−p,−qG2Φp,q g̃1, (3)
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where

(Π
(1)
± g̃)(ζ) = lim

τ→0+

+∞∫

−∞

g̃(η1, ζ2)dη1
η1 − ζ1 ± iτ

,

(Π
(2)
± g̃)(ζ) = lim

τ→0+

+∞∫

−∞

g̃(ζ1, η2)dη2
η2 − ζ2 ± iτ

,

(Π
′

j g̃)(ζ3−j) =

+∞∫

−∞

g̃(ζ1, ζ2)dζj , j = 1, 2, Π
′

g̃ =

∫

R2

g̃(ζ1, ζ2)dζ.

The last expansion was obtained under assumption g̃1 ∈ S(Rm). It’s easy to verify,
that this formula will be valid for g̃1 ∈ H̃p+q−δ(Rm). We need arguments like [2] and the
density property for S(Rm) in H̃p+q−δ(Rm).

Let’s return to the formula (3). Changing variables, taking p+ q = |n|, and denoting

w̃+

(
x2 + x1

2
,
x2 − x1

2a

)
≡ W̃+(x1, x2),

A−1
6=

(
x2 + x1

2
,
x2 − x1

2a

)
≡ a−1

6= (x1, x2),

using (3) for (2) ( so that A−1
= l̃f ∈ H̃ |n|−δ(Rm),)

we obtain the following decomposition:

W̃+(x) =

p−1∑

k=0

q−1∑

r=0

P̃k,r(x)

a6=(x)Φk+1,r+1(x, x)
+

+

p−1∑

k=0

M̃k,q(x)

Φk+1,q(x, x)a 6=(x)
+

q−1∑

r=0

Ñp,r(x)

Φp,r+1(x, x)a 6=(x)
+ Ũ+(x),

where P̃k,r(x) = Π
′

Φk,rg̃1, M̃k,q(x) = Π
(2)
+ Π

′

1Φk,qg̃1, Ñp,q(x) = Π
(1)
− Π

′

2Φk,rg̃1, Ũ+ =
a−1
6= (x)Φ−p,−q(x, x)G

′
2Φp,qg̃1.

The function M̃k,q(x) has the form

M̃k,q(x) = lim
τ→0+

∫

R2

Φk,q(y, x)g̃1(y)dy

(x1 − y1 − iaτ)
=

k+q∑

|σ|+|β|=0

eσ,βx
σ lim
τ→0+

∫

R2

yβ g̃1(y)dy

x1 − y1 − iaτ
,

where σ, β are multi-indices.
We consider more precisely

lim
τ→0+

∫

R2

yβ g̃1(y)dy

x1 − y1 − iaτ
= lim

τ→0+

∫ +∞

−∞

yβ1

1 g̃2(y1)dy1
x1 − y1 − iaτ

,
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denoting

g̃β2(y1) ≡

∫ +∞

−∞
yβ2

2 g̃1(y1, y2)dy2.

The Cauchy integral can be written as follows:

lim
τ→0+

∫ +∞

−∞

yβ1

1 g̃β2
(y1)dy1

x1 − y1 − iaτ
=

l−1∑

j=0

i

(x1 − i)j+1

∫ +∞

−∞
(y1 − i)jyβ1

1 g̃β2
(y1)dy1+

lim
τ→0+

1

(x1 − i)l

∫ +∞

−∞

(y1 − i)lyβ1

1 g̃β2
(y1)dy1

y1 − x1 − iaτ
,

and, consequently,

lim
τ→0+

∫

R2

yβ g̃β2
(y)dy

x1 − y1 − iaτ
=

l−1∑

j=0

iλj

(x1 − i)j+1
+ g̃β(x1),

where

g̃β(x1) =
1

(x1 − i)l
lim

τ→0+

∫

R2

yβ(y1 − i)lg̃1(y)dy

x1 − y1 − iaτ
, λj =

∫

R2

(y1 − i)lyβ g̃1(y)dy.

Let l = |n| − |β| − 1. Note that the last formula doesn’t include the sum under|β| =

|n| − 1. It is easily verified that g̃β(x1) ∈ H̃ |n|−δ−|β|− 1

2 (R−) (see the a priori estimates
below). Thus,

p−1∑

k=0

M̃k,q(x)

Φk+1,q(x, x)a 6=(x)
=

p−1∑

k=0

k+q∑

|σ|+|β|=0

eσ,βx
σ

Φk+1,q(x, x)a 6=(x)

l−1∑

j=0

iλj

(x1 − i)j+1
+

p−1∑

k=0

k+q∑

|σ|+|β|=0

eσ,βx
σg̃β(x1)

Φk+1,q(x, x)a 6=(x)
.

Obviously, for the Ñp,r(x) we have analogous representation:

q−1∑

r=0

Ñp,r(x)

Φp,r+1(x, x)a 6=(x, x)
=

=

q−1∑

r=0

r+p∑

|γ|+|t|=0

bγ,tx
γ

Φp,r+1(x, x)a 6=(x)

l′−1∑

j=0

iµj

(x2 − i)j+1
+
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+

q−1∑

r=0

r+p∑

|γ|+|t|=0

bγ,tx
γ f̃t(x2)

Φp,r+1(x, x)a 6=(x)
.

Using the previous uniqueness theorem and a lemma on radial tube domains from [6, 9]
we conclude

Ũ+(ξ1 − aξ2, ξ1 + aξ2) ∈ H̃ |n|−δ−κ(W a
+) = H̃s(W a

+).

Then we can write

W̃+(x) = Ũ+(x) +

p−1∑

k=0

q−1∑

r=0

P̃r,k(x)

a6=(x, x)Φk+1,r+1(x, x)
+

+

p−1∑

k=0

k+q∑

|σ|+|β|=0

eσ,βx
σ

Φk+1,q(x, x)a 6=(x)

l∑

j=0

iλj

(x1 − i)j+1
+

+

q−1∑

r=0

r+p∑

|γ|+|t|=0

bγ,tx
γ

Φp,r+1(x, x)a 6=(x)

l′∑

j=0

iµj

(x2 − i)j+1
+

+

p−1∑

k=0

k+q∑

|σ|+|β|=0

eσ,βx
σ g̃β(x1)

Φk+1,q(x, x)a 6=(x)
+

q−1∑

r=0

r+p∑

|γ|+|t|=0

bγ,tx
γ f̃t(x2)

Φp,r+1(x, x)a 6=(x)
. (4)

Using G.Eskin’s methods [2] one can verify that representation W̃+ in the form (4)
is unique; thus, the solution of equation (1) with the right hand side f ∈ Hs−α

0 (W a
+) is

belonging to Hs(W a
+) if the following conditions hold:

P̃k,r(x) ≡ 0, g̃β(x1) ≡ 0, f̃t(x2) ≡ 0, λj , µj ≡ 0,

for all possible k, r, β, t, j.
The coefficients of the polynomial P̃k,r(x) (of orders notbgreater than |n| − 2) are

c′σ,β = cσ,β

∫

R2

yβ g̃1(y)dy

if

Φk,r(x, y) =

k+r∑

|σ|+|β|=0

cσ,βx
σyβ.

According to Fourier transform properties, the condition c′σ,β = 0 is equivalent to the
following one:

∂β1

∂xβ1

1

∂β2

∂xβ2

2

g1

∣∣∣∣∣
x=0

= 0, |β| = 0, 1, ..., |n| − 2.
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The condition λj = 0 is equivalent to

∂j+β1

∂xj+β1

x1

∂β2

∂xβ2

2

g1

∣∣∣∣∣
x=0

= 0.

The similar assertion is true for µj.

The conditions g̃β(x1) = 0, f̃t(x2) = 0 are equivalent to the following ones:

lim
τ→0+

∫

R2

yβ(y1 − i)lg̃1(y)dy

x1 − y1 − iaτ
= 0,

lim
τ→0+

∫

R2

yt(y2 − i)k g̃1(y)dy

x2 − y2 − iaτ
= 0.

And, according to Fourier transform and Cauchy type integral properties, we obtain:

∂β1+l

∂xβ1+l
1

∂β2

∂xβ2

2

g1

∣∣∣∣∣ x1 ≤ 0
x2 = 0

= 0,

∂t1

∂xt11

∂t2+k

∂xt2+k
2

g1

∣∣∣∣∣ x2 ≥ 0
x1 = 0

= 0.

Let’s summarize these results.

Theorem 2 (Main Theorem). Let æ− s = n+ δ, n ∈ Z, n < 0, |δ| < 1
2 .

Then for arbitrary right hand side f ∈ Hs−α
0 (W a

+) there exists a unique solution of the
equation (1), and its Fourier transform is represented in the form (4), where one needs to
substitute x1 = ξ1 − aξ2, x2 = ξ1 + aξ2.

The function U+(ay1−y2, ay1+y2) ∈ Hs(W a
+), gβ(ay1−y2), fβ(ay1+y2) ∈ H |n|−δ−|β|− 1

2 (B±),
respectively, B+ = {(y1, y2): ay1 − y2 ≤ 0 , ay1 + y2 = 0},B− = {(y1, y2): ay1 − y2 =
0 , ay1 + y2 ≥ 0}, |β| = 0, 1, ..., |n| − 1, and the constants λj , µj, j = 0, 1, ..., l, in the
representation (4) are defined uniquely.

The equation (1) has a solution from Hs(W a
+) if the following conditions hold:

(
1

a

∂

∂y1
−

∂

∂y2

)β1
(
1

a

∂

∂y1
+

∂

∂y2

)β2

A−1
= lf(y)

∣∣∣∣∣
y=0

= 0,

(
1

a

∂

∂y1
−

∂

∂y2

)β1
(
1

a

∂

∂y1
+

∂

∂y2

)β2

A−1
= lf(y)

∣∣∣∣∣ ay1 − y2 ≤ 0
ay1 + y2 = 0

= 0,
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(
1

a

∂

∂y1
−

∂

∂y2

)β1
(
1

a

∂

∂y1
+

∂

∂y2

)β2

A−1
= lf(y)

∣∣∣∣∣ ay1 − y2 = 0
ay1 + y2 ≥ 0

= 0.

The following a priori estimates hold:

||u+||s ≤ c||f ||+s−α,

[gβ]nβ
≤ c||f ||+s−α, [fβ]nβ

≤ c||f ||+s−α,

nβ = |n| − δ − |β| − 1/2, |β| = 0, 1, ..., |n| − 1, |c′σ,β | ≤ c||f ||+s−α,

|λj | ≤ c||f ||+s−α, |µj| ≤ c||f ||+s−α, |β| = 0, 1, ..., |n| − 2, j = 0, 1, ..., l.

Proof. We need to prove a priori estimates only. Using standard theorem from [2] on
boundedness of pseudo differential operators, we have

||u+||s = ||U+||s = ||Ũ+||s =

= ||a−1
6= Φ−1

p,qG2Φp,qA
1
=lf̃ ||s ≤ c||Φ−1

p,qG2Φp,qA
−1
= lf̃ ||s−æ ≤

≤ c||G2Φp,qA
−1
= lf̃ ||s−æ−n ≤ c||Φp,qA

−1
= lf̃ ||s−æ+n ≤ c||A−1

= lf̃ ||s−æ ≤

≤ c||lf̃ ||s−α ≤ c||lf ||s−α ≤ c||f ||+s−α.

Further, if, for example, 0 < δ < 1/2, then

[gβ]nβ
=

[
(x1 − i)−lΠ

(2)
− Π

′

2y
β(y1 − i)lA−1

+ l̃f
]
nβ

≤

≤
[
Π

(1)
− Π

′

2y
β(y1 − i)lA−1

+ l̃f
]
|n|−δ−|β|−1/2−l

≤,

because we have

≤ 0 < |n| − δ − |β| − 1/2 − l = 1/2− δ < 1/2 ≤

≤ c
[
Π

′

2y
β(y1 − i)A−1

+ l̃f
]
1/2−δ

≤

(the restriction on hyper-plane theorem [2])

≤ c||yβ(y1 − i)lA−1
= lf̃ ]1−δ ≤ ... ≤ c||f ||+s−α.

Finally,

|c′σ,β | ≤ c

∫

R2

yβ g̃1(y)dy| ≤
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≤ c

∫

R2

(1 + |y|)|β||A−1
= (y)| · |lf̃(y)|dy ≤ c

∫

R2

(1 + |y|)|β|+æ−α|lf̃(y)|dy =

= c

∫

R2

(1 + |y|)|ρ|+æ−s(1 + |y|)s−α|lf̃(y)|dy ≤

(the Cauchy inequality)

≤ c (

∫

R2

(1 + |y|)2(|β|+æ−s)dy)1/2||lf̃ ||s−α.

The integral is convergent if 2(|β| + æ − s) < −2, i.e. |β| − |n| + δ < −1. Thus, we
have the needed estimate.

The λj , µj can be estimated analogously.J

Remark 1. Let’s consider g̃β(x1) in detail.

The expression yβ(y1 − i)lg̃1(y) obviously can be written in the form Pk(y1, y2)g̃1(y),
where Pk(y1, y2) is a polynomial of order k = |β|+ l of variables y1, y2. Then the integral

∫ +∞

−∞
Pk(y1, y2)g̃1(y)dy2

means that we take (for inverse Fourier images) partial derivatives for g1 and their restric-
tions on the line y2 = 0. In other words, we take linear combination of partial derivatives
in variable y2 up to certain order with respect to one of the angle (wedge) side. Concerning
other variable, the expression

∫

R2

yβ(y1 − i)lg̃1(y)dy

x1 − y1 − iaτ

can be written as follows:

∫

R2

Pk(y1, y2)g̃1(y)dy

x1 − y1 − iaτ
=

∫

R2

∑|k|
k1+k2=0 ck1,k2y

k1
1 yk22 g̃1(y)dy

x1 − y1 − iaτ
=

=

|k|∑

k1+k2=0

ck1,k2

∫ +∞

−∞

yk11 h̃
(k2)
1 (y1)dy1

x1 − y1 − iaτ
,

where

h̃
(k2)
1 (y1) =

∫ +∞

−∞
yk22 g̃1(y2)dy2. (5)

The functions
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∫ +∞

−∞

yk11 h̃
(k2)
1 (y1)dy1

x1 − y1 − iaτ
(6)

evidently can be treated as some potential like operators generated by right hand side of
the equation (1).

The notation (5) in our opinion is convenient because applying inverse Fourier trans-
form to (5) gives the following:

∂k2

∂xk22
g1

∣∣∣∣∣
x2=0

≡ h
(k2)
1 (x1).

Now about integral (6). It is an ordinary Cauchy type integral by which one solves
well-known classical Riemann problem for upper and lower hyper-planes. The boundary
Riemann problem is a holomorphic functions theory problem. Since real and image parts
of holomorphic functions are harmonic functions, then real and imaginary parts of Cauchy
type integrals are (logarithmic) double and single layer potentials, respectively [3],[5],[4].
So, the terminology above is justified. The representation formula (4) shows that the
solution has “principal” part and a linear combination of double and single layer potentials
for traces of right hand side partial derivatives. In other words, the formula (4) is similar
to integral representation for solution of the equation (1), which corresponds to the case
æ− s = n+ δ, n < 0, n ∈ Z, |δ| < 1

2 . (See also. G. Eskin [1]).

Remark 2. It would be very interesting to obtain essential multi-dimensional variants for
such potential like operators, but there are some difficulties. The author hopes to explore
this case in one of his forthcoming papers.
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