On edge neighborhood graphs-II

Salar Y. Alsardary *, Ali A. Ali, K. Balasubramanian

Abstract

Let G be an undirected, simple, connected graph e and $e=u v$ be an edge of G. Let $N_{G}(e)$ be the subgraph of G induced by the set of all vertices of G which are not incident to e but are adjacent to at least one end vertex of $e . N_{e}$ is the class of all graphs H such that, for some graph $G, N_{G}(e) \cong H$ for every edge e of G. Zelinka [6] studied edge neighborhood graphs and obtained some special graphs in N_{e}. Ali and Alsardary [1] obtained some other graphs in N_{e}. In this paper we give some new graphs in N_{e} and investigate some properties of the city graphs.

Key Words and Phrases: edge neighborhood graph
2010 Mathematics Subject Classifications: 05C07

1. Introduction

Let G be an undirected, simple, connected graph and $e=u v$ be an edge of G. Let U be the set of all vertices of G that are adjacent to at least one of the vertices $\{u, v\}$ and let $U_{e}=U-\{u, v\}$. Then the induced subgraph $\left\langle U_{e}\right\rangle$ is called the edge neighborhood graph of e in G and is denoted by $N_{G}(e)$. Let $N(e)$ be the class of all graphs H such that, for some graph $G, N_{G}(e) \cong H$ for every edge e of G.

See [4] and [7] for the background material. We follow the notation and terminology of Harary [3] and Tutte [5].

Zelinka [6] has proved that N_{e} includes the following graphs:
(i) K_{n} for every positive integer n.
(ii) for every pair of positive integers m, n.
(iii) Cycles C_{4}, C_{6}, C_{8}.
(iv) Q_{1}, Q_{2}, Q_{3} where Q_{n} is the cube of dimension n.
(v) $K_{n, n}^{*}$ where $K_{n, n}^{*}$ is obtained from $K_{n, n}$ by deleting edges of a maximum matching.

Balasubramanian and Alsardary [2] has proved that N_{e} includes the following graphs: (vi) $n K_{2}$ for every positive integer n.
(vii) $2 K_{1} \cup 2 K_{2}$.
(viii) $K_{m-1, m-1, m, \ldots, m}$, the complete k-partite graph for every positive integer $m \geq 2$ and $k \geq 3$.

* Corresponding author.

Moreover, Ali and Alsardary [1] has proved that N_{e} includes the following graphs: (ix) $n K_{1}$ for every positive integer n.
(x) $K_{1} \cup 2 K_{2}$.
(xi) The line graph $L\left(K_{3, m}^{+}\right)$, where $K_{3, m}^{+}$is the graph obtained from $K_{3, m}$ by joining two vertices of the independent subset V_{1}, with $\left[V_{1}\right]=3$ and $\left[V_{2}\right]=m$. (xii) $K_{n} \bigcup\left(K_{2} \times K_{m}\right)$ for any positive integers m, n where K_{n} is disjoint from $K_{2} \times K_{m}$, and $K_{2} \times K_{m}$ is the Cartesian product of K_{2} and K_{m}.

Definition 1. Let H and G be graphs such that $H \cong N_{G}(e)$ for every edge e of G. We call G a city (or required [6]) graph containing the neighborhood H and represent it by C_{H}.

In the present work, we obtain new edge neighborhood graphs and give some properties of the city graphs.

2. New Edge Neighborhood Graphs

Proposition 1. Every cubic connected graph G of girth ≥ 5 is a city graph containing $4 K_{1}$
Proof. Obvious
Note. Proposition 1 makes it clear that for $H \in N_{e}$, the city graph containing H is not necessarily unique. As for $H=4 K_{1}$, any of the following graphs can be taken as a city containing $4 K_{1}$:

Cube, Dodecahedron, Heawood, Petersen, McGee, Tutte-Coxeter, Grinberg and Tutte graphs.

Definition 2. Let G be a labeled graph and let $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ be an enumeration of the vertices of G. Let $\left(n_{1}, n_{2}, \ldots, n_{p}\right)$ be a finite sequence of non-negative integers such that $\sum_{i} n_{i}>0$. We define $G\left(n_{1}, n_{2}, \ldots, n_{p}\right)$ as follows:
For $i=1,2, \ldots, p$, let $V_{i}=\left\{v_{i}^{1}, v_{i}^{2}, \ldots, v_{i}^{n_{i}}\right\}$ if $n_{i}>0, V_{i}=\phi$ if $n_{i}=0$. Then the vertex set of $G\left(n_{1}, n_{2}, \ldots, n_{p}\right)$ is $\bigcup_{i=1}^{p} V_{i}$. We join v_{i}^{α} and v_{j}^{β} if and only if, $i \neq j$ and v_{i} and v_{j} are adjacent in G

Many interesting class of graphs can be brought under the definition.
(i) Let $G=K_{1}$. Then $G\left(n_{1}\right)=n_{1} K_{1}$.
(ii)Let $G=P_{1}$ be a path of length 1. Then $G(m, n)=K_{m, n}$.
(iii)Let $G=C_{3}$ be a three-cycle. Then $G(m, n, p)=K_{m, n, p}$.

Proposition 2. Let $G=C_{4}$. Then for every positive integer $m, G(m-1, m-1, m, m) \in$ N_{e}.

Proof. Clearly $G(m, m, m, m)$ is a city containing the neighbourhood $G(m-1, m-$ $1, m, m)$.

Proposition 3. Let $H=P_{3}=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$. Then $H(m, m-1, m-1, m) \in N_{e}$ for every positive integer m.

Proof. Let $G=C_{n}=\left(v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right), n \geq 5$. Then $G(m, m, \ldots, m(n$ times $))$ is a city containing the neighbourhood $P_{3}(m, m-1, m-1, m)$.

In connection with Proposition 2, we have the following result:
Proposition 4. Let $G=K_{s, t}$ be a complete bipartite graph of vertices $v_{1}, v_{2}, \ldots, v_{s} ; v_{s+1}, v_{s+2}, \ldots, v_{s+t}$. Then $G(m, m, \ldots, m)$ is the city graph containing the neighbourhood $G(m-1, m, m, \ldots, m$; $m-1, m, m, \ldots, m)$.

Proposition 5. Let G be a complete graph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then $G(m-$ $1, m-1, m, \ldots, m) \in N_{e}$ for every positive integer m.

Proof. Clearly, $G(m, m, \ldots, m)$ is a city graph containing the neighbourhood $G(m-$ $1, m-1, m, \ldots, m)$.

Proposition 6. Let $G=Q_{3}$ and $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{8}\right\}$. Then $G(m-1, m-1, m, m, m, m, 0,0) \in$ N_{e}, for every positive integer m.

Proof. One may easily check that $G(m, m, m, \ldots, m(8 t i m e s))$ is a city graph containing $G(m-1, m-1, m, m, m, m, 0,0)$.

We think that for $n \geq 4, Q_{n}\left(m, m, \ldots,\left(2^{n}\right.\right.$ times $\left.)\right)$ is a city graph containing $Q_{n}(m-$ $1, m-1, m, \ldots, m, 0, \ldots 0)$ in which m is repeated $2(n-1)$ times, and 0 is repeated $\left(2^{n}-2 n\right)$ times.

In view of Propositions 2-6, we may propose the following conjecture:
Conjecture. Let G be a city graph containing a neighbourhood F, and let $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. Then for every positive integer $m, G(m, m, m, \ldots, m(p t i m e s))$ is a city graph containing some neighbourhood graph.

3. Some Properties of City Graphs

In this section we study some useful properties of the city graphs, especially those not containing triangles. Let G be a city graph containing H. First we shall present some simple propositions.

Proposition 7. If G contains no triangles, then for each edge $e=u v$ of G,

$$
d_{G}(u)+d_{G}(v)=|H|+2,
$$

where $|H|$ denotes the order of H, and $d_{G}()$ is the degree of vertex () in the graph G.

Proof. From the definition of the edge neighbourhood graphs, each vertex of $N_{G}(e)$ is adjacent with u or v but not with both of them. Thus,

$$
d_{G}(u)+d_{G}(v)-2=\left|N_{G}(e)\right|=|H|,
$$

for each edge $e=u v$ of
Definition 3. A graph G is called edge-regular r of degree r if each edge of G is adjacent with exactly r edges, i.e., $L(G)$ is r-regular.
From Proposition 7 it is clear that if G has no triangles, then it is edge-regular of degree $|H|$.
Proposition 8. Let $P=x_{1} x_{2} \ldots x_{k}, k \geq 3$, be a path of a city graph G containing H. If G has no triangles, then

$$
d_{G}\left(x_{i}\right)=\left\{\begin{array}{l}
r \quad, \quad \text { for all odd } i \leq k \\
|H|+2-r, \text { for all even } i \leq k
\end{array}\right.
$$

where $r=d_{G}\left(x_{1}\right)$.
Proof. From Proposition 7, for each $i=1,2,, \ldots, k-2$,

$$
d_{G}\left(x_{i}\right)+d_{G}\left(x_{i+1}\right)=d_{G}\left(x_{i+1}\right)+d_{G}\left(x_{i+2}\right)=|H|+2 .
$$

Thus,

$$
d_{G}\left(x_{i}\right)=d_{G}\left(x_{i+2}\right), i=1,2, \ldots, k-2
$$

Therefore,

$$
d_{G}\left(x_{i}\right)=r, \text { for odd } i \leq k
$$

and

$$
d_{G}\left(x_{i}\right)=|H|+2-r, \text { for even } i \leq k .
$$

If the degree of each vertex of a graph G is r or s then it is called (r, s)-regular.
Theorem 1. If G is a city graph containing H and G is without triangles, then is (r, s) regular with $r+s=|H|+2$.

Proof. Let W be the set of all vertices of G of degree r or s such that $r+s=|H|+2$. From Proposition $9, W \neq \phi$. Let $<W\rangle$ be the subgraph of G induced by W. If $<W>\neq G$, then there is a vertex x of G not in W which is adjacent to a vertex $y \in W$. From Proposition 7,

$$
d_{G}(x)+d_{G}(y)=|H|+2 .
$$

Thus, x is either of degree r or s, and hence x must belong to W. Hence $<W>=G$, and so G is (r, s)-regular.

Theorem 2. If G is a city graph containing a graph H without triangles and contains an odd cycle C_{k} of length $k \geq 5$, then is regular of degree $\frac{1}{2}|H|+1$.

Proof. Let $C_{k}=x_{1} x_{2} \ldots x_{k} x_{1}$. Then, by Proposition 8 ,

$$
\begin{gathered}
d_{G}\left(x_{1}\right)=d_{G}\left(x_{3}\right)=\ldots=d_{G}\left(x_{k}\right) \\
d_{G}\left(x_{2}\right)=d_{G}\left(x_{4}\right)=\ldots=d_{G}\left(x_{k-1}\right)=d_{G}\left(x_{1}\right)
\end{gathered}
$$

By Proposition 7,

$$
d_{G}\left(x_{1}\right)+d_{G}\left(x_{2}\right)=|H|+2
$$

Thus,

$$
d_{G}\left(x_{i}\right)=\frac{1}{2}|H|+1, \quad i=1,2, \ldots, k
$$

Now, let y be any vertex in not on C_{k}. Since is connected, then there is a path between y and x_{1}. Thus, by Proposition 9 , either

$$
d_{G}(y)=d_{G}\left(x_{1}\right) \text { or } d_{G}(y)+d_{G}\left(x_{1}\right)=|H|+2
$$

and so

$$
d_{G}(y)=\frac{1}{2}|H|+1
$$

Hence G is regular of degree $\frac{1}{2}|H|+1$.

Corollary 1. If H has an odd order, then any city graph G containing H is either bipartite or contains a triangle.

Proof. If G has no triangles, then it has no cycles C_{k} of odd length $k \geq 5$, since otherwise G will be regular of degree $\frac{1}{2}|H|+1$, which means that H should be of even order. Thus, G is bipartite.

We deduce from Corollary 1 that every city graph of an odd cycle must contain a triangle. This fact may help to prove that $C_{k} \notin N_{e}$, for odd $k \geq 7$. Zelinka [6] proved that $C_{5} \notin N_{e}$.

Corollary 2. If G is a city graph containing Hand is without triangles, then either G is $\frac{1}{2}|H|+1$-regular or (r, s)-regular with $r \neq s$ and $r+s=|H|+2$. In the latter case G is bipartite $\left(V_{1}, V_{2} ; E\right)$ with V_{1} (respectively $\left.V_{2}\right)$ is the set of all vertices of degree r (respectively).

References

[1] Ali A. Ali and Salar Y. Alsardary, New edge neighborhood graphs, Czech. Math. J., 47-122, Praha 501-504 (1997).
[2] K. Balasubramanian and Salar Y. Alsardary, On edge neighborhood graphs-I, (Communicated, Kyungpook Mathematical Journal).
[3] F. Harary, "Graph Theory", 2nd ed., Addison-Wesley, Reading, Massachusetts (1971).
[4] Sedlacek, Local properties of graphs, (Czech) Casop. Pest. Mat. 106, 290-298 (1981).
[5] W. T. Tutte, "Connectivity in Graphs", Univ. Toronto press, Toronto, (1966).
[6] B. Zelinka, Liberic, Edge neighborhood graphs, Czech. Math. J., 36-111, Praha 44-47 (1986).
[7] A. A. Zykov, "Theory of Graphs and its applications", Proc. Symp. Smolenice 1963, Acadimia Prague (1964).

Salar Y. Alsardary
Department of Mathematics, Physics, 8 Statistics, University of the Sciences, 600 South 43RD Street, Philadelphia, PA 19104, USA
E-mail: s.alsard@usciences.edu
Ali A. Ali
Department of Mathematics, University of Mosul, Mosul, Iraq
E-mail: ali_aziz_1933@yahoo.com
K. Balasubramanian

Department of Mathematics, Indian Institute of Technology, Madras 600036, India
E-mail:k.balasubramanian@iit.in
Received 19 October 2011
Accepted 13 April 2012

