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Cyclic Contraction of Kannan Type Mappings in Gene-

ralized Menger Space Using a Control Function

B. S. Choudhury ∗, K. Das, S. K. Bhandari

Abstract. Generalized Menger space introduced by the first two authors of the present paper [5] is
a generalization of Menger space as well as probabilistic generalization of generalized metric space
introduced by Branciari [Publ. Math. Debrecen 57 (2000, no. 1-2, 31-37) ]. Cyclic contractions are
a class of recently introduced nonself contractive mappings. Kannan type mappings are contractive
mappings different in their characteristics from Banach contractions which are well known in fixed
point theory. In this paper we establish a cyclic Kannan type fixed point theorem in generalized
Menger spaces. The fixed point theorem established here utilizes a control function. The result
obtained is illustrated with an example.
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1. Introduction

Branciari[1] introduced the idea of generalized metric spaces. He replaced the trian-
gular inequality by a quadrangular inequality and generalized the metric space as follows:

Definition 1. [1] Let X be a nonempty set, R+ be the set of all nonnegative real numbers
and d : X ×X → R+ be a mapping such that for all x, y ∈ X and for all points ξ, η ∈ X,
each of them different from x and y, the following holds:

1. d(x, y) = 0 ⇐⇒ x = y,

2. d(x, y) = d(y, x) and

3. d(x, y) ≤ d(x, ξ) + d(ξ, η) + d(η, y).
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Banach contraction mapping theorem in generalized metric space was also established
in the same work. By an example Branciari also showed that there exist generalized metric
spaces which are not metric spaces. The references [9, 10] and [20] established some other
fixed point results in generalized metric spaces.

Probabilistic metric spaces are probabilistic generalizations of metric spaces in
which every pair of elements is assigned to a distribution function. The theory of these
spaces is an important part of stochastic analysis. Schweizer and Sklar have given a
comprehensive account of several aspects of such spaces in their book [26].

Definition 2. Probabilistic metric space [11, 26]
A probabilistic metric space (briefly, a PM-space) is an ordered pair (X,F ), where X is a
non empty set and F is a mapping from X ×X into the set of all distribution functions.
We denote the distribution function F (x, y) by Fx,y and Fx,y(t) represents the value of
Fx,y at t ∈ R. The function Fx,y is assumed to satisfy the following conditions for all
x, y, z ∈ X:

(i) Fx,y(0) = 0,
(ii) Fx,y(t) = 1 for all t > 0 if and only if x = y,
(iii) Fx,y(t) = Fy,x(t) for all t > 0,
(iv) if Fx,y(t1) = 1 and Fy,z(t2) = 1 then Fx,z(t1 + t2) = 1 for t1, t2 > 0.

A particular type of probabilistic metric space is Menger space in which the trian-
gular inequality is postulated with the help of a t-norm.

Definition 3. n-th order t-norm [29]
A mapping T : Πn

i=1[0, 1] → [0, 1] is called a n-th order t-norm if the following conditions
are satisfied:

(i) T (0, 0, ...., 0) = 0, T (a, 1, 1, ..., 1) = a for all a ∈ [0, 1],
(ii) T (a1, a2,, a3, ...., an) = T (a2, a1, a3, ...., an) = T (a2, a3, a1, ...., an)

= .... = T (a2, a3, a4, ...., an, a1),
(iii) ai ≥ bi, i=1,2,3,....,n implies T (a1, a2, a3, ...., an) ≥ T (b1, b2, b3, ...., bn),
(iv) T (T (a1, a2, a3, ...., an), b2, b3, ..., bn)

= T (a1, T (a2, a3, ...., an, b2), b3, ..., bn)
= T (a1, a2, T (a3, a4...., an, b2, b3), b4, ..., bn)
=...............................
= T (a1, a2, ..., an−1, T (an, b2, b3, ..., bn)).

When n = 2, we have a binary t-norm, which is commonly known as t-norm.

Definition 4. Menger space [11, 26]
A Menger space is a triplet (X,F,∆), where X is a non empty set, F is a function defined
on X ×X to the set of distribution functions and ∆ is a (binary) t-norm, such that the
following are satisfied:

1. Fx,y(0) = 0 for all x, y ∈ X,

2. Fx,y(s) = 1 for all s > 0 and x, y ∈ X if and only if x = y,
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3. Fx,y(s) = Fy,x(s) for all x, y ∈ X, s > 0 and

4. Fx,y(u+ v) ≥ ∆(Fx,z(u), Fz,y(v)) for all u, v ≥ 0 and x, y, z ∈ X.

The first fixed point theorem in probabilistic metric spaces was proved by Sehgal and
Bharucha-Reid [27] in 1972. They proved their result for mappings satisfying some con-
tractive conditions. Subsequently, fixed point theory in probabilistic metric spaces has
developed in a large way. A comprehensive survey of this line of research up to 2001 is
described by Hadzic and Pap in [11]. Some of the more recent references dealing with
probabilistic contraction may be noted in [2, 3, 7, 8, 21] and [23]. Incorporating the ap-
proach of Branciari, the first two of the present authors had introduced the concept of
generalized Menger spaces in their paper [5]. The definition is as follows:

Definition 5. Generalized Menger space [5]
Let X be a non-empty set and F is a function from X × X to the set of all distribution
functions. Then (X,F,∆) is said to be a generalized Menger space if for all x, y ∈ X and
all distinct points z, w ∈ X each of them different from x and y, the following conditions
are satisfied:

(i) Fx,y(0) = 0,
(ii) Fx,y(t) = 1 for all t > 0 if and only if x = y,
(iii) Fx,y(t) = Fy,x(t) for all t > 0,
(iv) Fx,y(t) ≥ ∆(Fx,z(t1), Fz,w(t2), Fw,y(t3)), where t1 + t2 + t3 = t and ∆ is a

3-rd order t-norm (Definition 1.3).

Generalized Menger space is a generalization of Menger space. It is also a probabilistic
generalization of generalized metric spaces introduced by Branciari.

Definition 6. Let (X,F,∆) be a generalized Menger space. A sequence {xn} ⊂ X is said
to converge to some point x ∈ X if given ε > 0, λ > 0 we can find a positive integer Nε,λ

such that for all n > Nε,λ

Fxn,x(ε) > 1− λ.

Definition 7. A sequence {xn} in a generalized Menger space (X,F,∆) is said to be a
Cauchy sequence in X if given ε > 0, λ > 0 there exists a positive integer Nε,λ such that

Fxn,xm
(ε) > 1− λ for all m,n > Nε,λ. (1.1)

Definition 8. A generalized Menger space (X,F,∆) is said to be complete if every Cauchy
sequence is convergent in X.

In [12] Khan, Swaleh and Sessa introduced a new category of contractive fixed point
problems in metric space. They introduced the concept of “altering distance function”,
which is a control function that alters the distance between two points in a metric space.
This concept was further generalized in a number of works. There are several works in
fixed point theory involving altering distance function, some of these are noted in [22, 24]
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and [25].

Recently the first two of the present authors had extended the concept of altering
distance function to the context of Menger spaces [2]. The definition is as follows:

Definition 9. Φ-function [2]
A function φ : R→ R+ is said to be a Φ-function if it satisfies the following conditions:

1. φ(t) = 0 if and only if t = 0,

2. φ(t) is strictly monotone increasing and φ(t) → ∞ as t→ ∞,

3. φ is left continuous in (0,∞),

4. φ is continuous at 0.

With the help of this function an extension of Sehgal’s contraction was established in
[2]. Other fixed point results using the Φ-function were obtained in probabilistic metric
spaces, which may be noted in [3, 4, 7] and [21].

The following is the definition of Kannan type mapping:

Definition 10. [13, 14] Let (X, d) be a metric space and f be a mapping on X. The
mapping f is called a Kannan type mapping if there exists 0 ≤ α < 1

2 such that
d(fx, fy) ≤ α[d(x, fx) + d(y, fy)] for all x, y ∈ X.

This type of mappings have an important role in fixed point theory. They are different
from Banach contractions. It is known that every Banach contraction and every Kannan
type mappings in a complete metric space have unique fixed points. But they are sepa-
rate classes of mappings. While the Banach contraction is always continuous, there are
examples of discontinuous mappings which are Kannan type mappings. Again Banach
contraction does not characterize metric completeness. In [28] it has been proved that
every metric space X is complete if and only if every Kannan type mapping has a fixed
point. But this is not the case with the Banach contraction. In fact, Connell in [6] has
given an example of a metric space which is not complete but every Banach contraction
defined on it has a fixed point. There are a large number of works dealing with Kannan
type mappings. Some of these works are noted in [5, 17, 18, 19].

In recent years cyclic contraction and cyclic contractive type mapping have appeared in
several works. This line of research was initiated by Kirk, et al [16], where they established
the following generalization of the contraction mapping principle:

Theorem 1. [16] Let A and B be two non-empty closed subsets of a complete metric space
X and suppose f : A

⋃

B → A
⋃

B satisfies:
(1) fA ⊆ B and fB ⊆ A,
(2) d(fx, fy) ≤ kd(x, y) forall x ∈ A and y ∈ B where k ∈ (0, 1).

Then f has a unique fixed point in A
⋂

B.
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These types of maps are nonself mappings on subsets of metric spaces. They bear
a close association with the proximity point problem. References [15, 30, 31] are some
examples of these type of works.

The purpose of this paper is to apply the control function mentioned above to establish
a cyclic Kannan type fixed point result in generalized Menger spaces. Our result extends
an existing result and is illustrated with an example.

The following function is utilized in our theorem:

Definition 11. Ψ-function [5]
A function ψ : [0, 1] × [0, 1] → [0, 1] is said to be a Ψ-function if

1. ψ-is monotone increasing and continuous,

2. ψ(x, x) > x for all 0 < x < 1,

3. ψ(1, 1) = 1, ψ(0, 0) = 0.

An example of Ψ-function:

ψ(x, y) =
p
√
x+q

√
y

p+q
, p and q are positive numbers.

2. Main Result

Theorem 2. Let (X,F,∆) be a complete generalized Menger space, where ∆ is the 3rd
order minimum t-norm given by ∆(α, β, γ) = min{α, β, γ} and let there exist two non-
empty closed subsets A and B of X such that the mapping T : A

⋃

B → A
⋃

B satisfies
the following conditions :

(i) TA ⊆ B and TB ⊆ A (2.1)
(ii) FTx,Ty(φ(t)) ≥ ψ(Fx,Tx(φ(

t1
a
)), Fy,Ty(φ(

t2
b
))) (2.2)

for all x ∈ A and y ∈ B where t1, t2, t > 0 with t = t1 + t2, a, b > 0 with 0 < a + b < 1,
ψ is a Ψ-function and φ is a Φ-function. Then A

⋂

B is nonempty and T has a unique
fixed point in A

⋂

B.

Proof. Let x0 be any arbitrary point of A. We now construct a sequence {xn}∞n=0 in
X by xn = Txn−1, for all positive integers n ≥ 1.
Then, by (2.1), we obtain

x2n = T 2nx0 ∈ A and x2n+1 = T 2n+1x0 ∈ B for all integers n ≥ 0. (2.3)
Now, for t, t1, t2 > 0, with t = t1 + t2 and taking n be even we have

Fxn+1,xn
(φ(t)) = FTxn,Txn−1(φ(t)) ≥ ψ(Fxn,Txn

(φ(
t1

a
)), Fxn−1 ,Txn−1(φ(

t2

b
))) =

(sincexn ∈ A, xn−1 ∈ B)

= ψ(Fxn,xn+1(φ(
t1

a
)), Fxn−1,xn

(φ(
t2

b
))) = ψ(Fxn+1,xn

(φ(
t1

a
)), Fxn,xn−1(φ(

t2

b
))).
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Let t1 =
at
a+b

, t2 =
bt
a+b

and c = a+ b, (2.5)
then obviously we have 0 < c < 1.

Then we have from (2.4)

Fxn+1,xn
(φ(t)) ≥ ψ(Fxn+1,xn

(φ(
t

c
)), Fxn,xn−1(φ(

t

c
))).

Again for t, t1, t2 > 0 with t = t1 + t2 and taking n be odd we have

Fxn+1,xn
(φ(t)) = FTxn,Txn−1(φ(t)) = FTxn−1,Txn

(φ(t)) ≥

≥ ψ(Fxn−1,Txn−1(φ(
t1

a
)), Fxn,Txn

(φ(
t2

b
)))

(sincexn−1 ∈ A, xn ∈ B)

= ψ(Fxn−1,xn
(φ(

t1

a
)), Fxn,xn+1(φ(

t2

b
))) = ψ(Fxn,xn−1(φ(

t1

a
)), Fxn+1,xn

(φ(
t2

b
))).

Taking t, t1, t2 and c as in (2.5) we have from (2.7)

Fxn+1,xn
(φ(t)) ≥ ψ(Fxn,xn−1(φ(

t

c
)), Fxn+1,xn

(φ(
t

c
))).

We now claim that for all t > 0

Fxn+1,xn
(φ(

t

c
)) ≥ Fxn,xn−1(φ(

t

c
)).

If possible, let for some t > 0

Fxn+1,xn
(φ(

t

c
)) < Fxn,xn−1(φ(

t

c
)).

Then we have from (2.6) and (2.8)

Fxn+1,xn
(φ(t)) ≥ ψ(Fxn+1,xn

(φ(
t

c
)), Fxn+1,xn

(φ(
t

c
))) > Fxn+1,xn

(φ(
t

c
)) ≥ Fxn+1,xn

(φ(t)),

which is a contradiction, since 0 < c < 1, φ is strictly increasing and F is non-decreasing.
Therefore, for all t > 0

Fxn+1,xn
(φ(

t

c
)) ≥ Fxn,xn−1(φ(

t

c
)).

Hence, using (2.9), we have from (2.6) and (2.8)

Fxn+1,xn
(φ(t)) ≥ ψ(Fxn,xn−1(φ(

t

c
)), Fxn,xn−1(φ(

t

c
))) ≥ Fxn,xn−1(φ(

t

c
)).

By (2.10), we have for all positive integers n

Fxn+1,xn
(φ(t)) ≥ Fxn,xn−1(φ(

t

c
)).
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By repeated application of (2.10), we have after n steps

Fxn+1,xn
(φ(t)) ≥ Fx1,x0(φ(

t

cn
)).

Therefore,

lim
n→∞

Fxn+1,xn
(φ(t)) = 1

for all t > 0. By virtue of property of φ and F , we can choose s > 0 such that s > φ(t).
Thus, the above limit implies that for all s > 0

lim
n→∞

Fxn,xn+1(s) = 1.

We next prove that {xn} is a Cauchy sequence. If possible, let {xn} be not a Cauchy
sequence. Then there exist ε > 0 and 0 < λ < 1 for which we can find subsequences
{xm(k)} and {xn(k)} of {xn} with m(k) > n(k) > k such that

Fxm(k),xn(k)
(ε) ≤ 1− λ.

We take m(k) corresponding to n(k) to be the smallest integer satisfying (2.13), so that

Fxm(k)−1,xn(k)
(ε) > 1− λ.

We now claim that
Fxm(k)−2,xn(k)

(ε) > 1− λ.

If possible, let for ε > 0
Fxm(k)−2,xn(k)

(ε) ≤ 1− λ,

which contradicts the fact that m(k) is the smallest integer satisfying (2.13).

Hence,

Fxm(k)−2,xn(k)
(ε) > 1− λ.

If ε1 < ε, then we have

Fxm(k),xn(k)
(ε1) ≤ Fxm(k),xn(k)

(ε).

We conclude that it is possible to construct {xm(k)} and {xn(k)} with m(k) > n(k) > k

and satisfying (2.13), (2.14), (2.15) whenever ε is replaced by a smaller positive value.
As φ is continuous at 0 and strictly monotone increasing with φ(0) = 0, it is possible to
obtain ε2 > 0 such that φ(ε2) < ε.

Then, by the above argument, it is possible to obtain an increasing sequence of integers
{m(k)} and {n(k)} with m(k) > n(k) > k such that

Fxm(k),xn(k)
(φ(ε2)) ≤ 1− λ,

Fxm(k)−1,xn(k)
(φ(ε2)) > 1− λ,



50 B. S. Choudhury, K. Das, S. K. Bhandari

and

Fxm(k)−2,xn(k)
(φ(ε2)) > 1− λ.

By the properties of φ, we can choose ρ1 > 0 and ρ2 > 0 such that ρ1 + ρ2 < φ(ε2).
Again by (2.12), we have for sufficiently large k

Fxm(k),xm(k)−1
(ρ1) > 1− λ,

and
Fxm(k)−1,xm(k)−2

(ρ2) > 1− λ.

As F is left continuous, we have

Fxm(k)−2,xn(k)
(φ(ε2)− ρ1 − ρ2) > 1− λ.

Now from (2.16) we have

1− λ ≥ Fxm(k),xn(k)
(φ(ε2))

≥ ∆(Fxm(k),xm(k)−1
(ρ1), Fxm(k)−1,xm(k)−2

(ρ2), Fxm(k)−2,xn(k)
(φ(ε2)−ρ1−ρ2)) > ∆(1−λ, 1−λ, 1−λ)

(using (2.19), (2.20), (2.21))
= 1− λ,

which is a contradiction. Hence, {xn} is a Cauchy sequence.
Since X is a complete, we have xn → z ∈ X for n→ ∞. That is,

lim
n→∞

xn = z.

The subsequences {x2n} and {x2n−1} of {xn} also converge to z. Now {x2n} ⊂ A and
A is closed. Therefore, z ∈ A. Similarly {x2n−1} ⊂ B and B is closed. Therefore, z ∈ B.
Thus we have z ∈ A

⋂

B.
We now show that Tz = z. If possible, let 0 < Fz,Tz(φ(t)) < 1 for some t > 0. By

virtue of the property of φ, we can choose ξ1, ξ2, t1, t2 > 0 such that φ(t) = ξ1+ξ2+φ(t1+t2)
with φ( t1

a
) > φ(t) and φ( t2

b
) > φ(t). This is possible since 0 < a, b < 1.

Now we can get two possible cases.

Case-I Taking n be even so that xn ∈ A. As z ∈ A
⋂

B ⊂ B, we have

Fz,Tz(φ(t)) ≥ ∆(Fz,xn
(ξ1), Fxn,xn+1(ξ2), Fxn+1,T z(φ(t1 + t2)))

= ∆(Fz,xn
(ξ1), Fxn,xn+1(ξ2), FTxn,T z(φ(t1 + t2)))

≥ ∆(Fz,xn
(ξ1), Fxn,xn+1(ξ2), ψ(Fxn ,xn+1(φ(

t1

a
)), Fz,Tz(φ(

t2

b
))))

≥ ∆(Fz,xn
(ξ1), Fxn,xn+1(ξ2), ψ(Fxn ,xn+1(φ(

t1

a
)), Fz,Tz(φ(t)))).
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By (2.12), (2.22) and (2.23), there exists a positive integer N1 such that

Fz,xn
(ξ1), Fxn,xn+1(ξ2), Fxn,xn+1(φ(

t1

a
)) > Fz,Tz(φ(t))

for all n > N1.
Then we have from (2.23)

Fz,Tz(φ(t)) > Fz,Tz(φ(t)),

which is a contradiction.
Case-II Taking n be odd so that xn ∈ B. As z ∈ A

⋂

B ⊂ A,
we have

Fz,Tz(φ(t)) ≥ ∆(Fz,xn
(ξ1), Fxn,xn+1(ξ2), Fxn+1,T z(φ(t1 + t2)))

= ∆(Fz,xn
(ξ1), Fxn,xn+1(ξ2), FTz,Txn

(φ(t1 + t2)))

≥ ∆(Fz,xn
(ξ1), Fxn,xn+1(ξ2), ψ(Fz,Tz(φ(

t1

a
)), Fxn,xn+1(φ(

t2

b
))))

≥ ∆(Fz,xn
(ξ1), Fxn,xn+1(ξ2), ψ(Fz,Tz(φ(t)), Fxn ,xn+1(φ(

t2

b
)))).

By (2.12), (2.22) and (2.24), there exists a positive integer N2 such that

Fz,xn
(ξ1), Fxn,xn+1(ξ2), Fxn,xn+1(φ(

t2

b
)) > Fz,Tz(φ(t))

for all n > N = max{N1, N2}.
Then we have from (2.24),

Fz,Tz(φ(t)) > Fz,Tz(φ(t)),

which is a contradiction.
Combining Case-I and Case-II we have Fz,Tz(φ(t)) = 1 for all t > 0 which implies that

z = Tz.
For uniqueness, let z and u be two fixed points in A

⋂

B. Therefore, for all t > 0,

Fz,u(φ(t)) = FTz,Tu(φ(t))

≥ ψ(Fz,Tz(φ(
t1

a
)), Fu,Tu(φ(

t2

b
)))

(for t1, t2 > 0 and t1 + t2 = t)

= ψ(Fz,z(φ(
t1

a
)), Fu,u(φ(

t2

b
)))

= ψ(1, 1) = 1.
By virtue of property of φ, we can assert that z = u. J
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Remark 1. The present work is an extension of the result in [5].

Now we give the following example to illustrate our result.

Example 1. Let X = {x1, x2, x3, x4}, A = {x2, x3} and B = {x1, x2, x4}. Here the t-
norm ∆(a, b, c) = min(a, b, c), that is ∆ is the 3-rd order minimum t-norm and let Fx, y(t)
be defined as

Fx1, x2(t) = Fx2, x1(t) =







0, if t ≤ 0,
0.70, if 0 < t < 6,
1, if t ≥ 6.

Fx1, x3(t) = Fx3, x1(t) =







0, if t ≤ 0,
0.90, if 0 < t ≤ 3,
1, if t > 3.

Fx1, x4(t) = Fx4, x1(t) =







0, if t ≤ 0,
0.80, if 0 < t ≤ 4,
1, if t > 4.

Fx2, x3(t) = Fx3, x2(t) =







0, if t ≤ 0,
0.95, if 0 < t ≤ 3,
1, if t > 3.

Fx2, x4(t) = Fx4, x2(t) =







0, if t ≤ 0,
0.80, if 0 < t ≤ 4,
1, if t > 4.

Fx3, x4(t) = Fx4, x3(t) =







0, if t ≤ 0,
0.70, if 0 < t < 6,
1, if t ≥ 6.

It is easy to verify that (X,F,∆) is a complete generalized Menger space. If we define
T : A

⋃

B → A
⋃

B as follows: Tx1 = x2, Tx2 = x2, Tx3 = x2, Tx4 = x3, then it will
satisfy all the conditions of the Theorem 2.1 where

φ(t) =

{ √
t, if t > 0,

0, if t ≤ 0,

ψ(x, y) =

√
x+

√
y

2
,

a = 0.20, b = 0.75 and x2 is the unique fixed point of T in A
⋂

B.
In this example (X,F,∆1) is not a Menger space for any choice of t-norm ∆1 as can

be seen from the fact that

Fx3,x4(5) 6> ∆1(Fx3,x2(.5), Fx2 ,x4(4.5))

for any t-norm ∆1.
This shows that generalized Menger spaces are effective generalization of generalized

metric spaces.
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