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D−Recurrent Hopf Hypersurfaces of Sasakian Space Form

E.Abedi∗, M.Ilmakchi, Z.Nazari

Abstract. In this paper, we are studying recurrent Hopf hypersurfaces in the Sasakian space form
and prove that such hypersurface is the product of the Sasakian space form and the geodesic curve.
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1. Introduction

A differentiable manifold M̃2m+1 is said to have an almost contact structure if it admits
a (non-vanishing) vector field ξ , a one-form η and a (1, 1)−tensor field φ satisfying

η(ξ) = 1 , φ2 = −I + η ⊗ ξ,

where I denotes the field of identity transformations of the tangent spaces at all points.
These conditions imply that φξ = 0 and η ◦φ = 0, and that the endomorphism φ has rank
2m at every point in M̃2m+1. A manifold M̃2m+1, equipped with an almost contact struc-
ture (φ, ξ, η) is called an almost contact manifold and will be denoted by (M̃2m+1, (φ, ξ, η)).

Suppose that M̃2m+1 is a manifold carrying an almost contact structure. A Riemannian
metric g on M̃2m+1 satisfying

g(φX,φY ) = g(X,Y )− η(X)η(Y )

for all vector fields X and Y is called compatible with the almost contact structure, and
(M̃2m+1, (φ, ξ, η, g)) is said to be an almost contact metric structure on M̃2m+1. It is
known that an almost contact manifold always admits at least one compatible metric.
Note that putting Y = ξ yields

η(X) = g(X, ξ)

for all vector fields X tangent to M̃2m+1, which means that η is the metric dual of the
characteristic vector field ξ.
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A manifold M̃2m+1 is said to be a contact manifold if it carries a global one-form η

such that

η ∧ (dη)m 6= 0

everywhere on M . The one-form η is called the contact form.

A submanifoldM of a contact manifold M̃2m+1 tangent to ξ is called an invariant (resp.
anti-invariant) submanifold if φ(TpM) ⊂ TpM,∀p ∈ M (resp. φ(TpM) ⊂ T⊥

p M,∀p ∈ M).

A submanifold M tangent to ξ of a Riemannian contact manifold M̃2m+1 is called a
contact CR-submanifold if there exists a pair of orthogonal differentiable distributions D
and D⊥ on M such that:

1. TM = D ⊕D⊥ ⊕ Rξ, where Rξ is the 1−dimensional distribution spanned by ξ;

2. D is invariant by φ, i.e., φ(Dp) ⊂ Dp,∀p ∈ M ;

3. D⊥ is anti-invariant by φ, i.e., φ(D⊥
p ) ⊂ T⊥

p M,∀p ∈ M .

Let (M̃, φ, ξ, η, g̃) be a (2n + 1)-dimensional contact manifold such that

∇Xξ = −φX , (∇Xφ)Y = g̃(X,Y )ξ − η(Y )X,

where ∇ is a Levi-Chivita connection of M̃ . Then M̃ is called a Sasakian manifold.

A plane section π in TpM is called a φ−section if it is spanned by X and φX, where X
is a unit tangent vector orthogonal to ξ. The sectional curvature of a φ−section is called
a φ−sectional curvature. A Sasakian manifold with constant φ−sectional curvature c is
said to be a Sasakian space form and is denoted by M̃ (c).

The curvature tensor of a Sasakian space form M̃ (c) is given by [2]:

R̃(X,Y )Z =
c+ 3

4
{g̃(Y,Z)X − g̃(X,Z)Y }

−
c− 1

4
{η(Z)[η(Y )X − η(X)Y ] + [g̃(Y,Z)η(X) − g̃(X,Z)η(Y )]ξ

−g̃(φY,Z)φX + g̃(φX,Z)φY + 2g̃(φX, Y )φZ}

for any tangent vector fields X,Y,Z on M̃(c).

Definition 1. Let A be the shape operator of hypersurface M in M̃ and the plane spanned
by {ξ, U} be invariant subspace of A. Then the hypersurface M is called a Hopf hypersur-

face of M̃ .

Definition 2. Let T be a (1, 1) tensor field on the Riemannian manifold M . Then T is
called recurrent tensor field if (∇XT )Y = ω(X)TY where ω is a one-form and X,Y are
vector fields on M .
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Definition 3. Let (M,g) be a Riemannian manifold. Let SpM be the set of unit vectors
in TpM , that is

SpM = {z ∈ TpM | g(z, z) = 1}.

Then

SM =
⋃

p∈M

SpM = {z ∈ TM | g(z, z) = 1}

is called the unit sphere bundle of (M,g).

Definition 4. Let (M,g) be a Riemannian manifold and z ∈ SM . Then the restriction
Rz : z

⊥ → z⊥ of the linear map R(., z)z to z⊥ is called the Jacobi operator with respect to
z, that is Rzx = R(x, z)z, where x ∈ z⊥.

Definition 5. Let M be a hypersurface in M̃ and the Jacobi operator with respect to ξ

be recurrent all X in D. Then the hypersurface M is called D−Recurrent hypersurface of
M̃ .

2. D−Recurrent Hopf hypersurfaces of Sasakian space form

Let (M,g) be a real hypersurface tangent to ξ of Sasakian space form M(c) and N be
a unit normal vector field on M . Then we have

TM = D ⊕D⊥ ⊕ Rξ,

where D is φ-invariant subspace and D⊥ is a one-dimensional subspace spanned by U =
φ(N) which is orthogonal component of D. Let M be D−Recurrent Hopf hypersurface of
M :

(∇XRξ)Y = ω(X)Rξ(Y ) (1)

for all X in D and Y in span {ξ, φX}⊥ where ω is a one-form on M .

Lemma 1. Suppose M is a hypersurface of Sasakian space form M(c) with the unit normal
vector field N on M . Then ∇XU = −φAX for all X in D.

Proof. From Gauss formula and Sasakian equation we compute

∇XU + g(AX,U)N = −φAX

for all X in D. Considering the tangential and normal part, we have ∇XU = −φAX. J

Lemma 2. Suppose M is a hypersurface of Sasakian space form M(c) with the unit normal
vector field N on M . Then Aξ = U .

Proof. From Gauss formula and Sasakian equation we compute

∇Uξ + g(AU, ξ)N = −φU = N.
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Considering the tangential and normal part of the last relation we conclude

∇Uξ = 0 g(AU, ξ) = 1. (2)

We compute again to obtain

∇ξξ + g(Aξ, ξ)N = −φξ = 0.

Considering the tangential and normal part of this relation we conclude

∇ξξ = 0, g(Aξ, ξ) = 0 (3)

which implies that Aξ = U . J

From Gauss formula and Sasakian equation with the Weingarten formula and above
lemma we compute

∇ξU + g(AU, ξ)N = N.

and let AU = αU + βξ we have

∇UU + g(AU,U)N = −φAU = −αN.

Considering the tangential and normal part, we compute

∇ξU = 0 , ∇UU = 0 (4)

and AU = ξ + αU .
By analyzing with curvature tensor field we have

RξY = Y − g(y, ξ)ξ

for all Y in TM where R is Jacobi operator with respect to ξ of M . Now by the Codazzi
equation we have

RξY = Y − g(Y, ξ)ξ − g(Y,U)U

for all Y in TM . So we have

(∇XRξ)Y = g(y, φX)ξ + g(Y, ξ)φX − g(Y,U)φAX.

Hence from (1) we have

g(y, φX)ξ + g(Y, ξ)φX − g(Y,U)φAX = ω(X){y − g(Y, ξ)ξ − g(Y,U)U} (5)

Lemma 3. Let M be a hypersurface of Sasakian space form M(c) with the unit normal
vector field N on M . Then AX = 0 and ω(X) = 0 for all X in D.

Proof. In the equation (5) we set Y = U . Then φAX = 0 for all X in D. Thus,
AX = 0. If Y belongs to (span{φX})⊥, then from 5 we have

g(Y, φX)ξ = ω(X)Y

for all X in D. Thus, ω(X) = 0. J
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Lemma 4. The distribution D ⊕ span{ξ} is involutive in M .

Proof. Let us choose X,Y in D. Then, using Lemma 1, we have

g([X,Y ], U) = g(∇XY −∇Y X,U)

= −g(Y,∇XU) + g(X,∇Y U)

= g(Y, φAX) − g(X,φAY ) = 0.

On the other hand, using lemma 1 and 2, we obtain

g([X, ξ], U) = g(∇Xξ −∇ξX,U)

= −g(φX,U) − g(X,φAξ) = 0.

This shows that the distribution D ⊕ span{ξ} is involutive. J

Now we consider the integral submanifoldM ′ for distribution D⊕span{ξ} in M . Then
the following lemma holds:

Lemma 5. The integral submanifold M ′ is totally geodesic in M .

Proof. As M ′ is a hypersurface of M , we have

∇XY = ∇′
XY + g(A′X,Y )U , ∇XU = −A′X

for all X,Y in TM ′, where∇′ is a Levi-Chivita connection ofM ′ and A′ is a shape operator
of M ′ in M . Using lemmas 1, 2, 3 and equation (4), we conclude A′X = 0 for all X in
TM ′. As a result, M ′ is a totally geodesic hypersurface of M . J

Lemma 6. The submanifold M ′ in is totally geodesic M .

Proof. For all X,Y in TM ′, from lemma 3 and 5 we have

∇XY =∇XY + g(AX,Y )N

=∇′
XY + g(A′X,Y )U + g(AX,Y )N

=∇′
XY.

Otherwise, if one of X and Y is ξ or both of them are ξ, then using lemma 2 and equation
(3), we have

∇XY =∇XY + g(AX,Y )N

=∇′
XY + g(A′X,Y )U + g(AX,Y )N

=∇′
XY.

These results show that M ′ is a totally geodesic in M . submanifold. J

Lemma 7. The manifold M ′ is a Sasakian space form.
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Proof. We first take φ′ = φ|M and use the fact where D is invariant under φ. As M ′

is a totally geodesic submanifold in M from lemma 6 for all X,Y in M ′ we have

∇′
XY = ∇XY

and

(∇Xφ)Y =∇X(φY )− φ(∇XY )

=∇X(φY )− φ(∇XY )

= (∇Xφ)Y

= g̃(X,Y )ξ − η(Y )X

= g′(X,Y )ξ − η′(Y )X,

where η′ and g′ are restrictions of η and g on M , respectively. So (M ′, φ′, ξ, η′, g′) is a
(2n− 1)-dimensional contact manifold. Now, by the Gauss equation, the curvature tensor
R′ of M ′ satisfies

g′(R′(X,Y )Z,W ) = g(R(X,Y )Z,W )

+g(AY,Z)g(AX,W ) − g(AX,Z)g(AY,W )

+g(A′Y,Z)g(A′X,W )− g(A′X,Z)g(A′Y,W )

= (
c+ 3

4
)[g(Y,Z)g(X,W ) − g(X,Z)g(Y,W )]

+(
c− 1

4
)[g(X,φZ)g(φY,W ) − g(Y, φZ)g(φX,W )

+2g(X,φY )g(φZ,W )]

for all X,Y,Z,W in TM , so

H(X ′) = Rλ(X ′, φX ′) = gλ(Rλ(X ′, φX ′)φX ′,X ′) = c

This shows that the M ′ is a Sasakian space form. J

Now consider the integral curve of the vector field U and denote it as γ(t). In other
words, γ′(t) = U . Hence the following theorem holds:

Theorem 1. Let M be a Sasakian space form with the condition (1), and let M be a Hopf
hypersurface of M . Then M is a locally product of M ′ × γ, where M ′ is a totally geodesic
Sasakian space form and γ is a geodesic curve of M.

Proof. With above conditions it is sufficient to show that

∇TM ′TM ′ ⊆ TM ′ , ∇UU = 0 , ∇UTM
′ = 0 , ∇TM ′U = 0.

For this purpose first note that

g(∇XY,U) = −g(Y,∇XU)
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for all X,Y in TM ′. Equations (2), (3) and (4) and lemmas 1, 2 and 3 imply the above
relation. Hence, by de Rham decomposition theorem [7], M is locally isometric to the
Riemannian product of the maximal integral manifolds M ′ and γ. By lemma 7, M is
locally isometric to the Riemannian product of Sasakian space form M ′(c) and curve γ.
J
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