Azerbaijan Journal of Mathematics V. 2, No 2, 2012, July ISSN 2218-6816

On edge neighborhood graphs-II

Salar Y. Alsardary *, Ali A. Ali, K. Balasubramanian

Abstract. Let G be an undirected, simple, connected graph e and e = uv be an edge of G. Let $N_G(e)$ be the subgraph of G induced by the set of all vertices of G which are not incident to e but are adjacent to at least one end vertex of e. N_e is the class of all graphs H such that, for some graph G, $N_G(e) \cong H$ for every edge e of G. Zelinka [6] studied edge neighborhood graphs and obtained some special graphs in N_e . Ali and Alsardary [1] obtained some other graphs in N_e . In this paper we give some new graphs in N_e and investigate some properties of the city graphs.

Key Words and Phrases: edge neighborhood graph

2010 Mathematics Subject Classifications: 05C07

1. Introduction

Let G be an undirected, simple, connected graph and e = uv be an edge of G. Let U be the set of all vertices of G that are adjacent to at least one of the vertices $\{u, v\}$ and let $U_e = U - \{u, v\}$. Then the induced subgraph $\langle U_e \rangle$ is called the *edge neighborhood* graph of e in G and is denoted by $N_G(e)$. Let N(e) be the class of all graphs H such that, for some graph G, $N_G(e) \cong H$ for every edge e of G.

See [4] and [7] for the background material. We follow the notation and terminology of Harary [3] and Tutte [5].

Zelinka [6] has proved that N_e includes the following graphs:

(i) K_n for every positive integer n.

(ii) for every pair of positive integers m, n.

(iii) Cycles C_4, C_6, C_8 .

(iv) Q_1, Q_2, Q_3 where Q_n is the cube of dimension n.

(v) $K_{n,n}^*$ where $K_{n,n}^*$ is obtained from $K_{n,n}$ by deleting edges of a maximum matching.

Balasubramanian and Alsardary [2] has proved that N_e includes the following graphs: (vi) nK_2 for every positive integer n.

(vii) $2K_1 \bigcup 2K_2$.

(viii) $K_{m-1,m-1,m,\ldots,m}$, the complete k-partite graph for every positive integer $m \ge 2$ and $k \ge 3$.

http://www.azjm.org

© 2010 AZJM All rights reserved.

^{*}Corresponding author.

Moreover, Ali and Alsardary [1] has proved that N_e includes the following graphs: (ix) nK_1 for every positive integer n.

(x) $K_1 \bigcup 2K_2$.

(xi) The line graph $L(K_{3,m}^+)$, where $K_{3,m}^+$ is the graph obtained from $K_{3,m}$ by joining two vertices of the independent subset V_1 , with $[V_1] = 3$ and $[V_2] = m$. (xii) $K_n \bigcup (K_2 \times K_m)$ for any positive integers m, n where K_n is disjoint from $K_2 \times K_m$,

and $K_2 \times K_m$ is the Cartesian product of K_2 and K_m .

Definition 1. Let H and G be graphs such that $H \cong N_G(e)$ for every edge e of G. We call G a city (or required [6]) graph containing the neighborhood H and represent it by C_H .

In the present work, we obtain new edge neighborhood graphs and give some properties of the city graphs.

2. New Edge Neighborhood Graphs

Proposition 1. Every cubic connected graph G of girth ≥ 5 is a city graph containing $4K_1$

Proof. Obvious.◀

Note. Proposition 1 makes it clear that for $H \in N_e$, the city graph containing H is not necessarily unique. As for $H = 4K_1$, any of the following graphs can be taken as a city containing $4K_1$:

Cube, Dodecahedron, Heawood, Petersen, McGee, Tutte-Coxeter, Grinberg and Tutte graphs.

Definition 2. Let G be a labeled graph and let $\{v_1, v_2, ..., v_p\}$ be an enumeration of the vertices of G. Let $(n_1, n_2, ..., n_p)$ be a finite sequence of non-negative integers such that $\sum_i n_i > 0$. We define $G(n_1, n_2, ..., n_p)$ as follows:

For i = 1, 2, ..., p, let $V_i = \{v_i^1, v_i^2, ..., v_i^{n_i}\}$ if $n_i > 0$, $V_i = \phi$ if $n_i = 0$. Then the vertex set of $G(n_1, n_2, ..., n_p)$ is $\bigcup_{i=1}^p V_i$. We join v_i^{α} and v_j^{β} if and only if, $i \neq j$ and v_i and v_j are adjacent in G

Many interesting class of graphs can be brought under the definition.

(i) Let $G = K_1$. Then $G(n_1) = n_1 K_1$.

(ii)Let $G = P_1$ be a path of length 1. Then $G(m, n) = K_{m,n}$.

(iii)Let $G = C_3$ be a three-cycle. Then $G(m, n, p) = K_{m,n,p}$.

Proposition 2. Let $G = C_4$. Then for every positive integer $m, G(m-1, m-1, m, m) \in N_e$.

Proof. Clearly G(m, m, m, m) is a city containing the neighbourhood G(m - 1, m - 1, m, m).

Proposition 3. Let $H = P_3 = (v_1, v_2, v_3, v_4)$. Then $H(m, m-1, m-1, m) \in N_e$ for every positive integer m.

Proof. Let $G = C_n = (v_1, v_2, ..., v_n, v_1), n \ge 5$. Then $G(m, m, ..., m \ (n \ times))$ is a city containing the neighbourhood $P_3(m, m - 1, m - 1, m)$.

In connection with Proposition 2, we have the following result:

Proposition 4. Let $G = K_{s,t}$ be a complete bipartite graph of vertices $v_1, v_2, \ldots, v_s; v_{s+1}, v_{s+2}, \ldots, v_{s+t}$. . Then $G(m, m, \ldots, m)$ is the city graph containing the neighbourhood $G(m-1, m, m, \ldots, m)$; $m-1, m, m, \ldots, m$).

Proposition 5. Let G be a complete graph with $V(G) = \{v_1, v_2, \dots, v_n\}$. Then $G(m - 1, m - 1, m, \dots, m) \in N_e$ for every positive integer m.

Proof. Clearly, $G(m, m, \ldots, m)$ is a city graph containing the neighbourhood $G(m - 1, m - 1, m, \ldots, m)$.

Proposition 6. Let $G = Q_3$ and $V(G) = \{v_1, v_2, ..., v_8\}$. Then $G(m-1, m-1, m, m, m, m, 0, 0) \in N_e$, for every positive integer m.

Proof. One may easily check that $G(m, m, m, \dots, m(8times))$ is a city graph containing G(m-1, m-1, m, m, m, m, 0, 0).

We think that for $n \ge 4$, $Q_n(m, m, \dots, (2^n times))$ is a city graph containing $Q_n(m-1, m-1, m, \dots, m, 0, \dots, 0)$ in which m is repeated 2(n-1) times, and 0 is repeated $(2^n - 2n)$ times.

In view of Propositions 2-6, we may propose the following conjecture: **Conjecture.** Let G be a city graph containing a neighbourhood F, and let $V(G) = \{v_1, v_2, \dots, v_p\}$. Then for every positive integer m, $G(m, m, m, \dots, m(ptimes))$ is a city graph containing some neighbourhood graph.

3. Some Properties of City Graphs

In this section we study some useful properties of the city graphs, especially those not containing triangles. Let G be a city graph containing H. First we shall present some simple propositions.

Proposition 7. If G contains no triangles, then for each edge e = uv of G,

$$d_G(u) + d_G(v) = |H| + 2,$$

where |H| denotes the order of H, and $d_G()$ is the degree of vertex () in the graph G.

Proof. From the definition of the edge neighbourhood graphs, each vertex of $N_G(e)$ is adjacent with u or v but not with both of them. Thus,

$$d_G(u) + d_G(v) - 2 = |N_G(e)| = |H|,$$

for each edge e = uv of .

Definition 3. A graph G is called edge-regular r of degree r if each edge of G is adjacent with exactly r edges, i.e., L(G) is r-regular.

From Proposition 7 it is clear that if G has no triangles, then it is edge-regular of degree |H|.

Proposition 8. Let $P = x_1 x_2 \dots x_k$, $k \ge 3$, be a path of a city graph G containing H. If G has no triangles, then

$$d_G(x_i) = \begin{cases} r &, \text{ for all odd } i \leq k \\ |H| + 2 - r, \text{ for all even } i \leq k \end{cases}$$

where $r = d_G(x_1)$.

Proof. From Proposition 7, for each i = 1, 2, ..., k - 2,

$$d_G(x_i) + d_G(x_{i+1}) = d_G(x_{i+1}) + d_G(x_{i+2}) = |H| + 2$$

Thus,

$$d_G(x_i) = d_G(x_{i+2}), \ i = 1, 2, ..., k-2$$

Therefore,

$$d_G(x_i) = r$$
, for odd $i \le k$

and

$$d_G(x_i) = |H| + 2 - r$$
, for even $i \leq k$.

If the degree of each vertex of a graph G is r or s then it is called (r, s)-regular.

Theorem 1. If G is a city graph containing H and G is without triangles, then is (r, s)-regular with r + s = |H| + 2.

Proof. Let W be the set of all vertices of G of degree r or s such that r + s = |H| + 2. From Proposition 9, $W \neq \phi$. Let $\langle W \rangle$ be the subgraph of G induced by W. If $\langle W \rangle \neq G$, then there is a vertex x of G not in W which is adjacent to a vertex $y \in W$. From Proposition 7,

$$d_G(x) + d_G(y) = |H| + 2.$$

Thus, x is either of degree r or s, and hence x must belong to W. Hence $\langle W \rangle = G$, and so G is (r, s)-regular.

Theorem 2. If G is a city graph containing a graph H without triangles and contains an odd cycle C_k of length $k \ge 5$, then is regular of degree $\frac{1}{2}|H| + 1$.

Proof. Let $C_k = x_1 x_2 \dots x_k x_1$. Then, by Proposition 8,

$$d_G(x_1) = d_G(x_3) = \dots = d_G(x_k),$$

$$d_G(x_2) = d_G(x_4) = \dots = d_G(x_{k-1}) = d_G(x_1).$$

By Proposition 7,

$$d_G(x_1) + d_G(x_2) = |H| + 2$$

Thus,

$$d_G(x_i) = \frac{1}{2} |H| + 1, \ i = 1, 2, ..., k.$$

Now, let y be any vertex in not on C_k . Since is connected, then there is a path between y and x_1 . Thus, by Proposition 9, either

 $d_G(y) = d_G(x_1)$ or $d_G(y) + d_G(x_1) = |H| + 2$, and so

$$d_G(y) = \frac{1}{2}|H| + 1.$$

Hence G is regular of degree $\frac{1}{2}|H| + 1.$

Corollary 1. If H has an odd order, then any city graph G containing H is either bipartite or contains a triangle.

Proof. If G has no triangles, then it has no cycles C_k of odd length $k \ge 5$, since otherwise G will be regular of degree $\frac{1}{2}|H| + 1$, which means that H should be of even order. Thus, G is bipartite.

We deduce from Corollary 1 that every city graph of an odd cycle must contain a triangle. This fact may help to prove that $C_k \notin N_e$, for odd $k \ge 7$. Zelinka [6] proved that $C_5 \notin N_e$.

Corollary 2. If G is a city graph containing H and is without triangles, then either G is $\frac{1}{2}|H|+1$ -regular or (r,s)-regular with $r \neq s$ and r+s = |H|+2. In the latter case G is bipartite $(V_1, V_2; E)$ with V_1 (respectively V_2) is the set of all vertices of degree r (respectively).

References

- Ali A. Ali and Salar Y. Alsardary, New edge neighborhood graphs, Czech. Math. J., 47-122, Praha 501-504 (1997).
- [2] K. Balasubramanian and Salar Y. Alsardary, On edge neighborhood graphs-I, (Communicated, Kyungpook Mathematical Journal).
- [3] F. Harary, "Graph Theory", 2nd ed., Addison-Wesley, Reading, Massachusetts (1971).
- [4] Sedlacek, Local properties of graphs, (Czech) Casop. Pest. Mat. 106, 290-298 (1981).
- [5] W. T. Tutte, "Connectivity in Graphs", Univ. Toronto press, Toronto, (1966).
- [6] B. Zelinka, Liberic, Edge neighborhood graphs, Czech. Math. J., 36-111, Praha 44-47 (1986).
- [7] A. A. Zykov, "Theory of Graphs and its applications", Proc. Symp. Smolenice 1963, Acadimia Prague (1964).

Salar Y. Alsardary Department of Mathematics, Physics, & Statistics, University of the Sciences, 600 South 43RD Street, Philadelphia, PA 19104, USA E-mail: s.alsard@usciences.edu

Ali A. Ali Department of Mathematics, University of Mosul, Mosul, Iraq E-mail: ali_aziz_1933@yahoo.com

K. Balasubramanian Department of Mathematics, Indian Institute of Technology, Madras 600036, India E-mail:k.balasubramanian@iit.in

Received 19 October 2011 Accepted 13 April 2012