
Azerbaijan Journal of Mathematics
V. 3, No 1, 2013, January
ISSN 2218-6816

A review of some results on ridge function approximation

Vugar E. Ismailov

Abstract. This paper reviews some results on approximation of multivariate functions by sums
of ridge functions with fixed directions.

Key Words and Phrases: Ridge function; Best approximation; Proximinality; Cycle; Path;
Orbit.

2000 Mathematics Subject Classifications: 41A30, 41A50, 41A63

1. Introduction

Last 20 years have seen a tremendous interest to the theory of approximation of mul-
tivariate functions by so-called ridge functions. This is first due to the great importance
of such functions in popular application areas such as computerized tomography (see,
e.g., [38-40,47,51,55]), statistics (see, e.g., [7,8,12,16,21]) and neural networks (see, e.g.,
[9,22,48, 57,59, 62,63,69,70]). A ridge function is a multivariate function of the form
g (a · x), where g is a univariate function, a = (a1, ..., an) is a vector (direction) different
from zero, x = (x1, ..., xn) is a variable and a · x =

∑n
i=1 aixi. The vector a is called a

direction of the function g (a · x). It should be remarked that long before the appearance
of the name “ridge”, these functions have been used in the theory of partial differential
equations under the name of plane waves (see, e.g., [37]). For example, assume that
(αi, βi), i = 1, ..., r, are pairwise linearly independent vectors in R

2. Then the general
solution to the homogeneous partial differential equation

r∏

i=1

(
αi

∂

∂x
+ βi

∂

∂y

)
u (x, y) = 0,

where the derivatives are understood in the sense of distributions, are all functions of the
form

u(x, y) =
r∑

i=1

gi (βix− αiy) ,

for arbitrary continuous univariate functions gi, i = 1, ..., r. The term “ridge function” was
coined by Logan and Shepp in their seminal paper [47] dedicated to the basic mathematical
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problem of computerized tomography. The problem consists of reconstructing a given
multivariate function from values of its integrals along certain lines in the plane. The
integrals along parallel lines can be considered as a ridge function. Thus, the problem is
to reconstruct f from some set of ridge functions generated by the function f itself. In
practice, one can consider only a finite number of directions along which the above integrals
are taken. Obviously, reconstruction from such data needs some additional conditions to
be unique, since there are many functions g having the same integrals. For uniqueness,
Logan and Shepp [47] used the criterion of minimizing the L2 norm of g. That is, they
found a function g(x) with the minimum L2 norm among all functions, which has the same
integrals as f . More precisely, let D be the unit disk in the plane and a function f(x, y)
be square integrable and supported on D. We are given projections Pf (t, θ) (integrals of
f along the lines x cos θ + y sin θ = t) and looking for a function g = g(x, y) of minimum
L2 norm, which has the same projections as f : Pg(t, θj) = Pf (t, θj), j = 0, 1, ..., n − 1,
where angles θj generate equally spaced directions, i.e. θj = jπ

n , j = 0, 1, ..., n − 1. The
authors of [47] showed that this problem of tomography is equivalent to the problem of
L2-approximation of a given function f by sums of ridge functions with equally spaced
directions (cos θj, sin θj), j = 0, 1, ..., n − 1. They gave a closed-form expression for the
unique function g(x, y) and showed that the unique polynomial P (x, y) of degree n − 1
which best approximates f in L2(D) is determined from the above n projections of f and
can be represented as a sum of n ridge functions.

Kazantsev [38] solved the above problem of tomography without requiring that the
considered directions be equally spaced. Marr [51] considered the problem of finding a
polynomial of degree n − 2 whose projections along lines joining each pair of n equally
spaced points on the circumference of D best match the given projections of f in the sense
of minimizing the sum of squares of the differences. Thus we see that the problems of
tomography give rise to an independent study of approximation theoretic properties of
the following set of ridge functions with fixed directions:

R
(
a1, ...,ar

)
=

{
r∑

i=1

gi
(
ai · x

)
: gi : R → R, i = 1, ..., r

}
,

where directions a1, ...,ar are fixed and belong to n−dimensional Euclidean space. Note
that the set R

(
a1, ...,ar

)
is a linear space.

Ridge function approximations appear also in statistics in Projection Pursuit. This
term was introduced by Friedman and Tukey [15] to name a technique for the explanatory
analysis of large and multivariate data sets. This technique seeks out “interesting” linear
projections of the multivariate data onto a line or a plane. Projection Pursuit algorithms
approximate a multivariate function f(x1, ..., xn) by sums of ridge functions with variable
directions, that is, by functions from the set

Rr =

{
r∑

i=1

gi
(
ai · x

)
: ai ∈ R

n \ {0}, gi : R → R, i = 1, ..., r

}
.

Here r is the only fixed parameter, directions a1, ...,ar and functions g1, ..., gr are free to
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choose. The first method of such approximation was developed by Friedman and Stuetzle
[16]. Their approximation process called projection pursuit regression (PPR) operates in
a stepwise and greedy fashion. The process does not find a best approximation from Rr,
it algorithmically constructs functions gr ∈ Rr, such that ‖gr − f‖L2

→ 0 as r → ∞. At
stage m, PPR looks for a univariate function gm and direction am such that the ridge

function gm (am · x) best approximates the residual f(x)−
m−1∑
j=1

gj
(
aj · x

)
. Projection pur-

suit regression has been proposed as an approach to bypass the curse of dimensionality
and now is applied to prediction in applied sciences. In [7,8], Candes developed a new ap-
proach based not on stepwise construction of approximation but on a new transform called
the ridgelet transform. The ridgelet transform represents general functions as integrals of
ridgelets - specifically chosen ridge functions.

The significance of approximation by ridge functions can be well understood from
its role in the theory of neural networks. Ridge functions appear in the definitions of
many central neural network models. It is a broad knowledge that neural networks are
being successfully applied across an extraordinary range of problem domains, in fields
as diverse as finance, medicine, engineering, geology and physics. Generally speaking,
neural networks are being introduced anywhere that there are problems of prediction,
classification or control. Thus not surprisingly, there is a great interest to this powerful
and very popular area of research (see, e.g., [59] and a great deal of references therein). An
artificial neural network is a way to perform computations using networks of interconnected
computational units vaguely analogous to neurons simulating how our brain solves them.
An artificial neuron, which forms the basis for designing neural networks, is a device with
n real inputs and an output. This output is generally a ridge function of the given inputs.
In mathematical terms, a neuron may be described by

y = σ(w · x− θ),

where x = (x1, ..., xn) ∈ R
n are the input signals, w = (w1, ..., wn) ∈ R

n are the synaptic
weights, θ ∈ R is the bias, σ is the activation function and y is the output signal of the
neuron. In a layered neural network the neurons are organized in the form of layers.
We have at least two layers: an input and an output layer. The layers between the
input and the output layer (if any) are called hidden layers, whose computation nodes
are correspondingly called hidden neurons or hidden units. The output signals of the first
layer are used as inputs to the second layer, the output signals of the second layer are
used as inputs to the third layer, and so on for the rest of the network. Neural networks
with this kind of architecture is called as multilayer feedforward perceptron (MLP). This
is the most popular model among other neural network models. In this model, a neural
network with a single hidden layer and one output represents a function of the form

r∑

i=1

ciσ(w
i·x− θi).

Here the weights wi are vectors in R
n, the thresholds θi and the coefficients ci are real

numbers and the activation function σ is a univariate function. We fix only σ and r. Note
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that the functions σ(wi·x − θi) are ridge functions. Thus, it is not surprising that some
approximation theoretic problems concerned with neural nets have strong association with
the corresponding problems of approximation by ridge functions.

As indicated above, approximation by members of the set R
(
a1, ...,ar

)
is of great

importance in mathematical problems of computerized tomography. This type of approx-
imation is also essential in applications, where it is required to approximate complicated
multivariate function by functions of simple structure. Note that when the directions co-
incide with the basic directions of the considered space, the approximation from the set
R
(
a1, ...,ar

)
turns into the problem of approximation of multivariate functions by sums of

univariate functions. The last subject has been within research interests of many authors
(see e.g. [41] and a great deal of references therein).

Representability of polynomials by sums of ridge functions is a building block for many
results. In many works (see, e.g., [59]), the following fact is fundamental:

Every multivariate polynomial h(x) = h(x1, ..., xn) of degree k can be represented in
the form

h(x) =
r∑

i=1

pi(a
i · x),

where pi is a univariate polynomial, ai ∈ R
n, and r =

(n−1+k
k

)
.

For example, for the representation of a bivariate polynomial of degree k, it is needed
k + 1 univariate polynomials and k + 1 directions (see [47]). The proof of this fact is
organized so that the directions ai, i = 1, ..., r, are chosen once for all the multivariate
polynomials of k-th degree. At one of the seminars held at the Technion - Israel Institute
of Technology, Professor A.Pinkus posed two problems:

1) Can every multivariate polynomial of degree k be represented by less than r ridge
functions ?

2) How large is the set of polynomials represented by r − 1, r − 2, ... ridge functions ?

Note that for bivariate polynomials the 1-st problem is solved positively, that is, the
number r = k + 1 can be reduced. Indeed, for a bivariate polynomial P (x, y) of k-th
degree, there exists a large set of real numbers c0, ..., ck such that

k∑

i=0

ci
∂k

∂xi∂yk−i
P (x, y) = 0.

Further, the numbers ci, i = 0, ..., k, can be selected to enjoy the property that the
polynomial

∑k
i=0 cit

i has distinct real zeros. Then it is not difficult to verify that the

differential operator
∑k

i=0 ci
∂k

∂xi∂yk−i can be written in the form

k∏

i=1

(
bi
∂

∂x
− ai

∂

∂y

)
, (1)

for some pairwise linearly independent vectors (ai, bi), i = 1, ..., k. But the operator (1)
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annihilates a function f(x, y) if and only if f(x, y) =
∑k

i=1 gi(aix+ biy). Thus, we obtain
that the polynomial P (x, y) can be represented as a sum of k ridge functions.

In connection with the 2-nd problem of Pinkus, V. Maiorov [50] studied certain geo-
metrical properties of the manifold Rr, namely, he estimated the ε-entropy numbers in
terms of smaller ε-covering numbers of the compact class formed by the intersection of
the class Rr with the unit ball in the space of polynomials of degree at most s on R

n.
Let E be a Banach space and let for x ∈ E and δ > 0, S(x, δ) denote the ball of radius δ
centered at the point x. For any positive number ε, the ε-covering number of a set F in
the space E represents the quantity

Lε(F,E) = min

{
N : ∃x1, ..., xN ∈ F such that F ⊂

N⋃

i=1

S(xi, ε)

}
.

The ε-entropy of F is defined as the number Hε(F,E)
def
= log2 Lε(F,E). The notion

of ε-entropy has been devised by A.N.Kolmogorov (see [44,45,67]) in order to classify
compact metric sets according to their massivity.

In order to formulate Maiorov’s result here let Rr be the class of all possible linear
combinations of r ridge functions, Pn

s be the space of all polynomials of degree at most s
on R

n, Lq = Lq(I), 1 ≤ q ≤ ∞, be the space of q-integrable functions on the unit cube

I = [0, 1]n with the norm ‖f‖q =
(∫

I |f(x)|
q dx

)1/q
, BLq be the unit ball in the space Lq,

and BqP
n
s = BLq∩ Pn

s be the unit ball in the space Pn
s equipped with the Lq metric.

Proposition 1. (Maiorov [50]). Let r, s ∈ N, 1 ≤ q ≤ ∞, and 0 < ε < 1. Then the
ε-entropy of the class BqP

n
s ∩Rr in the space Lq satisfies the inequalities

1)

c1rs ≤
Hε(BqP

n
s ∩Rr, Lq)

log2
1
ε

≤ c2rs log2
2esn−1

r
, (2)

for r ≤ sn−1.

2)

c
′

1s
n ≤

Hε(BqP
n
s ∩Rr, Lq)

log2
1
ε

≤ c
′

2s
n, (3)

for r > sn−1. In (2) and (3), c1, c2, c
′

1, c
′

2 are constants depending only on n.

In this paper, we survey some results on the approximation of multivariate functions by
ridge functions with fixed directions, that is by functions from the set R

(
a1, ...,ar

)
. Many

results concerning the approximation of multivariate functions by linear combinations of
ridge functions from the set Rr and their applications in neural network theory may be
found in [9,22,48, 49,56,57, 59,62,63, 66,69,70].
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2. Representation of multivariate functions by linear combinations of

ridge functions

One of the basic problems concerning the approximation by sums of ridge functions
with fixed directions is the problem of verifying if a given function f belongs to the space
R
(
a1, ...,ar

)
. This problem has a simple solution if a dimension of a considered space

n = 2 and a given function f(x, y) has partial derivatives up to r-th order. For the
representation of f(x, y) in the following form

f(x, y) =
r∑

i=1

gi(aix+ biy),

it is necessary and sufficient that

r∏

i=1

(
bi
∂

∂x
− ai

∂

∂y

)
f = 0.

The last verification equation is valid for all continuous bivariate functions provided that
the derivatives are understood in the generalized sense.

Unfortunately, such simple verification does not carry over to the representation f(x) =
r∑

i=1
gi
(
ai · x

)
, x = (x1, ..., xn), if the dimension n > 2. Below we cite two results on the

representation of a given multivariate function as a sum of ridge functions with fixed
directions.

Proposition 2. (Diaconis, Shahshahani [10]). Let a1, ...,ar be pairwise independent vec-
tors in R

n. Let for i = 1, 2, ..., r, H i denote the hyperplane {c ∈ R
n: c · ai = 0}. Then a

function f ∈ Cr(Rn) can be represented as

f(x) =
r∑

i=1

gi
(
ai · x

)
+ P (x),

where P (x) is a polynomial of degree not more than r, if and only if

r∏

i=1

n∑

s=1

cis
∂f

∂xs
= 0,

for all vectors ci = (ci1, c
i
2, ..., c

i
n) ∈ H i, i = 1, 2, ..., r.

The main drawback of this proposition is the “unwanted term” P (x) in the represen-
tation formula. There are examples (see [10]) showing that one cannot simply dispense
with the polynomial P (x) in the above proposition (this term is necessary for the sufficient
part of the proposition).
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Lin and Pinkus [46] obtained more general result on the representation by ridge func-
tions. We need some notation to present their result. Each polynomial p(x1, ..., xn) gener-
ates the differential operator p( ∂

∂x1
, ..., ∂

∂xn
). Let P (a1, ...,ar) denote the set of polynomials

which vanish on all the lines {λai, λ ∈ R}, i = 1, ..., r. Obviously, this is an ideal in the
ring of all polynomials. Let Q be the set of polynomials q = q(x1, ..., xn) such that
p( ∂

∂x1
, ..., ∂

∂xn
)q = 0, for all p(x1, ..., xn) ∈ P (a

1, ...,ar).

Proposition 3. (Lin, Pinkus [46]). Let a1, ...,ar be pairwise linearly independent vectors
in R

n. A function f ∈ C(Rn) can be expressed in the form

f(x) =
r∑

i=1

gi(a
i · x),

if and only if f belongs to the closure of the linear span of Q.

In his recent paper [60], A.Pinkus considers the problems of smoothness and uniqueness
in ridge function representation. For a given function f ∈ R

(
a1, ...,ar

)
, he poses and

answers the following questions. If f belongs to some smoothness class, what can we say
about the smoothness of the functions gi? How many different ways can we write f as a
linear combination of ridge functions ?

Further, we consider the following two problems.

Problem 1. What conditions imposed on f : X → R are necessary and sufficient for
the inclusion f ∈ R(a1, ...,ar;X)?

Problem 2. What conditions imposed on X are necessary and sufficient that every
function defined on X belongs to the space R(a1, ...,ar;X)?

As noticed above, Problem 1 was solved for continuous functions (see [6,46]). It is also
noticed that the like but different problem of representation by sums of ridge functions and
a polynomial was solved for continuously differentiable functions (see [10]). Problem 2 was
solved by Braess and Pinkus [4] for finite subsets X of Rd (i.e. the problem of interpolation
was solved). In [4], it is required to characterize all finite subsets {x1, ...,xk} ⊂ R

n such
that for any data {α1, ..., αk} ⊂ R there exists a function g ∈ R

(
a1, ...,ar

)
satisfying

the equations g(xi) = αi, i = 1, ..., k. Such finite sets {x1, ...,xk} are said to have the
interpolation property. In connection with the problem of interpolation, Braess and Pinkus
[4] introduced two additional notions: Given directions {aj}rj=1 ⊂ R

n\{0}, we say that a

set of points {xi}ki=1 ⊂ R
n has the NI -property (non-interpolation property) with respect

to {aj}rj=1, if there exists {αi}
k
i=1 ⊂ R such that we cannot find a function g ∈ R

(
a1, ...,ar

)

satisfying g(xi) = αi, i = 1, ..., k. We say that the set {xi}ki=1 ⊂ R
n has theMNI -property

(minimal non-interpolation property) with respect to {aj}rj=1, if {x
i}ki=1 but no proper

subset thereof has the NI -property. The following proposition is valid.
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Proposition 4. (Braess and Pinkus [4]). The set {xi}ki=1 ⊂ R
n has the NI-property if

and only if there is a vector m = (m1, ...,mk) ∈ Z
k\{0} such that

k∑

j=1

mjg(a
i · xj) = 0, i = 1, ..., r,

for all functions g : R → R. This set has the MNI-property if and only if the vector m
has the additional properties: it is unique up to multiplication by a constant and all its
components m1, ...,mk are different from zero.

In [28], the author considered Problems 1 and 2 without imposing on f additional
conditions of continuity and differentiation and without requiring that X be a finite set.
In fact, in [28] these problems were solved for more general set of functions, namely for
the set

B(X) = B(h1, ..., hr ;X) =

{
r∑

i=1

gi(hi(x)), x ∈ X, gi : R → R, i = 1, ..., r

}
,

where hi : X → R, i = 1, ..., r, are arbitrarily fixed functions. In particular, the functions
hi, i = 1, ..., r, may be equal to scalar products of the variable x with some vectors ai,
i = 1, ..., r. Only in this special case, we have B(h1, ..., hr;X) = R(a1, ...,ar;X).

The main idea leading to the solutions rests on exploiting of new objects called cycles
with respect to r functions hi : X → R, i = 1, ..., r (and in particular, with respect to r
directions a1, ...,ar). In the sequel, by δA we will denote the characteristic function of a
set A ⊂ R. That is,

δA(y) =

{
1, if y ∈ A,
0, if y /∈ A.

Definition 1. (see [23,27,28,43]). Given a subset X ⊂R
d and nonzero functions hi :

X → R, i = 1, ..., r. A set of points {x1, ..., xn} ⊂ X is called to be a cycle with respect
to the functions h1, ..., hr (or, concisely, a cycle if there is no confusion), if there exists a
vector λ = (λ1, ..., λn) with the nonzero real coordinates λi, i = 1, ..., n, such that

n∑

j=1

λjδhi(xj) = 0, i = 1, ..., r. (4)

If hi = ai ·x, i = 1, ..., r, where a1, ...,ar are some nonzero directions in R
d, a cycle with

respect to the functions h1, ..., hr will be also called a cycle with respect to the directions
a1, ...,ar .

Let for i = 1, ..., r, the set {hi(xj), j = 1, ..., n} have ki different values. Then it is not
difficult to see that Eq. (4) stands for a system of

∑r
i=1 ki homogeneous linear equations
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in unknowns λ1, ..., λn. If this system has any solution with the nonzero components, then
the given set {x1, ..., xn} is a cycle. In the last case, the system has also a solution m =
(m1, ...,mn) with the nonzero integer components mi, i = 1, ..., n. Thus, in Definition 1,
the vector λ = (λ1, ..., λn) can be replaced by a vector m = (m1, ...,mn) with mi ∈ Z\{0}.

For example, the set l = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} is a cycle in R
3

with respect to the functions hi(z1, z2, z3) = zi, i = 1, 2, 3. The vector λ in Definition 1
can be taken as (2, 1, 1, 1,−1).

In the case r = 2, the picture of cycles becomes more clear. Let, for example, h1
and h2 be the coordinate functions on R

2. In this case, a cycle is the union of some sets
Ak with the property: each Ak consists of vertices of a closed broken line with the sides
parallel to the coordinate axis. These objects (sets Ak) have been exploited in practically
all works devoted to the approximation of bivariate functions by univariate functions,
although under the different names (see, for example, [41, Chapter 2]). If X and the
functions h1 and h2 are arbitrary, the sets Ak can be described as a trace of some point
traveling alternatively in the level sets of h1 and h2, and then returning to its primary
position. It should be remarked that in the case r > 2 cycles do not admit such a simple
geometric description. We refer the reader to Braess and Pinkus [1] for the description of
cycles when r = 3 and hi(x) = ai·x, x ∈R2, ai ∈ R

2\{0}, i = 1, 2, 3.
Let T (X) denote the set of all functions on X. With each pair 〈p, λ〉 , where p =

{x1, ..., xn} is a cycle in X and λ = (λ1, ..., λn) is a vector known from Definition 1, we
associate the functional

Gp,λ : T (X) → R, Gp,λ(f) =
n∑

j=1

λjf(xj).

In the following, such pairs 〈p, λ〉 will be called cycle-vector pairs of X. It is clear that the
functional Gp,λ is linear and Gp,λ(g) = 0 for all functions g ∈ B(h1, ..., hr ;X).

Lemma 1. [28]. Let X have cycles hi(X) ∩ hj(X) = ∅, for all i, j ∈ {1, ..., r}, i 6= j.
Then a function f : X → R belongs to the set B(h1, ..., hr ;X) if and only if Gp,λ(f) = 0
for any cycle-vector pair 〈p, λ〉 of X.

Proof. The necessity is obvious, since the functional Gp,λ annihilates all members of
the set B(h1, ..., hr ;X). Let us prove the sufficiency. Introduce the notation

Yi = hi(X), i = 1, ..., r;

Ω = Y1 ∪ ... ∪ Yr.

Consider the following subsets of Ω:

L = {Y = {y1, ..., yr} : if there exists x ∈ X such that hi(x) = yi, i = 1, ..., r}. (5)

In what follows, all the points x associated with Y by (5) will be called (∗)-points of
Y. It is clear that the number of such points depends on Y as well as on the functions
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h1, ..., hr , and may be greater than 1. But note that if any two points x1 and x2 are
(∗)-points of Y , then necessarily the set {x1, x2} forms a cycle with the associated vector
λ0 = (1;−1). Indeed, if x1 and x2 are (∗)-points of Y , then hi(x1) = hi(x2), i = 1, ..., r,
whence

1 · δhi(x1) + (−1) · δhi(x2) ≡ 0, i = 1, ..., r.

The last identity means that the set p0 = {x1, x2} forms a cycle and λ0 = (1;−1) is
an associated vector. Then by the condition of the sufficiency, Gp0,λ0

(f) = 0, which yields
that f(x1) = f(x2).

Let now Y ∗ be the set of all (∗)-points of Y. Since we have already known that f(Y ∗)
is a single number, we can define the function

t : L → R, t(Y ) = f(Y ∗).

Or, equivalently, t(Y ) = f(x), where x is an arbitrary (∗)-point of Y .
Consider now a class S of functions of the form

∑k
j=1 rjδDj

, where k is a positive
integer, rj are real numbers and Dj are elements of L, j = 1, ..., k. We fix neither the
numbers k, rj , nor the sets Dj . Clearly, S is a linear space. Over S, we define the
functional

F : S → R, F




k∑

j=1

rjδDj


 =

k∑

j=1

rjt(Dj).

First of all, we must show that this functional is well defined. That is, the equality

k1∑

j=1

r′jδD′

j
=

k2∑

j=1

r′′j δD′′

j
,

always implies the equality

k1∑

j=1

r′jt(D
′
j) =

k2∑

j=1

r′′j t(D
′′
j ).

In fact, this is equivalent to the implication

k∑

j=1

rjδDj
= 0 =⇒

k∑

j=1

rjt(Dj) = 0, for all k ∈ N, rj ∈ R, Dj ⊂ L. (6)

Suppose that the left-hand side of the implication (6) be satisfied. Each set Dj consists

of r real numbers yj1, ..., y
j
r , j = 1, ..., k. By the hypothesis of the lemma, all these numbers

are different. Therefore,

δDj
=

r∑

i=1

δ
yji
, j = 1, ..., k. (7)
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Eq. (7) together with the left-hand side of (6) gives

r∑

i=1

k∑

j=1

rjδyji
= 0. (8)

Since the sets {y1i , y
2
i , ..., y

k
i }, i = 1, ..., r, are pairwise disjoint, we obtain from (8) that

k∑

j=1

rjδyji
= 0, i = 1, ..., r. (9)

Let now x1, ..., xk be some (∗)-points of the sets D1, ...,Dk , respectively. Since by (5)
yji = hi(xj), for i = 1, ..., r and j = 1, ..., k, it follows from (9) that the set {x1, ..., xk} is a

cycle. Then by the condition of the sufficiency,
∑k

j=1 rjf(xj) = 0. Hence,
∑k

j=1 rjt(Dj) =
0. We have proved the implication (6) and hence the functional F is well defined. Note
that the functional F is linear (this can be easily seen from its definition).

Consider now the following space:

S ′ =





k∑

j=1

rjδωj



 ,

where k ∈ N, rj ∈ R, ωj ⊂ Ω. As in the above, we do not fix the parameters k, rj and
ωj. Clearly, the space S ′ is larger than S. Let us prove that the functional F can be
linearly extended to the space S ′. So, we must prove that there exists a linear functional
F ′ : S ′ → R such that F ′(x) = F (x), for all x ∈ S. Let H denote the set of all linear
extensions of F to subspaces of S ′ containing S. The set H is not empty, since it contains
a functional F. For each functional v ∈ H, let dom(v) denote the domain of v. Consider
the following partial order in H: v1 ≤ v2, if v2 is a linear extension of v1 from the space
dom(v1) to the space dom(v2). Let now P be any chain (linearly ordered subset) in H.
Consider the following functional u defined on the union of domains of all functionals
p ∈ P :

u :
⋃

p∈P

dom(p) → R, u(x) = p(x), if x ∈ dom(p).

Obviously, this functional is well defined and linear. Besides, the functional u provides
an upper bound for P. We see that the arbitrarily chosen chain P has an upper bound.
Then by Zorn’s lemma, there is a maximal element F ′ ∈ H. We claim that the functional
F ′ must be defined on the whole space S ′. Indeed, if F ′ is defined on a proper subspace
D ⊂ S ′, then it can be linearly extended to a space larger than D by the following way: take
any point x ∈ S ′\D and consider the linear space D′ = {D + αx}, where α runs through
all real numbers. For an arbitrary point y + αx ∈ D′, set F

′′

(y + αx) = F ′(y) + αb,
where b is any real number considered as the value of F

′′

at x. Thus, we constructed a
linear functional F

′′

∈ H satisfying F ′ ≤ F
′′

. The last contradicts the maximality of F ′.
This means that the functional F ′ is defined on the whole S ′ and F ≤ F ′ (F ′ is a linear
extension of F ).
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Define the following functions by means of the functional F ′:

gi : Yi → R, gi(yi)
def
= F ′(δyi), i = 1, ..., r.

Let x be an arbitrary point in X. Obviously, x is a (∗)-point of some set Y = {y1, ..., yr} ⊂
L. Thus,

f(x) = t(Y ) = F (δY ) = F

(
r∑

i=1

δyi

)
= F ′

(
r∑

i=1

δyi

)
=

r∑

i=1

F ′(δyi) =
r∑

i=1

gi(yi) =
r∑

i=1

gi(hi(x)).

J

Definition 2. A cycle p = {x1, ..., xn} is said to be minimal if p does not contain any
cycle as its proper subset.

For example, the set l = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} considered
above is a minimal cycle with respect to the functions hi(z1, z2, z3) = zi, i = 1, 2, 3. Adding
the point (0, 1, 1) to l, we will have a cycle, but not minimal. The vector λ associated with
l ∪ {(0, 1, 1)} can be taken as (3,−1,−1,−2, 2,−1).

A minimal cycle p = {x1, ..., xn} has the following obvious properties:

(a) The vector λ associated with p by Eq. (4) is unique up to multiplication by a constant;

(b) If in (4),
∑n

j=1 |λj | = 1, then all the numbers λj, j = 1, ..., n, are rational.

Thus, a minimal cycle p uniquely defines the functional

Gp(f) =

n∑

j=1

λjf(xj),

n∑

j=1

|λj | = 1.

Lemma 2. [28]. The functional Gp,λ is a linear combination of functionals Gp1 , ..., Gpk ,
where p1, ..., pk are minimal cycles in p.

Proof. Let 〈p, λ〉 be a cycle-vector pair ofX, where p = {x1, ..., xn} and λ = (λ1, ..., λn).
Let p1 = {y11 , ..., y

1
s1}, s1 < n, be a minimal cycle in p and

Gp1(f) =

s1∑

j=1

ν1j f(y
1
j ),

s1∑

j=1

∣∣ν1j
∣∣ = 1.

Without loss of generality, we may assume that y11 = x1. Put
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t1 =
λ1
ν11
.

Then the functional Gp,λ − t1Gp1 has the form

Gp,λ − t1Gp1 =

n1∑

j=1

λ1jf(x
1
j),

where x1j ∈ p, λ1j 6= 0, j = 1, ..., n1. Clearly, the set l1 = {x11, ..., x
1
n1
} is a cycle in p with

the associated vector λ1 = (λ11, ..., λ
1
n1
). Besides, x1 /∈ l1. Thus, n1 < n and Gl1,λ1 =

Gp,λ − t1Gp1 . If l1 is minimal, then the proof is completed. Let l1 be not minimal. Let
p1 = {y21 , ..., y

2
s2}, s2 < n1, be a minimal cycle in l1 and

Gp2(f) =

s2∑

j=1

ν2j f(y
2
j ),

s2∑

j=1

∣∣ν2j
∣∣ = 1.

Without loss of generality, we may assume that y21 = x11. Put

t2 =
λ11
ν21
.

Then the functional Gl1,λ1 − t2Gp2 has the form

Gl1,λ1 − t2Gp2 =

n2∑

j=1

λ2jf(x
2
j),

where x2j ∈ l1, λ
2
j 6= 0, j = 1, ..., n2. Clearly, the set l2 = {x21, ..., x

2
n2
} is a cycle in l1 with

the associated vector λ2 = (λ21, ..., λ
2
n2
). Besides, x11 /∈ l2. Thus, n2 < n1 and Gl2,λ2 =

Gl1,λ1 − t2Gp2 . If l2 is minimal, then the proof is completed. Let l2 be not minimal.
Repeating the above process for l2, then for l3, etc., after some k − 1 steps we will come
to a minimal cycle lk−1 and the functional

Glk−1,λk−1 = Glk−2,λk−2 − tk−1Gpk−1
=

nk−1∑

j=1

λk−1
j f(xk−1

j ).

Since the cycle lk−1 is minimal,

Glk−1,λk−1 = tkGlk−1
, where tk =

nk−1∑

j=1

∣∣∣λk−1
j

∣∣∣ .

Now putting pk = lk−1 and considering the above chain relations between the functionals
Gli,λi , i = 1, ..., k − 1, we obtain that

Gp,λ =
k∑

i=1

tiGpi .
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J

Theorem 1. [28]. Let X ⊂ R
d and h1, ..., hr be any nonzero real functions defined on

X.

1) Let X have cycles with respect to the functions h1, ..., hr. A function f : X → R

belongs to the space B(h1, ..., hr ;X) if and only if Gp(f) = 0 for any minimal cycle p ⊂ X.

2) Let X have no cycles. Then B(h1, ..., hr ;X) = T (X).

Proof. 1) The necessity is clear. Let us prove the sufficiency. On the strength of
Lemma 2, it is enough to prove that if Gp,λ(f) = 0 for any cycle-vector pair 〈p, λ〉 of X,
then f ∈ B(X).

Consider a system of intervals {(ai, bi) ⊂ R}ri=1 such that (ai, bi) ∩ (aj , bj) = ∅ for all
the indices i, j ∈ {1, ..., r}, i 6= j. For i = 1, ..., r, let τi be one-to-one mappings of R onto
(ai, bi). Introduce the following functions on X:

h
′

i(x) = τi(hi(x)), i = 1, ..., r.

It is clear that any cycle with respect to the functions h1, ..., hr is also a cycle with
respect to the functions h

′

1, ..., h
′

r , and vice versa. Besides, h′i(X) ∩ h′j(X) = ∅, for all
i, j ∈ {1, ..., r}, i 6= j. Then by Lemma 1

f(x) = g′1(h
′
1(x)) + · · ·+ g′r(h

′
r(x)),

where g′1, ..., g
′
r are univariate functions depending on f . From the last equality we obtain

that

f(x) = g′1(τ1(h1(x))) + · · ·+ g′r(τr(hr(x))) = g1(h1(x)) + · · ·+ gr(hr(x)).

That is, f ∈ B(X).

2) Let f : X → R be an arbitrary function. First suppose that hi(X)∩hj(X) = ∅, for
all i, j ∈ {1, ..., r}, i 6= j. In this case, the proof is similar to and even simpler than that of
Lemma 1. Indeed, the set of all (∗)-points of Y consists of a single point, since otherwise
we would have a cycle with two points, which contradicts the hypothesis of the 2-nd part
of our theorem. Further, the well definition of the functional F becomes obvious, since
the left-hand side of (6) also contradicts the nonexistence of cycles. Thus, as in the proof
of Lemma 1, we can extend F to the space S ′ and then obtain the desired representation
for the function f . Since f is arbitrary, T (X) = B(X).

Using the techniques from the proof of the 1-st part of our theorem, one can easily
generalize the above argument to the case when the functions h1, ..., hr have arbitrary
ranges.J

Theorem 2. [28]. B(h1, ..., hr ;X) = T (X) if and only if X has no cycles with respect to
the functions h1, ..., hr.
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Proof. The sufficiency immediately follows from Theorem 1. To prove the necessity,
assume that X has a cycle p = {x1, ..., xn}. Let λ = (λ1, ..., λn) be a vector associated
with p by Eq. (4). Consider a function f0 on X with the property: f0(xi) = 1, for indices
i such that λi > 0 and f0(xi) = −1, for indices i such that λi < 0. For this function,
Gp,λ(f0) 6= 0. Then by Theorem 1, f0 /∈ B(X). Hence, B(X) 6= T (X). The contradiction
shows that X does not admit cycles.J

From Theorems 1 and 2 we obtain the following corollaries for the ridge function
representation.

Corollary 1. Let X ⊂ R
d and a1, ...,ar ∈ R

d\{0}.
1) Let X have cycles with respect to the directions a1, ...,ar. A function f : X → R

belongs to the space R(a1, ...,ar ;X) if and only if Gp(f) = 0 for any minimal cycle p ⊂ X.
2) Let X have no cycles. Then every function f : X → R belongs to the space

R(a1, ...,ar;X).

Corollary 2. R(a1, ...,ar;X)= T (X) if and only if X has no cycles with respect to the
directions a1, ...,ar.

Note that solutions to problems 1 and 2 are given correspondingly by corollaries 1 and
2. Although it is not always easy to find all cycles of a given set X and even to know if X
possesses a single cycle at least, corollaries 1 and 2 carry more practical than theoretical
character in them. Particular cases of problems 1 and 2 are evidence in favor of our
opinion. For example, for the problem of representation by sums of two ridge functions,
the picture of cycles is completely describable (see the beginning of this section). A
geometric description of cycles with respect to 3 and more directions is quite complicated
and inquires deep techniques from geometry and graph theory. This is not within the aim
of our study.

From the last corollary, it follows that if representation by sums of ridge functions with
fixed directions a1, ...,ar is valid in the class of continuous functions (or in the class of
bounded functions), then such representation is valid in the class of all functions. For a
rigid mathematical formulation of this result, let us introduce the notation:

Rc(a
1, ...,ar ;X) =

{
r∑

i=1

gi(a
i · x), x ∈ X, gi(a

i · x) ∈ C(X), i = 1, ..., r

}
,

Rb(a
1, ...,ar ;X) =

{
r∑

i=1

gi(a
i · x), x ∈ X, gi(a

i · x) ∈ B(X), i = 1, ..., r

}
.

Here C(X) and B(X) denote the spaces of continuous and bounded functions, respec-
tively, defined on X ⊂ R

d (for the first space, the set X is supposed to be compact). It
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follows from the results of Sternfeld [64,65] that the equality Rc(a
1, ...,ar;X) = C(X)

implies the equality Rb(a
1, ...,ar ;X) = B(X) (see the next section). In other words, if

every continuous function is represented by sums of ridge functions (with fixed directions
!), then every bounded function also enjoys such representation (naturally, with bounded
summands). Corollaries 1 and 2 allows us to obtain the following result:

Corollary 3. Let X be a compact subset of Rd and a1, ...,ar be given directions in R
d\{0}.

If Rc(a
1, ...,ar;X) = C(X), then R(a1, ...,ar;X) = T (X).

Proof. If every continuous function defined on X ⊂ R
d is represented by sums of ridge

functions with the directions a1, ...,ar, then it can be shown by applying the same idea (as
in the proof of Theorem 2) that the setX has no cycles with respect to the given directions.
Only, because of continuity, Urysohn’s great lemma should be taken into account. That is,
it should be taken into account that, by assuming the existence of a cycle p0 = {x1, ..., xn}
with an associated vector λ0 = (λ1, ..., λn), we can deduce from Urysohn’s great lemma
the existence of a continuous function u : X → R satisfying:

1) u(xi) = 1, for indices i such that λi > 0,
2) u(xj) = −1, for indices j such that λj < 0,
3) −1 < u(x) < 1, for all x ∈ X\p0.
These properties would mean that Gp0,λ0

(u) 6= 0 =⇒ u /∈ Rc(a
1, ...,ar;X) =⇒

Rc(a
1, ...,ar ;X) 6= C(X).

But if X has no cycles with respect to the directions a1, ...,ar, then by Corollary 2,
R(a1, ...,ar;X) = T (X). J

Let us now give some examples of sets over which the representation by linear combi-
nations of ridge functions is possible.

(1) Let r = 2 and X be the union of two parallel lines not perpendicular to the given
directions a1 and a2. Then X has no cycles with respect to {a1,a2}. Therefore, by
Corollary 2, R

(
a1,a2;X

)
= T (X).

(2) Let r = 2, a1 = (1, 1), a2 = (1,−1) and X be the graph of the function y =
arcsin(sinx). Then X has no cycles and hence R

(
a1,a2;X

)
= T (X).

(3) Let’s now assume we are given r directions {aj}rj=1 and r + 1 points {xi}r+1
i=1 ⊂ R

d

such that

a1 · xi = a1 · xj 6= a1 · x2, for 1 ≤ i, j ≤ r + 1, i, j 6= 2,

a2 · xi = a2 · xj 6= a2 · x3, for 1 ≤ i, j ≤ r + 1, i, j 6= 3,

......................................

ar · xi = ar · xj 6= ar · xr+1, for 1 ≤ i, j ≤ r.

The simplest data realizing these equations are the basis directions in R
d and the

points (0, 0, ..., 0), (1, 0, ..., 0), (0, 1, ..., 0),..., (0, 0, ..., 1). From the first equation we
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obtain that x2 cannot be a point of any cycle in X = {x1, ...,xr+1}. Sequentially,
from the second, third, ..., r-th equations it follows that the points x3,x4, ...,xr+1

also cannot be points of cycles in X, respectively. Thus, the set X does not contain
cycles at all. By Corollary 2, R

(
a1, ...,ar ;X

)
= T (X).

(4) Let’s assume we are given directions {aj}rj=1 and a curve γ in Rd such that for any

c ∈ R, γ has at most one common point with at least one of the hyperplanes aj ·x = c,
j = 1, ..., r. By Definition 1, the curve γ has no cycles and hence R

(
a1, ...,ar; γ

)
=

T (γ).

It follows from Corollary 2 that a set {xi}ki=1 has the NI -property if and only if {xi}ki=1

contains a cycle with respect to the functions hi = ai · x, i = 1, ..., r (or, simply, to the
directions ai, i = 1, ..., r) and the MNI -property if and only if the set {xi}ki=1 itself is a
minimal cycle with respect to the given directions. Taking into account this argument
and Definitions 1 and 2, we obtain that the set {xi}ki=1 has the NI -property if and only if
there is a vector m = (m1, ...,mk) ∈ Z

k\{0} such that

k∑

j=1

mjg(a
i · xj) = 0,

for i = 1, ..., r and all functions g : R → R. This set has the MNI -property if and only if
the vector m has the additional properties: it is unique up to multiplication by a constant
and all its components are different from zero. This special consequence of Corollary 2
was proved in [4].

3. Best approximating ridge functions and some density questions

The approximation problem considered in this section is to approximate a continuous
multivariate function f (x) = f (x1, ..., xd) by sums of two ridge functions in the uniform
norm. We give a necessary and sufficient condition for a sum of two ridge functions to be
a best approximation to f (x) . This main result is next used in a special case to obtain
an explicit formula for the approximation error and to construct one best approximation.
The problem of well approximation by such sums is also considered.

Consider the following set of sums of ridge functions

R = R (a,b) = {g1 (a·x) + g2 (b·x) : gi∈ C (R) , i = 1, 2}.

That is, we fix directions a and b and consider linear combinations of ridge functions
with these directions.

Let f (x) be a given continuous function on some compact subset Q of Rd. We want
to find conditions that are necessary and sufficient for a function g

0
∈ R (a,b) to be an
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extremal element (or a best approximation) to f . In other words, we want to characterize
such sums g0 (x) = g1 (a·x) + g2 (b·x) of ridge functions that

‖f − g0‖ = max
x∈Q

|f (x)− g0(x)| = E (f) ,

where

E (f) = E(f,R)
def
= inf

g∈ R(a,b)
‖f − g‖,

is the error in approximating from R (a,b) . The other related problem is how to construct
these sums of ridge functions. We also want to know if we can approximate well, i.e. for
which compact sets Q, R (a,b) is dense in C (Q) in the topology of uniform convergence. It
should be remarked that solutions to these problems may be useful in connection with the
study of partial differential equations. For example, assume that (a1, b1) and (a2, b2) are
linearly independent vectors in R

2. Then the general solution of the homogeneous partial
differential equation

(
a1

∂

∂x
+ b1

∂

∂y

)(
a2

∂

∂x
+ b2

∂

∂y

)
u (x, y) = 0, (10)

are all functions of the form

u (x, y) = g1 (b1x− a1y) + g
2
(b2x− a2y) , (11)

for arbitrary g1 and g2. In [19], Golitschek and Light described an algorithm that computes
the error of approximation of a continuous real – valued function f (x, y) by solutions of
equation (10), provided that a1 = b2 = 1, a2 = b1 = 0. Using Theorem 3 below, one
can characterize those solutions (11) that are extremal to a given function f(x, y). For
certain class of functions f(x, y), one can also easily calculate the approximation error and
construct one extremal solution (see Theorems 4 and 5).

The problem of approximating by functions from the set R (a,b) arises in other con-
texts, too. Buck [5] studied the classical functional equation: given β(t) ∈ C[0, 1],
0 ≤ β(t) ≤ 1, for which u ∈ C[0, 1] does there exist ϕ ∈ C[0, 1] such that

ϕ(t) = ϕ (β(t)) + u(t)?

He proved that the set of all u satisfying this condition is dense in the set

{v ∈ C[0, 1] : v(t) = 0 whenever β(t) = t},

if and only if R (a,b) with the unit directions a = (1; 0) and b = (0, 1) is dense in C(K),
where K = {(x, y) : y = x or y = β(x), 0 ≤ x ≤ 1}.

Note that if the space dimension d = 2, a and b are the unit directions, then the
functions g1(a · x) and g2(b · x) are univariate. Thus the approximation of a bivariate
function by sums of univariate functions is a special case of the approximation problem
considered here.



A review of some results on ridge function approximation 21

Although there are enough reasons to consider approximation problems associated with
the set R (a,b) in an independent way, one may ask why sums of only two ridge functions
are considered instead of sums with an arbitrary number of terms. We will try to answer
this fair question at the end of this section.

Definition 3. [33]. A finite or infinite ordered set p = (p1,p2, ...) ⊂ Q with pi 6= pi+1,
and either a · p1 = a · p2,b · p2 = b · p3,a · p3 = a · p4, ... or b · p1 = b · p2, a · p2 =
a · p3,b · p3 = b · p4, ...is called a path with respect to the directions a and b.

This notion (in two-dimensional case) was introduced by Braess and Pinkus [4]. They
showed that paths give geometric means of deciding if a set of points

{
xi
}m
i=1

⊂ R
2 has

the NI -property (for this terminology see the previous section).
If a and b are the unit vectors in R

2, then Definition 3 defines an ordinary path (or a
bolt of lightning in a number of papers, e.g. [17,19, 34,35,41,42,52]). It is well known that
the idea of ordinary paths, first introduced by Diliberto and Straus [11], played significant
role in many problems of the approximation of bivariate functions by sums of univariate
functions (see, for example, [11, 14,17,19, 34,35, 41,42, 52]). Paths with respect to two
directions are used also in neural network theory (see [24,25]).

For the sake of brevity, we use the term “path” instead of the expression “path with
respect to the directions a and b”.

The length of a path is the number of its points. A single point is a path of the unit
length. A finite path (p1,p2, ...,p2n) is said to be closed if (p1,p2, ...,p2n,p1) is a path.

We associate each closed path p = (p1,p2, ...,p2n) with the functional

Gp(f) =
1

2n

2n∑

k=1

(−1)k+1f(pk).

This functional has the following obvious properties:
(a) If g ∈ R (a,b), then Gp(g) = 0.
(b) ‖Gp‖ ≤ 1 and if pi 6= pj for all i 6= j, 1 ≤ i, j ≤ 2n , then ‖Gp‖ = 1.

Lemma 3. [33]. Let a compact set Q have closed paths. Then

sup
p⊂Q

|Gp(f)| ≤ E (f) , (12)

where the sup is taken over all closed paths. Moreover, inequality (12) is sharp, i.e. there
exist functions for which (12) turns into equality.

Proof. Let p be a closed path of Q and g be any function from R (a,b). Then by the
linearity of Gp and properties (a) and (b):

|Gp(f)| = |Gp(f − g)| ≤ ‖f − g‖ . (13)
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Since the left-hand and the right-hand sides of (13) do not depend on g and p respectively,
it follows from (13) that

sup
p⊂Q

|Gp(f)| ≤ inf
R(a,b)

‖f − g‖ . (14)

Now we prove the sharpness of (12). By assumption Q has closed paths. Then Q
has closed paths p′ = (p′

1, ...,p
′
2m) such that all points p1, ...,p2m are distinct. In fact,

such special paths can be obtained from any closed path p = (p1, ...,p2n) by the following
simple algorithm: if the points of the path p are not all distinct, let i and k > 0 be the
minimal indices such that pi = pi+2k; delete from p the subsequence pi+1, ...,pi+2k and
call p the obtained path; repeat the above step until all points of p are all distinct; set
p′ := p. On the other hand, there exist continuous functions h = h(x) on Q such that
h(p′

i) = 1, i = 1, 3, ..., 2m − 1, h(p′
i) = −1, i = 2, 4, ..., 2m and −1 < h(x) < 1 elsewhere.

For such functions we have

Gp′(h) = ‖h‖ = 1, (15)

and

E(h) ≤ ‖h‖, (16)

where the last inequality follows from the fact that 0 ∈ R (a,b) . From (14)-(16) it follows
that

sup
p⊂Q

|Gp(h)| = E (h) .

J

Lemma 4. [33]. Let Q be a convex compact subset of R
d, f(x) ∈ C(Q). For a vector

e ∈ R
d\{0} and a real number t set

Qt = {x ∈ Q : e · x = t} , Th = {t ∈ R : Qt 6= ∅} .

Then the functions

g1(t) = max
x∈Qt

f(x), t ∈ Th and g2(t) = min
x∈Qt

f(x), t ∈ Th,

are defined and continuous on Th.

The proof of this lemma is not difficult and can be obtained by the well-known ele-
mentary methods of mathematical analysis.

Definition 4. [33]. A finite or infinite path (p1,p2, ...) is said to be extremal for a function
u(x) ∈ C(Q) if u(pi) = (−1)i ‖u‖ , i = 1, 2, ... or u(pi) = (−1)i+1 ‖u‖ , i = 1, 2, ....
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Theorem 3. [33]. Let Q ⊂ R
d be a convex compact set with the property: for any path q =

(q1,q2, ...,qn) ⊂ Q there exist points qn+1,qn+2, ...,qn+s ∈ Q such that (q1,q2, ...,qn+s)
is a closed path and s is not more than some positive integer N0 independent of q. Then a
necessary and sufficient condition for a function g0 ∈ R (a,b) to be extremal for the given
function f(x) ∈ C(Q) is the existence of a closed or infinite path l = (p1,p2, ...) extremal
for the function f1(x) = f(x)− g0(x).

It should be remarked that the hypothesis on the convex compact set Q “for any path
q = (q1,q2, ...,qn) ⊂ Q ... independent of q” strongly depends on the fixed directions a
and b. For example, in the familiar case of a square S ⊂ R

2 there are many directions
which are not allowed. If it is possible to reach a corner of the square with not more than
one of the two directions orthogonal to a and b respectively (we don’t differentiate between
directions c and −c), the triple (S,a,b) does not satisfy the hypothesis of the theorem.
Here are simple examples: Let S = [0; 1]2, a = (1; 0), b = (1; 1). Then the ordered set
{(0; 1), (1; 0), (1; 1)} is a path in S which can not be made closed. In this case, (1; 1) is
not reached with the direction orthogonal to b. Let now a =

(
1; 12
)
, b = (1; 1). Then the

corner (1; 1) is reached with none of the directions orthogonal to a and b respectively. In
this case, for any positive integer N0 and any point q0 in S one can chose a point q1 ∈ S
from a sufficiently small neighborhood of the corner (1; 1) so that any path containing q0

and q1 has the length more than N0. These examples and a little geometry show that if
a compact convex set Q ⊂ R

2 satisfies the hypothesis of the theorem, then any point in
the boundary of Q must be reached with each of the two directions orthogonal to a and b
respectively. If Q ⊂ R

d,a,b ∈ R
d\{0}, d > 2, there are many directions orthogonal to a

and b. In this case, the hypothesis of the theorem requires that any point in the boundary
of Q should be reached with at least two directions orthogonal to a and b, respectively.

Proof. Necessity. Let g0 = g1,0 (a·x)+g2,0 (b·x) be an extremal element from R (a,b)
to f . We must show that if there is not a closed path extremal for f1, then there exists
a path extremal for f1 with the infinite length (number of points). Suppose the contrary.
Suppose that there exists a positive integer N such that the length of each path extremal
for f1 is not more than N . Set the following functions:

fn = fn−1 − g1,n−1 − g2,n−1, n = 2, 3, ...,

where

g1,n−1 = g1,n−1 (a·x) =
1

2


 max

y∈Q
a·y=a·x

fn−1(y) + min
y∈Q

a·y=a·x

fn−1(y)


 ,

g2,n−1 = g2,n−1(b·x) =
1

2


 max

y∈Q
b·y=b·x

(fn−1(y) − g1,n−1(a·y))

+ min
y∈Q

b·y=b·x

(fn−1(y) − g1,n−1(a·y))


 .
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By lemma 4, all the functions fn(x), n = 2, 3, ..., are continuous on Q. By assumption,
g0 is a best approximation to f . Hence, ‖f1‖ = E (f). Now we show that ‖f2‖ = E (f).
Indeed, for any x ∈ Q:

f1(x)− g1,1(a·x) ≤
1

2


 max

y∈Q
a·y=a·x

f1(y) − min
y∈Q

a·y=a·x

f1(y)


 ≤ E(f), (17)

and

f1(x) − g1,1(a·x) ≥
1

2


 min

y∈Q
a·y=a·x

f1(y)− max
y∈Q

a·y=a·x

f1(y)


 ≥ −E(f). (18)

Using the definition of g2,1(b · x), for any x ∈ Q we have

f1(x)− g1,1(a · x)− g2,1(b · x)

≤
1

2


 max

y∈Q
b·y=b·x

(f1(y)− g1,1(a · y))− min
y∈Q

b·y=b·x

(f1(y) − g1,1(a · y))


 ,

and
f1(x)− g1,1(a · x)− g2,1(b · x)

≤
1

2


 min

y∈Q
b·y=b·x

(f1(y)− g1,1(a · y))− max
y∈Q

b·y=b·x

(f1(y) − g1,1(a · y))


 .

Using (17) and (18) in the last two inequalities, we obtain that for any x ∈ Q

−E(f) ≤ f2(x) = f1(x)− g1,1(a·x)− g2,1(b·x) ≤ E(f).

Therefore
‖f2‖ ≤ E(f). (19)

Since f2(x) − f(x) belongs to R (a,b), we deduce from (19) that

‖f2‖ = E(f).

By the same way, one can show that ‖f3‖ = E(f), ‖f4‖ = E(f), and so on. Thus we
can write

‖fn‖ = E(f), for any n.

Let us now prove the implications

f1(p0) < E(f) ⇒ f2(p0) < E(f), (20)

and
f1(p0) > −E(f) ⇒ f2(p0) > −E(f), (21)
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where p0 ∈ Q. First, we are going to prove the implication

f1(p0) < E(f) ⇒ f1(p0)− g1,1(a · p0) < E(f). (22)

There are two possible cases.
1) max

y∈Q
a·y=a·p0

f1(y) = E(f) and min
y∈Q

a·y=a·p0

f1(y) = −E(f). In this case, g1,1(a · p0) = 0.

Hence,
f1(p0)− g1,1(a · p0) < E(f).

2) max
y∈Q

a·y=a·p0

f1(y) = E(f)− ε1 and min
y∈Q

a·y=a·p0

f1(y) = −E(f) + ε2,

where ε1, ε2 are nonnegative real numbers with the sum ε1 + ε2 6= 0. In this case,

f1(p0)− g1,1(a·p0) ≤ max
y∈Q

a·y=a·p0

f1(y) − g1,1(a·p0) =

=
1

2


 max

y∈Q
a·y=a·p0

f1(y) − min
y∈Q

a·y=a·p0

f1(y)


 =

= E(f)−
ε1 + ε2

2
< E(f).

Thus we have proved (22). Using this method, we can also prove that

f1(p0)− g1,1(a·p0) < E(f) ⇒ f1(p0)− g1,1(a·p0)− g2,1(b·p0) < E(f). (23)

Now (20) follows from (22) and (23). By the same way we can prove (21). It follows from
implications (20) and (21) that if f2(p0) = E(f), then f1(p0) = E(f) and if f2(p0) =
−E(f), then f1(p0) = −E(f). This simply means that each path extremal for f2 will be
extremal for f1.

Now we show that if any path extremal for f1 has the length not more than N , then
any path extremal for f2 has the length not more than N − 1. Suppose the contrary.
Suppose that there is a path extremal for f2 with the length equal to N . Denote it by
q = (q1,q2, ...,qN ). Without loss of generality we may assume that b ·qN−1 = b ·qN . As
it has been shown above, the path q is also extremal for f1. Assume that f1(qN ) = E(f).
Then there is not any q0 ∈ Q such that q0 6= qN , a · q0 = a · qN and f1(q0) = −E(f).
Indeed, if there was such q0 and q0 6∈ q, the path (q1,q2, ...,qN ,q0) would be extremal
for f1. But this would contradict our assumption that any path extremal for f1 has the
length not more than N . Besides, if there was such q0 and q0 ∈ q, we could form some
closed path extremal for f1. This also would contradict our assumption that there does
not exist a closed path extremal for f1.

Hence,
max
y∈Q

a·y=a·qN

f1(y) = E(f), min
y∈Q

a·y=a·qN

f1(y) > −E(f).

Therefore
|f1(qN )− g1,1(a·qN )| < E(f).
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From the last inequality it is easy to obtain that (see the proof of implications (20)
and (21))

|f2(qN )| < E(f).

This means, on the contrary to our assumption, that the path (q1,q2, ...,qN ) can not be
extremal for f2. Hence, any path extremal for f2 has the length not more than N − 1.

By the same way, it can be shown that any path extremal for f3 has the length not
more than N − 2, any path extremal for f4 has the length not more than N − 3 and so
on. Finally, we will obtain that there is not a path extremal for fN+1. Hence, there is
not a point p0 ∈ Q such that |fN+1(p0)| = ‖fN+1‖. But by lemma 4, all the functions
f2, f3, ..., fN+1 are continuous on the compact set Q; hence, the norm ‖fN+1‖ must be
attained. This contradiction means that there exists a path extremal for f1 with the
infinite length.

Sufficiency. Let a path l = (p1,p2, ...,p2n) be closed and extremal for f1. Then

|Gl(f)| = ‖f − g0‖ . (24)

By Lemma 3

|Gl(f)| ≤ E(f). (25)

It follows from (24) and (25) that g0 is a best approximation.
Let now a path l = (p1,p2, ...,pn, ...) be infinite and extremal for f1. Consider the

sequence ln = (p1,p2, ...,pn), n = 1, 2, ..., of finite paths. By the property of the set Q
defined in theorem’s statement, for each ln there exists a closed path
lmn
n = (p1,p2, ...,pn,qn+1, ...,qn+mn ), where mn ≤ N0. Then for any positive integer n:

∣∣Glmn
n

(f)
∣∣ =

∣∣Glmn
n

(f − g0)
∣∣ ≤ n ‖f − g0‖+mn ‖f − g0‖

n+mn
= ‖f − g0‖ , (26)

and ∣∣Glmn
n

(f)
∣∣ ≥ n ‖f − g0‖ −mn ‖f − g0‖

n+mn
=
n−mn

n+mn
‖f − g0‖ . (27)

It follows from (26) and (27) that

sup
lmn
n

∣∣Glmn
n

(f)
∣∣ = ‖f − g0‖ . (28)

Now we deduce from (28) and Lemma 3 that

‖f − g0‖ ≤ E(f).

Hence, g0 is a best approximation.J

It is well known that characterization theorems of this type are very essential in ap-
proximation theory. Chebyshev was the first to prove the like result for polynomial ap-
proximation. Khavinson [42] characterized extremal elements in the special case of the
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problem considered here. His case allows the approximation of a continuous bivariate func-
tion f (x, y) by functions of the type ϕ (x)+ψ (y) . It should be noted that the techniques
used in the proof of Theorem 3 are completely different from those used in [42].

Now we want to deal with the error of approximation. The value of the approximation
error depends not only on the approximated function f but also on a geometrical structure
of the set X. For example, if X has an interior point, then the error of approximation
cannot equal to zero for a function f /∈ R

(
a1, ...,ar

)
(see [46]). This fact gives rise to some

problems on approximate or exact computations of the approximation error and algorithms
for constructing best approximating ridge sums. The main difficulties arise when such
problems are considered in continuous function spaces endowed with the uniform norm.
In literature, there is one essential algorithm called Diliberto and Straus algorithm. The
essence of this algorithm is the following. Let X be a compact subset of Rn and Ai be a
best approximation operator from the space of continuous functions C(X) to the subspace
of ridge functions Gi = {gi

(
ai · x

)
: gi ∈ C(R), x ∈ X}, i = 1, ..., r.

That is, for each function f ∈ C(X), the function Aif is a best approximation to f
from Gi. Set

Tf = (I −Ar)(I −Ar−1) · · · (I −A1)f,

where I is the identity operator. It is clear that

Tf = f − g1 − g2 − · · · − gr,

where gk is a best approximation from Gk to the function f − g1 − g2 − · · · − gk−1,
k = 1, ..., r. Consider powers of the operator T : T 2, T 3 and so on. Is the sequence {T nf}∞n=1

convergent? In case of an affirmative answer, which function is the limit of T nf,as n →
∞ ? One may expect that the sequence {T nf}∞n=1 converges to f − g∗, where g∗ is
a best approximation from R

(
a1, ...,ar

)
to f . This conjecture was first formulated by

Diliberto and Straus [11] in 1951 for the approximation of multivariate functions by sums
of univariate functions (that is, sums of ridge functions with basic directions). But later it
was shown by Aumann [1] that the algorithm may not converge at all for r > 2 (even for
the sum of univariate functions). For r = 2, the sequence {T nf}∞n=1 converges to f − g0,
where g0 is a best approximation from R

(
a1,a2

)
(see [58]). In general case, when r > 2

an algorithm for finding a best uniform approximation (or Lp-approximation, p 6= 2) from
the space R

(
a1, ...,ar

)
to f is not yet known. In L2 metric, the Diliberto and Straus

algorithm converges to the desired resulting function for an arbitrary number of distinct
directions (see [58]).

In [11], Diliberto and Straus also established a formula for the error in approximating
bivariate functions by sums of univariate functions. Their formula contains the supre-
mum over all closed ordinary paths. Although the formula is valid for all continuous
functions, it is not easily calculable. Therefore, it does not give the desired effect if one
is interested in the precise value of the approximation error. After this general result
some authors started to seek easily calculable formulas for the approximation error by
considering not the whole space, but some subsets of continuous functions (see, for ex-
ample, [2,3,34,35,36,42,61]).These subsets were chosen so that they could provide precise
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and easy computation of the approximation error. Since the set of ridge functions contain
univariate functions as its proper subset, one may ask for explicit formulas for the error
in approximating by sums of ridge functions.

In this section, we see how with the use of Theorem 3 it is possible to find the error and
an extremal element in approximating a continuous function by sums of ridge functions.
We restrict ourselves to R

2. To make the problem more precise, let Ω be a compact set
in R

2, f (x1,x2) ∈ C (Ω) , a = (a1, a2) ,b = (b1, b2) be linearly independent vectors.
We want, in some conditions on f and Ω, to establish a formula for an easy and direct
computation of the error in approximating from R (a,b) .

Theorem 4. Let

Ω =
{
x ∈ R

2 : c1 ≤ a · x ≤ d1, c2 ≤ b · x ≤ d2
}
,

where c1 < d1 and c2 < d2. Let a function f(x) ∈ C(Ω) have the continuous partial

derivatives ∂2f
∂x2

1

, ∂2f
∂x1∂x2

, ∂
2f

∂x2
2

and for any x ∈ Ω :

∂2f

∂x1∂x2
(a1b2 + a2b1)−

∂2f

∂x21
a2b2 −

∂2f

∂x22
a1b1 ≥ 0.

Then

E(f) =
1

4
(f1(c1, c2) + f1(d1, d2)− f1(c1, d2)− f1(d1, c2)) ,

where

f1(y1, y2) = f

(
y1b2 − y2a2
a1b2 − a2b1

,
y2a1 − y1b1
a1b2 − a2b1

)
. (29)

Proof. Introduce the new variables

y1 = a1x1 + a2x2, y2 = b1x1 + b2x2. (30)

Since the vectors (a1, a2) and (b1, b2) are linearly independent, for any (y1, y2) ∈ Y ,
where Y = [c1, d1]× [c2, d2], there exists only one solution (x1, x2) ∈ Ω of the system (30).
The coordinates of this solution are

x1 =
y1b2 − y2a2
a1b2 − a2b1

, x2 =
y2a1 − y1b1
a1b2 − a2b1

. (31)

The linear transformation (31) transforms the function f(x1, x2) to the function f1(y1, y2).
Consider the approximation of f1(y1, y2) from the set

Z = {z1(y1) + z2(y2) : zi ∈ C(R), i = 1, 2} .

It is easy to see that
E (f,R) = E (f1,Z) . (32)
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With each rectangle S = [u1, v1]× [u2, v2] ⊂ Y we associate the functional

L (h, S) =
1

4
(h(u1, u2) + h(v1, v2)− h(u1, v2)− h(v1, u2)) , h ∈ C(Y ).

This functional has the following obvious properties:

(i) L(z, S) = 0 for any z ∈ Z and S ⊂ Y .

(ii) For any point (y1, y2) ∈ Y , L(f1, Y ) =
4∑

i=1
L(f1, Si), where S1 = [c1, y1] × [c2, y2],

S2 = [y1, d1]× [y2, d2], S3 = [c1, y1]× [y2, d2], S4 = [y1, d1]× [c2, y2].

By the conditions of the theorem, it is not difficult to verify that

∂2f1
∂y1∂y2

≥ 0 for any (y1, y2) ∈ Y.

Integrating both sides of the last inequality over arbitrary rectangle S = [u1, v1] ×
[u2, v2] ⊂ Y , we obtain that

L (f1, S) ≥ 0. (33)

Set the function

f2(y1, y2) = L (f1, S1) + L (f1, S2)− L (f1, S3)− L (f1, S4) . (34)

It is not difficult to verify that the function f1 − f2 belongs to Z. Hence,

E (f1,Z) = E (f2,Z) . (35)

Calculate the norm ‖f2‖. From the property (ii), it follows that

f2(y1, y2) = L(f1, Y )− 2(L(f1, S3) + L(f1, S4)),

and

f2(y1, y2) = 2 (L (f1, S1) + L (f1, S2))− L (f1, Y ) .

From the last equalities and (33), we obtain that

|f2(y1, y2)| ≤ L (f1, Y ) , for any (y1, y2) ∈ Y.

On the other hand, one can check that

f2(c1, c2) = f2(d1, d2) = L (f1, Y ) , (36)

and

f2(c1, d2) = f2(d1, c2) = −L (f1, Y ) . (37)

Therefore

‖f2‖ = L (f1, Y ) . (38)
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Note that the points (c1, c2), (c1, d2), (d1, d2), (d1, c2) in the given order form a closed path
with respect to the directions (0; 1) and (1; 0). We conclude from (36)-(38) that this path
is extremal for f2. By Theorem 3, z0 = 0 is a best approximation to f2. Hence,

E (f2,Z) = L (f1, Y ) . (39)

Now from (32),(35) and (39) we finally conclude that

E (f,R) = L (f1, Y ) =
1

4
(f1(c1, c2) + f1(d1, d2)− f1(c1, d2)− f1(d1, c2)) ,

which is the desired result.J

Theorem 5. Let all the conditions of the previous theorem hold and f1(y1, y2) is the
function defined in (29). Then the function g0(y1, y2) = g1,0(y1) + g2,0(y2), where

g1,0(y1) =
1

2
f1(y1, c2) +

1

2
f1(y1, d2)−

1

4
f1(c1, c2)−

1

4
f1(d1, d2),

g2,0(y2) =
1

2
f1(c1, y2) +

1

2
f1(d1, y2)−

1

4
f1(c1, d2)−

1

4
f1(d1, c2),

and y1 = a1x1 + a2x2, y2 = b1x1 + b2x2, is a best approximation from the set R(a, b) to
the function f .

Proof. It is not difficult to verify that the function f2(y1, y2) defined in (34) has the
form

f2(y1, y2) = f1(y1, y2)− g1,0(y1)− g2,0(y2).

On the other hand, we know from the proof of Theorem 4 that

E(f1,Z) = ‖f2‖ .

Therefore, the function g1,0(y1)+g2,0(y2) is a best approximation to f1. Then the function
g1,0(a · x) + g2,0(b · x) is an extremal element from R(a,b) to f(x).J

Remark 1. Rivlin and Sibner [61], and Babaev [3] proved Theorem 4 for the case in which
a and b are the unit vectors. Our proof of Theorem 4 is different, short and elementary.
Moreover, it has turned out to be useful in constructing of an extremal element (see the
proof of Theorem 5).

Obviously, the set R
(
a1, ...,ar

)
is not dense in C(Rn) in the topology of uniform

convergence on compact subsets of Rn. Density here does not hold because the number
of considered directions is finite. If consider all the possible directions, then the set R =
span{g(a · x) : g ∈ C(R), a ∈ R

n\{0}} will be certainly dense in the space C(Rn) in
the above mentioned topology. In order to be sure, it is enough to consider only the
functions ea·x ∈ R, which have dense linear span in C(Rn). For density it is not necessary
to comprise all directions. The following result shows how many directions should be taken
to satisfy the density requirements.
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Proposition 5. (Vostrecov and Kreines [68], Lin and Pinkus [46]). For density of the set

R(A) = span{g(a · x) : g ∈ C(R), a ∈ A ⊂ R
n}

in C(Rn), (in the topology of uniform convergence on all compacta) it is necessary and
sufficient that the only homogeneous polynomial which vanishes identically on A is the
zero polynomial.

Since in the definition of R(A) we vary over all univariate functions g, allowing a
direction a is equivalent to allowing all directions ka for every real k. Thus it is sufficient
to consider only the set A of directions normalized to lie on the unit sphere Sn−1. For
example, if A is a subset of the sphere Sn−1, which contains an interior point (interior
point with respect to the induced topology on Sn−1), then R(A) is dense in the space
C(Rn). The proof of the above proposition highlights an important fact that the set R(A)
is dense in C(Rn) in the topology of uniform convergence on compact subsets if and only
if R(A) contains all the polynomials (see [46]).

One may ask the following question: are there cases in which the set R
(
a1, ...,ar

)
is

dense in the space of all continuous functions? Undoubtedly, a positive answer depends
on the geometrical structure of compact sets over which all the considered functions are
defined. Let us first consider the case r = 2. This case may be interesting in the theory
of partial differential equations. Take, for example, equation (10). A positive answer to
the problem means that for any continuous function f there exist solutions of the given
equation uniformly converging to f .

It should be remarked that the problem of density R
(
a1,a2

)
is a special case of

the problem considered by Marshall and O’Farrell. In [53], they obtained necessary and
sufficient conditions for a sum A1 + A2 of two subalgebras to be dense in C(U), where
C(U) denotes the space of real-valued continuous functions on a compact Hausdorff space
U . Understanding the great interest to the approximation by ridge functions, we like to
describe Marshall and O’ Farrell’s solution applied to the problem considered here.

Let X be a compact subset of Rd. The relation on X, defined by setting x ≈ y if x
and y belong to some path in X, is an equivalence relation. The equivalence classes are
called orbits.

Theorem 6. (see [53]). Let X be a compact subset of Rd with all its orbits closed. Then
the set R

(
a1,a2

)
is dense in C(X) if and only if X contains no closed paths with respect

to the directions a1 and a2.

The proof immediately follows from proposition 2 in [53] established for the sum of two
algebras. Since that proposition was given without proof, we give the proof of Theorem 6
for completeness of the exposition.

Proof. Necessity. If X has closed paths, then X has closed paths p′ = (p′
1, ...,p

′
2m)

such that all points p′
1, ...,p

′
2m are distinct. In fact, such special paths can be obtained
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from any closed path p = (p1, ...,p2n) by the following simple algorithm: if the points of
the path p are not all distinct, let i and k > 0 be the minimal indices such that pi = pi+2k;
delete from p the subsequence pi+1, ...,pi+2k and call p the obtained path; repeat the above
step until all points of p are all distinct; set p′ := p. By Urysohn’s great lemma, there exist
continuous functions h = h(x) on X such that h(p′

i) = 1, i = 1, 3, ..., 2m − 1, h(p′
i) = −1,

i = 2, 4, ..., 2m and −1 < h(x) < 1 elsewhere. Consider the measure

µp′ =
1

2m

2m∑

i=1

(−1)i−1δp′

i
,

where δp′

i
is a point mass at p′

i. For this measure,
∫
X

hdµp′ = 1 and
∫
X

gdµp′ = 0 for all

functions g ∈ R
(
a1,a2

)
. Thus the set R

(
a1,a2

)
cannot be dense in C(X).

Sufficiency. We are going to prove that the only annihilating regular Borel measure
for R

(
a1,a2

)
is the zero measure. Suppose, contrary to this assumption, there exists a

nonzero annihilating measure on X for R
(
a1,a2

)
. The class of such measures with total

variation not more than 1 we denote by S. Clearly, S is weak-* compact and convex. By
the Krein-Milman theorem, there exists an extreme measure µ in S. Since the orbits are
closed, µ must be supported on a single orbit. Denote this orbit by T.

For i = 1, 2, let Xi be the quotient space of X obtained by identifying the points
y and z whenever ai·y = ai·z. Let πi be the natural projection of X onto Xi. For a
fixed point t ∈ X set T1 = {t}, T2 = π−1

1 (π1T1), T3 = π−1
2 (π2T2), T4 = π−1

1 (π1T3), ...
Obviously, T1 ⊂ T2 ⊂ T3 ⊂ · · · . Therefore, for some k ∈ N, |µ| (T2k) > 0, where |µ| is
a total variation measure of µ. Since µ is orthogonal to every continuous function of the
form g

(
a1·x

)
, µ(T2k) = 0. From the Haar decomposition µ(T2k) = µ+(T2k)− µ−(T2k) it

follows that µ+(T2k) = µ−(T2k) > 0. Fix a Borel subset S0 ⊂ T2k such that µ+(S0) > 0
and µ−(S0) = 0. Since µ is orthogonal to every continuous function of the form g

(
a2·x

)
,

µ(π−1
2 (π2S0)) = 0. Therefore, one can chose a Borel set S1 such that S1 ⊂ π−1

2 (π2S0) ⊂
T2k+1, S1∩S0 = ∅, µ+(S1) = 0, µ−(S1) > µ+(S0). By the same way one can chose a Borel
set S2 such that S2 ⊂ π−1

1 (π1S1) ⊂ T2k+2, S2 ∩ S1 = ∅, µ−(S2) = 0, µ+(S2) > µ−(S1),
and so on.

The sets S0, S1, S2, ...are pairwise disjoint. For otherwise, there would exist positive
integers n and m, with n < m and a path (yn, yn+1, ..., ym) such that yi ∈ Si for i =
n, ...,m and ym ∈ Sm ∩ Sn. But then there would exist paths (z1, z2, ..., zn−1, yn) and
(z1, z

′

2, ..., z
′

n−1, ym) with zi and z
′

i in Ti for i = 2, ..., n − 1. Hence, the set

{z1, z2, ..., zn−1, yn, yn+1, ..., ym, z
′

n−1, ..., z
′

2, z1},

would contain a closed path. This would contradict our assumption on X.
Now, since the sets S0, S1, S2, ... are pairwise disjoint, and |µ| (Si) > µ+(S0) > 0 for

each i = 1, 2, ..., it follows that the total variation of µ is infinite. This contradiction
completes the proof.J

The following corollary concerns the problem considered by Colitschek and Light in
[19].
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Corollary 4. [32]. Let D be a compact subset of R
2 with all its orbits closed. Let W

denote the set of all solutions of the wave equation

∂2w

∂s∂t
(s, t) = 0, (s, t) ∈ D.

Then
inf
w∈W

‖f − w‖ = 0,

for any continuous function f(s, t) on D if and only if D contains no closed classical path
(path with respect to the basic directions).

Proof. Let π1 and π2 denote the usual coordinate projections, viz: π1(s, t) = s and
π2(s, t) = t, (s, t) ∈ R

2. Set S = π1(D) and T = π2(D). It is easy to see that

W =
{
w ∈ C(D) : w(s, t) = x(s) + y(t), x ∈ C2(S), y ∈ C2(T )

}
.

Set
W̃ = {w ∈ C(D) : w(s, t) = x(s) + y(t), x ∈ C(S), y ∈ C(T )} .

Since the set W is dense in W̃ ,

inf
w∈W

‖f − w‖ = inf
w∈W̃

‖f − w‖ .

But by Theorem 6, the equality

inf
w∈W̃

‖f − w‖ = 0,

holds for any f ∈ C(D) if and only if D contains no closed path with respect to the basic
directions.J

Finally, we indicate the difficulties with the sum of more than two ridge functions.
Consider the set R

(
a1, ...,ar

)
, where r ≥ 3. How can we define a path? Recall that in

the case when r = 2, a path is an ordered set of points (p1,p2, ...,pn) in R
d with edges

pipi+1 in alternating hyperplanes. The first, the third, the fifth,... hyperplanes (also the
second, the fourth, the sixth,... hyperplanes) are parallel. If not differentiate between
parallel hyperplanes, the path (p1,p2, ...,pn) can be considered as a trace of some point
traveling in two alternating hyperplanes. In this case, if the point starts and stops at the
same location (i.e., if pn = p1) and n is an odd number, then the path functional

G(f) =
1

n− 1

n−1∑

i=1

(−1)i+1f(pi),

annihilates each sum of ridge functions with the two fixed directions. The picture becomes
more complicated when the number of directions is more than two. The simple general-
ization of the above-mentioned arguments demands a point traveling in three or more
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alternating hyperplanes. But in this case the appropriate generalization of the functional
G does not annihilate functions from R

(
a1, ...,ar

)
.

There were several attempts to fill this gap in the special case when r = d and a1, ...,ar

are the unit vectors. Unfortunately, all these attempts failed (see, for example, the at-
tempts in [11,20] and the refutations in [1,13,54]).

Although approximation techniques for the problems considered here are much less
developed, there are some interesting results for the set R

(
a1, ...,ar

)
. For example, Lin

and Pinkus [46] characterized R
(
a1, ...,ar

)
, i.e. they found means of determining if a

continuous function f (defined on R
d) is of the form

r∑
i=1

gi(a
i ·x) for some given a1, ...,ar ∈

R
d\{0}, but unknown continuous g1, ..., gr. Buhmann and Pinkus [6] solved the problem:

Assume we know that a function f(x) is of the form
r∑

i=1
gi(a

i · x). How do we determine

the functions gi?

At the end we want to draw the readers’ attention to the following problems (all these
problems are general and not solved by the methods introduced in this section).

Let Q be a compact subset of Rd. Consider the approximation of a continuous function
defined on Q by functions from R

(
a1, ...,ar

)
. Let r ≥ 3.

Problem A. Characterize those functions from R
(
a1, ...,ar

)
that are extremal to a

given continuous function.

Problem B. Establish explicit formulas for the error in approximating from R
(
a1, ...,ar

)

and construct a best approximation.

Problem C. Find necessary and sufficient geometrical conditions for the set R
(
a1, ...,ar

)

to be dense in C(Q).

It should be remarked that in [53], Problem C was set up for the sum of r subalgebras
of C(Q). Lin and Pinkus [46] proved that the set R

(
a1, ...,ar

)
(r may be very large) is not

dense in C(Rd) in the topology of uniform convergence on compact subsets of Rd. That
is, there are compact sets Q ⊂ R

d such that R
(
a1, ...,ar

)
is not dense in C(Q). In the

case r = 2, Theorem 6 complements this result, by describing compact sets Q ⊂ R
2, for

which R
(
a1,a2

)
is dense in C(Q).

4. Sums of continuous ridge functions

The problem of representation of a fixed multivariate function by ridge functions gives
rise to the problem of representation of some classes of functions by such sums. For
example, one may consider the following problem. Let X be a subset of the n−dimensional
Euclidean space. Let C(X), B(X), T (X) denote the set of continuous, bounded and all
real functions defined on X correspondingly. In the first case, we additionally suppose
that X is a compact set. Let Rc

(
a1, ...,ar

)
and Rb

(
a1, ...,ar

)
denote the subspaces of

R
(
a1, ...,ar

)
comprising only sums of continuous and bounded terms gi

(
ai · x

)
, i = 1, ..., r,
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correspondingly. The following questions naturally arise: For which sets X, one can claim
that C(X) = Rc

(
a1, ...,ar

)
, B(X) = Rb

(
a1, ...,ar

)
, and T (X) = R

(
a1, ...,ar

)
? The first

two problems in more general setting were solved by Sternfeld [64,65]. The third problem
was solved in the previous section. Let us cite the results of Sternfeld for the case of
representation by sums of ridge functions. Let we are given directions a1, ...,ar ∈ R

n\{0}
and some set X ⊆ R

n. The family F = {a1, ...,ar} uniformly separates points of X if
there exists a number 0 < λ ≤ 1 such that for each pair {xj}

m
j=1, {zj}

m
j=1 of disjoint finite

sequences in X, there exists some direction ak ∈ F so that if from the two sequences
{ak · xj}

m
j=1and {ak · zj}

m
j=1 we remove a maximal number of pairs of points ak · xj1 and

ak ·zj2 with ak ·xj1 = ak ·zj2 , then there remains at least λm points in each sequence (or ,
equivalently, at most (1−λ)m pairs can be removed). Sternfeld [65], in particular, proved
that a finite family of directions F = {a1, ...,ar} uniformly separates points of X if and
only if Rb

(
a1, ...,ar

)
= B(X). In [65], Sternfeld also obtained a practically convenient

sufficient condition for the equality Rb

(
a1, ...,ar

)
= B(X).To describe his condition, define

the set functions

τi(Z) = {x ∈ Z : |p−1
i (pi(x))

⋂
Z| ≥ 2},

where Z ⊂ X, pi(x) = ai · x, i = 1, . . . , r, and |Y | denotes the cardinality of a considered
set Y . Define τ(Z) to be

⋂k
i=1 τi(Z) and define τ2(Z) = τ(τ(Z)), τ3(Z) = τ(τ2(Z)) and

so on inductively.

Proposition 6. (Sternfeld [65]). If τn(X) = ∅ for some n, then Rb

(
a1, ...,ar

)
= B(X).

If X is a compact subset of Rn, and τn(X) = ∅ for some n, then Rc

(
a1, ...,ar

)
= C(X).

The sufficient condition “τn(X) = ∅ for some n” turns out to be also necessary for
the case r = 2. In this case the equality Rb

(
a1,a2

)
= B(X) is equivalent to the equality

Rc

(
a1,a2

)
= C(X). In another work [64], Sternfeld obtained a measure-theoretic nec-

essary and sufficient condition for the equality Rc

(
a1, ...,ar

)
= C(X). Let a1, ...,ar ∈

R
n\{0}, pi(x) = ai · x, i = 1, . . . , r, X be a compact set in R

n and M(X) be a class of
measures defined on some field of subsets of X. The family F = {a1, ...,ar} uniformly
separates measures of the class M(X) if there exists a number 0 < λ ≤ 1 such that
for each measure µ in M(X) the equality

∥∥µ ◦ p−1
k

∥∥ ≥ λ ‖µ‖ holds for some direction
ak ∈ F . Sternfeld [64], in particular, proved that the equalityRc

(
a1, ...,ar

)
= C(X)

holds if and only if the family of directions {a1, ...,ar} uniformly separates measures of
the class C(X)∗ (that is, the class of regular Borel measures). Besides, he proved that
Rb

(
a1, ...,ar

)
= B(X) if and only if the family of directions {a1, ...,ar} uniformly sepa-

rates measures of the class l1(X) (that is, the class of finite measures defined on countable
subsets of X). Since l1(X) ⊂ C(X)∗, the first equality Rc

(
a1, ...,ar

)
= C(X) implies the

second equality Rb

(
a1, ...,ar

)
= B(X). The inverse is not true (see [64]). We stress again

that the above results of Sternfeld were obtained for more general functions, than linear
combinations of ridge functions, namely for functions of the form

∑r
i=1 gi(hi(x)), where

hi arbitrarily fixed functions (bounded or continuous) defined on X.
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Consider the following representation problem associated with the set R
(
a1, ...,ar

)
:

Let X be a compact subset of R
n. Give geometrical conditions that are necessary and

sufficient for
R
(
a1, ...,ar

)
= C (X) ,

where C (X) is the space of continuous functions on X furnished with the uniform norm.

We are going to show how this problem is solved for r = 2 and indicate some difficulties
related to the case r ≥ 3. In the sequel, we will use the following notation:

H1 = H1 (X) =
{
g1
(
a1 · x

)
: g1 ∈ C (R)

}
,

H2 = H2 (X) =
{
g2
(
a2 · x

)
: g2 ∈ C (R)

}
.

Note that by this notation, R
(
a1,a2

)
= H1 +H2.

Theorem 7. (see [32,41]). Let X be a compact subset of Rn. The equality

H1 (X) +H2 (X) = C (X) ,

holds if and only if X contains no closed path and there exists a positive integer n0 such
that the lengths of paths in X are bounded by n0.

Proof. Necessity. Let H1 +H2 = C (X). Consider the linear operator

A : H1 ×H2 → C (X) , A [(g1, g2)] = g1 + g2,

where g1 ∈ H1, g2 ∈ H2. We define the norm on H1 ×H2

‖(g1, g2)‖ = ‖g1‖+ ‖g2‖ .

It is obvious that the operator A is continuous with respect to this norm. Besides, since
C (X) = H1 +H2, A is a surjection. Consider the conjugate operator

A∗ : C (X)∗ → [H1 ×H2]
∗ , A∗ [G] = (G1, G2) ,

where the functionals G1 and G2 are defined as follows:

G1 (g1) = G (g1) , g1 ∈ H1; G2 (g2) = G (g2) , g2 ∈ H2.

An element (G1, G2) from [H1 ×H2]
∗ has the norm

‖(G1, G2)‖ = max {‖G1‖ , ‖G2‖} . (40)

Let now p = (p1, ..., pm) be any path with different points: pi 6= pj for any i 6= j,
1 ≤ i, j ≤ m. We associate with p the following functional over C (X) :

L [f ] =
1

m

m∑

i=1

(−1)i−1 f (pi) .
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Since |L(f)| ≤ ‖f‖ and |L(g)| = ‖g‖ for a continuous function g(x) such that g(pi) = 1, for
odd indices i, g(pj) = −1, for even indices j and −1 < g(x) < 1 elsewhere, we obtain that
‖L‖ = 1. Let A∗ [L] = (L1, L2). One can easily verify that

‖Li‖ ≤
2

m
, i = 1, 2.

Therefore, from (40) we obtain that

‖A∗ [L]‖ ≤
2

m
. (41)

Since A is a surjection, there exists δ > 0 such that

‖A∗ [G]‖ ≥ δ ‖G‖ for any functional G ∈ C (X)∗ .

Hence,
‖A∗ [L]‖ ≥ δ. (42)

Now from (41) and (42) we conclude that

m ≤
2

δ
.

This means that for a path with different points, n0 can be chosen as
[
2
δ

]
+ 1.

Let now p = (p1, ..., pm) be a path with at least two coinciding points. Then we can
form a closed path with different points. This may be done by the following way: let i and
j be indices such that pi = pj and j − i takes its minimal value. Note that in this case
all the points pi, pi+1, ..., pj−1 are distinct. Now if j − i is an even number, then the path
(pi, pi+1, ..., pj−1) , and if j− i is an odd number, then the path (pi+1, ..., pj−1) is a closed
path with different points. It remains to show that X can not possess closed paths with
different points. Indeed, if q = (q1, ..., q2k) is a path of this type, then the functional L,
associated with q, annihilates all functions from H1+H2. On the other hand, L [f ] = 1 for
a continuous function f on X satisfying the conditions f (t) = 1 if t ∈ {q1, q3, ..., q2k−1} ;
f (t) = −1 if t ∈ {q2, q4, ..., q2k} ; f (t) ∈ (−1; 1) if t ∈ X\q . This implies on the contrary
to our assumption that H1 +H2 6= C (X). The necessity has been proved.

Sufficiency. Let X contains no closed path and the lengths of all paths are bounded
by some positive integer n0. We may suppose that any path has different points. Indeed,
in other case we can form a closed path, which contradicts our assumption.

For i = 1, 2, let Xi be the quotient space of X obtained by identifying the points a
and b whenever g (a) = g (b) for each g in Hi. Let πi be the natural projection of X onto
Xi. For a point t ∈ X set T1 = π−1

1 (π1t) , T2 = π−1
2 (π2T1) , . . . . By O (t) denote the orbit

of X containing t. Since the length of any path in X is not more than n0, we conclude
that O (t) = Tn0

. Since X is compact, the sets T1, T2, ..., Tn0
, hence O(t), are compact.

By Theorem 6 (see Section 1.3), H1 +H2 = C (X).
Now show that H1 +H2 is closed in C (X). Set

H3 = H1 ∩H2.
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Let X3 and π3 be the associated quotient space and projection, respectively. Fix some
a ∈ X3. Show, within conditions of our theorem, that if t ∈ π−1

3 (a) , then O (t) = π−1
3 (a).

The inclusion O (t) ⊂ π−1
3 (a) is obvious. Suppose that there exists a point t1 ∈ π−1

3 (a)
such that
t1 /∈ O (t). Then O (t) ∩ O (t1) = ∅. By X|O denote the factor space generated by orbits
of X. X|O is a normal topological space with its natural factor topology. Hence, we can
construct a continuous function u ∈ C (X|O) such that u (O (t)) = 0, u (O (t1)) = 1. The
function υ (x) = u (O (x)) , x ∈ X, is continuous on X and belongs to H3 as a function
being constant on each orbit. But, since O (t) ⊂ π−1

3 (a) and O (t1) ⊂ π−1
3 (a), the function

υ (x) can not take different values on O (t) and O (t1). This contradiction means that there
is not a point t1 ∈ π−1

3 (a) such that t1 /∈ O (t). Thus

O (t) = π−1
3 (a) , (43)

for any a ∈ X3 and t ∈ π−1
3 (a).

Now prove that there exists a positive real number c such that

sup
z∈X3

var
π−1

3
(z)
f ≤ c sup

y∈X2

var
π−1

2
(y)
f, (44)

for all f in H1. Note that for Y ⊂ X, var
Y
f is the variation of f on the set Y. That is,

var
Y
f = sup

x,y∈Y
|f (x)− f (y)| .

Due to (43), inequality (44) can be written in the following form:

sup
t∈X

var
O(t)

f ≤ c sup
t∈X

var
π−1

2
(π2(t))

f, (45)

for all f ∈ H1.
Let t ∈ X and t1, t2 be arbitrary points of O (t). Then there is a path (b1, b2, ..., bm)

with b1 = t1 and bm = t2. Besides, by the condition, m ≤ n0 . Let first a2 · b1 = a2 · b2,
a1 · b2 = a1 · b3, ...,a

2 · bm−1 = a2 · bm. Then for any function f ∈ H1 :

|f (t1)− f (t2)| = |f (b1)− f (b2) + ...− f (bm)| ≤

≤ |f (b1)− f (b2)|+ ...+ |f (bm−1)− f (bm)| ≤
no
2

sup
t∈X

var
π−1

2
(π2(t))

f. (46)

It is not difficult to verify that inequality (46) holds in all other possible cases of
the path (b1, ..., bm). Now from (46) we obtain (45), hence (44), where c = n0

2 . In [108],
Marshall and O’Farrell proved the following result (see Proposition 4 in [108]): Let A1 and
A2 be closed subalgebras of C(X) that contain the constants. Let (X1, π1), (X2, π2) and
(X3, π3) be the quotient spaces and projections associated with the algebras A1, A2 and
A3 = A1 ∩ A2 respectively. Then A1 + A2 is closed in C(X) if and only if there exists a
positive real number c such that

sup
z∈X3

var
π−1

3
(z)
f ≤ c sup

y∈X2

var
π−1

2
(y)
f,
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for all f in A1.
By this proposition, (44) implies that H1 + H2 is closed in C (X). Thus, we finally

obtain that H1 +H2 = C (X).

Paths with respect to two directions are explicit objects and give geometric means
of deciding if H1 + H2 = C (X). Let us show this in the example of the bivariate ridge
functions g1 = x1 + x2 and g2 = x1 − x2. If X is the union of two parallel line segments in
R
2, not parallel to any of the lines x1 + x2 = 0 and x1 − x2 = 0, then Theorem 7 holds. If

X is any bounded part of the graph of the function x2 = arcsin(sinx1), then Theorem 7
also holds. Let now X be the set

{(0, 0), (1,−1), (0,−2), (−11
2 ,−

1
2), (0, 1), (

3
4 ,

1
4 ), (0,−

1
2 ),

(−3
8 ,−

1
8), (0,

1
4), (

3
16 ,

1
16 ), ...}.

In this case, there is no positive integer bounding lengths of all paths. Thus, Theorem
7 fails. Note that since orbits of all paths are closed, Theorem 6 from the previous section
shows H1 +H2 is dense in C (X) .

If X is any set with interior points, then both Theorem 6 and Theorem 7 fail, since any
such set contains the vertices of some parallelogram with sides parallel to the directions
a1 and a2, that is a closed path.

To solve the above geometrical problem of representation for the general case in which
r ≥ 3 is more difficult than to solve it for r = 2. In this case, we even don’t know what ob-
jects will be an appropriate generalization of paths. Representation by sums of continuous
ridge functions requires more complicated relations between points of X than relations
induced by paths with respect to only two directions. If disregard continuity, we have seen
in Section 2 that cycles with respect to n directions are able to solve the representation
problem. But when some topology is involved, the picture is quite different. No one knows
a geometrically explicit solution to the problem of representation of continuous multivari-
ate functions by sums of continuous ridge functions. Nevertheless, it should be noted that
this problem in quite abstract (and not geometrical) form was solved by Sternfeld. His
solution involves a family of functions that separates regular Borel measures on a given
compact set X. A family F = {h} ⊂ C(X) is said to be a measure separating family
(m.s.f.) if there exists a number 0 < λ ≤ 1 such that for any measure µ in C(X)∗, the
inequality

∥∥µ ◦ h−1
∥∥ ≥ λ ‖µ‖ holds for some h ∈ F. Sternfeld [64], in particular, proved

that R
(
a1, ...,ar

)
= C(X) if and only if the family {ai · x, i = 1, ..., r} is a m.s.f.

Theorem 7 admits a direct generalization to the representation by sums g1 (h1 (x)) +
g2 (h2 (x)), where h1 (x) and h2 (x) are fixed continuous functions on X. This generaliza-
tion needs consideration of new objects – paths with respect to two continuous functions.

Definition 5. (see [30,32]). Let X be a compact subset of R
n and hi ∈ C (X) , i = 1, 2.

A finite ordered subset (p1, p2, ..., pm) of X with pi 6= pi+1 (i = 1, ...,m − 1) , and either
h1 (p1) = h1 (p2) , h2 (p2) = h2 (p3) , h1 (p3) = h1 (p4) , ..., or h2 (p1) = h2 (p2) , h1 (p2) =
h1 (p3) , h2 (p3) = h2 (p4) , ... is called a path with respect to the functions h1 and h2 or
shortly an h1-h2 path.
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Theorem 8. (see [32,41]). Let X be a compact subset of Rn. Every function f(x) ∈ C(X)
admits a representation

f (x ) =g1 (h1 (x)) + g2 (h2 (x)) , g1, g2 ∈ C(R),

if and only if the set X contains no closed h1-h2 path and there exists a positive integer
n0 such that the lengths of h1-h2 paths in X are bounded by n0.

The proof can be carried out by the same arguments as above.

5. Existence of extremal ridge functions

Let E be a normed linear space and F be its subspace. We say that F is proximinal
in E if for any element e ∈ E there exists at least one element f0 ∈ F such that

‖e− f0‖ = inf
f∈F

‖e− f‖ .

In this case, the element f0 is said to be extremal to e.
In the following, we are going to deal with the problem of proximinality of the set of

linear combinations of ridge functions in the spaces of bounded and continuous functions,
respectively. This problem will be considered in the simplest case when the class of
approximating functions is the set

R = R
(
a1,a2

)
=
{
g1
(
a1·x

)
+ g2

(
a2·x

)
: g

i
: R → R, i = 1, 2

}
.

Here a1and a2 are fixed directions and we vary over gi. It is clear that this is a linear space.
Consider the following three subspaces of R. The first is obtained by taking only bounded
sums g1

(
a1·x

)
+ g2

(
a2·x

)
over some set X in R

n. We denote this subspace by Ra(X).
The second and the third are subspaces of R with bounded and continuous summands
gi
(
ai · x

)
, i = 1, 2, on X respectively. These subspaces will be denoted by Rb(X) and

Rc(X). In the case of Rc(X), the set X is considered to be compact.
Let B(X) and C(X) be the spaces of bounded and continuous multivariate functions

over X, respectively. What conditions must one impose on X in order that the sets Ra(X)
and Rb(X) be proximinal in B(X) and the set Rc(X) be proximinal in C(X)? We are also
interested in necessary conditions for proximinality. It follows from one result of Garkavi,
Medvedev and Khavinson (see Theorem 1 [18]) that Ra(X) is proximinal in B(X) for all
subsets X of Rn. There is also an answer (see Theorem 2 [18]) for proximinality of Rb(X)
in B(X). Is the set Rb(X) always proximinal in B(X)? There is an an example of a
set X ⊂ R

n and a bounded function f on X for which there does not exist an extremal
element in Rb(X).

We want to draw the readers’ attention to the more general case in which the number
of directions is more than two. In this case, the set of approximating functions is
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R
(
a1, ...,ar

)
=

{
r∑

i=1

gi
(
ai · x

)
: gi : R → R, i = 1, ..., r

}
.

In a similar way as above, one can define the sets Ra(X), Rb(X) andRc(X). Using the
results of [18], one can obtain sufficient (but not necessary) conditions for proximinality
of these sets. This needs, besides paths, the consideration of some additional and more
complicated relations between points of X. The case r ≥ 3 will not be considered in the
current section, since our main purpose is to draw readers’ attention to the arisen problems
of proximinality in the simplest case of approximation. For the existing open problems
connected with the set R

(
a1, ...,ar

)
, where r ≥ 3, see [32] and [58].

Let a1 and a2 be two different directions in R
n. Let us recall that a path with respect

to the directions a1 and a2 is a finite or infinite ordered set of points (x1,x2, ...) in R
n with

the units xi+1 −xi, i = 1, 2, ..., in the directions perpendicular alternatively to a1 and a2.
In the sequel, we simply use the term “path” instead of the long expression “path with
respect to the directions a1 and a2 ”. The length of a path is the number of its points
and can be equal to ∞ if the path is infinite. A singleton is a path of the unit length. We
say that a path

(
x1, ...,xm

)
belonging to some subset X of Rn is irreducible if there is not

another path
(
y1, ...,yl

)
⊂ X with y1 = x1, yl = xm and l < m. If in a path

(
x1, ...,xm

)

m is an even number and the set
(
x1, ...,xm,x1

)
is also a path, then the path

(
x1, ...,xm

)

is called to be closed.
The following theorem follows from Theorem 2 of [18]:

Theorem 9. Let X ⊂ R
n and the lengths of all irreducible paths in X be uniformly

bounded by some positive integer. Then each function in B(X) has an extremal element
in Rb(X).

There is a large number of sets in R
n satisfying the hypothesis of this theorem. For

example, if a set X has a cross section according to one of the directions a1 or a2, then the
set X satisfies the hypothesis of Theorem 9. By a cross section according to the direction
a1 we mean any set Xa1 = {x ∈ X : a1 · x = c}, c ∈ R, with the property: for any y ∈ X
there exists a point y1 ∈ Xa1 such that a2 ·y = a2 ·y1. By the similar way, one can define
a cross section according to the direction a2. Regarding Theorem 9, one may ask if the
condition of the theorem is necessary for proximinality of Rb(X) in B(X). While we do
not know a complete answer to this question, we are going to give an example of a set X
for which Theorem 9 fails. Let a1 = (1;−1), a2 = (1; 1). Consider the set

X = {(2;
2

3
), (

2

3
;−

2

3
), (0; 0), (1; 1), (1 +

1

2
; 1 −

1

2
), (1 +

1

2
+

1

4
; 1−

1

2
+

1

4
),

(1 +
1

2
+

1

4
+

1

8
; 1−

1

2
+

1

4
−

1

8
), ...}.

In what follows, the elements of X in the given order will be denoted by x0,x1,x2, ... . It
is clear that X is a path of the infinite length and xn → x0 , as n → ∞. Let

∑
∞

n=1 cn
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be any divergent series with the terms cn > 0 and cn → 0, as n → ∞. Besides, let f0
be a function vanishing at the points x0,x2,x4, ..., and taking values c1, c2, c3, ... at the
points x1,x3, x5, ..., respectively. It is obvious that f0 is continuous on X. The set X
is compact and satisfies all the conditions of Proposition 2 of [53]. By this proposition,
Rc(X) = C(X). Therefore, for any continuous function on X, thus for f0,

inf
g∈Rc(X)

‖f0 − g‖C(X) = 0. (47)

Since Rc(X) ⊂ Rb(X), we obtain from (47) that

inf
g∈Rb(X)

‖f0 − g‖B(X) = 0. (48)

Suppose that f0 has an extremal element g01
(
a1·x

)
+ g02

(
a2 ·x

)
in Rb(X). By the

definition of Rb(X), the ridge functions g0i , i = 1, 2, are bounded on X. From (48) it follows
that f0 = g01

(
a1 ·x

)
+ g02

(
a2·x

)
. Since a1 · x2n = a1 · x2n+1 and a2 · x2n+1 = a2 · x2n+2,

for n = 0, 1, ..., we can write

k∑

n=0

cn+1 =

k∑

n=0

[
f(x2n+1)− f(x2n)

]

=

k∑

n=0

[
g02(x

2n+1)− g02(x
2n)
]
= g02(a

2 · x2k+1)− g02(a
2 · x0). (49)

Since
∑

∞

n=1 cn = ∞, we deduce from (49) that the function g02
(
a2·x

)
is not bounded

on X. This contradiction means that the function f0 does not have an extremal element
in Rb(X). Therefore, the space Rb(X) is not proximinal in B(X).

Let us now give sufficient conditions and also a necessary condition for proximinality
of Rc(X) in C(X).

Theorem 10. [26]. Let the system of independent vectors a1 and a2 have a complement
to a basis {a1, ...,an} in R

n with the property: for any point x0 ∈ X and any positive real
number δ there exist a number δ0 ∈ (0, δ] and a point xσ in the set

σ = {x ∈ X : a2 · x0 − δ0 ≤ a2 · x ≤ a2 · x0 + δ0},

such that the system





a2 · x′ = a2 · xσ,
a1 · x′ = a1 · x,∑n

i=3

∣∣ai · x′ − ai · x
∣∣ < δ,

(50)

has a solution x′ ∈ σ for all points x ∈ σ.Then the space Rc(X) is proximinal in C(X).
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Proof.
Introduce the following mappings and sets:

πi : X → R, πi(x) = ai · x, Yi = πi(X), i = 1, ..., n.

Since the system of vectors {a1, ...,an} is linearly independent, the mapping π =
(π1, ...πn) is an injection from X into the Cartesian product Y1 × ... × Yn . Besides, π
is linear and continuous. By the open mapping theorem, the inverse mapping π−1 is
continuous from Y = π(X) onto X. Let f be a continuous function on X. Then the
composition f ◦ π−1(y1, ...yn) will be continuous on Y, where yi = πi(x), i = 1, ..., n, are
the coordinate functions. Consider the approximation of the function f ◦π−1 by elements
from

G0 = {g1(y1) + g2(y2) : gi ∈ C(Yi), i = 1, 2},

over the compact set Y . Then one may observe that the function f has an extremal
element in Rc(X) if and only if the function f ◦π−1 has an extremal element in G0. Thus,
the problem of proximinality of Rc(X) in C(X) is reduced to the problem of proximinality
of G0 in C(Y ).

Let T, T1, ..., Tm+1 be metric compact spaces and T ⊂ T1 × ...×Tm+1. For i = 1, ...,m,
let ϕi be the continuous mappings from T onto Ti. In [35], the author obtained sufficient
conditions for proximinality of the set

C0 = {
n∑

i=1

gi ◦ ϕi : gi ∈ C(Ti), i = 1, ...m},

in the space C(T ) of continuous functions on T. Since Y ⊂ Y1 × Y2 × Z3, where Z3 =
Y3× ...×Yn, we can use this result in our case for the approximation of the function f ◦π−1

by elements from G0. By this theorem, the set G0 .is proximinal in C(Y ) if for any y02 ∈ Y2
and δ > 0 there exists a number δ0 ∈ (0, δ) such that the set σ(y02 , δ0) = [y02−δ0, y

0
2+δ0]∩Y2

has (2, δ) maximal cross section. The last means that there exists a point yσ2 ∈ σ(y02 , δ0)
with the property: for any point (y1, y2, z3) ∈ Y, with the second coordinate y2 from the
set σ(y02 , δ0), there exists a point (y′1, y

σ
2 , z

′
3) ∈ Y such that y1 = y′1 and ρ(z3, z

′
3) < δ, where

ρ is a metrics in Z3. Since these conditions are equivalent to the conditions of Theorem 10,
the space G0 is proximinal in the space C(Y ). Then by the above conclusion, the space
Rc(X) is proximinal in C(X). J

Let us give some simple examples of compact sets satisfying the hypothesis of Theorem
10. For the sake of brevity, we restrict ourselves to the case n = 3.

(a) Let X be a closed ball in R
3, a1 and a2 be two arbitrary orthogonal directions. Then

Theorem 10 holds. Note that in this case we can take δ0 = δ and a3 as an orthogonal
vector to both the vectors a1 and a2.

(b) Let X be the unite cube, a1 = (1; 1; 0), a2 = (1;−1; 0). Then Theorem 10 also holds.
In this case, we can take δ0 = δ and a3 = (0; 0; 1). Note that the unit cube does
not satisfy the hypothesis of the theorem for many directions (take, for example,
a1 = (1; 2; 0) and a2 = (2;−1; 0)).
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In the following example, one can not always chose δ0 as equal to δ.

(c) Let X = {(x1, x2, x3) : (x1, x2) ∈ Q, 0 ≤ x3 ≤ 1}, where Q is the union of two
triangles A1B1C1 and A2B2C2 with the vertices A1 = (0; 0), B1 = (1; 2), C1 =
(2; 0), A2 = (11

2 ; 1), B2 = (21
2 ;−1), C2 = (31

2 ; 1). Let a
1 = (0; 1; 0) and a2 =

(1; 0; 0). Then it is easy to see that Theorem 10 holds (the vector a3 can be chosen
as (0; 0; 1)). In this case, δ0 can not be always chosen as equal to δ. Take, for
example, x0 = (13

4 ; 0; 0) and δ = 13
4 . If δ0 = δ, then the second equation of the

system (50) has not a solution for a point (1; 2; 0) or a point (21
2 ;−1; 0). But if we

take δ0 not more than 1
4 , then for xσ = x0 the system has a solution. Note that the

last inequality
∣∣a3 · x′ − a3 · x

∣∣ < δ of the system can be satisfied with the equality
a3 · x′ = a3 · x if a3 = (0; 0; 1).

It should be remarked that the results of [18] tell nothing about necessary conditions
for proximinality of the spaces considered there. To fill this gap in our case, we want to
give a necessary condition for proximinality of Rc(X) in C(X). Our result will be based
on the result of Marshall and O’Farrell given below. First, let us introduce some notation.
By Ri

c, i = 1, 2, we will denote the set of continuous ridge functions g
(
ai · x

)
on the

given compact set X ⊂ R
n. Note that Rc = R1

c + R2
c . Besides, let R3

c = R1
c ∩ R2

c . For
i = 1, 2, 3, let Xi be the quotient space obtained by identifying points y1 and y2 in X
whenever f(y1) = f(y2) for each f in Ri

c. By πi denote the natural projection of X onto
Xi, i = 1, 2, 3. Note that we have already dealt with the quotient spaces X1, X2 and the
projections π1, π2 in the previous section (see the proof of Theorem 9). The relation on
X, defined by setting y1 ≈ y2 if y1 and y2 belong to some path, is an equivalence relation.
According to Marshall and O’Farrell [52,53], the equivalence classes are called orbits. By
O(t) denote the orbit of X containing t. For Y ⊂ X, let varY f be the variation of a
function f on the set Y. That is,

var
Y
f = sup

x,y∈Y
|f (x)− f (y)| .

Theorem 11. [26]. Suppose that the space Rc(X) is proximinal in C(X).Then there
exists a positive real number c such that

sup
t∈X

var
O(t)

f ≤ c sup
t∈X

var
π−1

2
(π2(t))

f , (51)

for all f in R1
c .

The proof is simple. In [53], Marshall and O’Farrell proved the following result (see
Proposition 4 in [53]): Let A1 and A2 be closed subalgebras of C(X) that contain the
constants. Let (X1, π1), (X2, π2) and (X3, π3) be the quotient spaces and projections
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associated with the algebras A1, A2 and A3 = A1 ∩ A2, respectively. Then A1 + A2 is
closed in C(X) if and only if there exists a positive real number c such that

sup
z∈X3

var
π−1

3
(z)
f ≤ c sup

y∈X2

var
π−1

2
(y)
f, (52)

for all f in A1.
If Rc(X) is proximinal in C(X), then it is necessarily closed and therefore, by the

above proposition, (52) holds for the algebras Ai
1 = Ri

c, i = 1, 2, 3. The right-hand side
of (52) is equal to the right-hand side of (51). Let t be some point in X and z = π3(t).
Since each function f ∈ R3

c is constant on the orbit of t (note that f is both of the form
g1
(
a1·x

)
and of the form g2

(
a2·x

)
), O(t) ⊂ π−1

3 (z). Hence,

sup
t∈X

var
O(t)

f ≤ c sup
z∈X3

var
π−1

3
(z)
f. (53)

From (52) and (53) we obtain (51).

Note that the inequality (52) provides not worse but less practicable necessary condi-
tion for proximinality than the inequality (51) does. On the other hand, there are many
cases in which both the inequalities are equivalent. For example, let the lengths of ir-
reducible paths of X are bounded by some positive integer n0. In this case, it can be
shown that the inequality (52), hence (51), holds with the constant c = n0

2 and, more-
over, O(t) = π−1

3 (z) for all t ∈ X, where z = π3(t) (see the proof of Theorem 5 in [32]).
Therefore, the inequalities (51) and (52) are equivalent for the considered class of sets
X. The last argument shows that all the compact sets X ⊂ R

n over which Rc(X) is not
proximinal in C(X) should be sought in the class of sets having irreducible paths consist-
ing of sufficiently large number of points. For example, let I = [0; 1]2 be the unit square,
a1 = (1; 1), a2 = (1; 12 ). Consider the path

lk = {(1; 0), (0; 1), (
1

2
; 0), (0;

1

2
), (

1

4
; 0), ..., (0;

1

2k
)}.

It is clear that lk is an irreducible path with the length 2k + 2, where k may be very
large. Let gk be a continuous univariate function on R satisfying the conditions: gk(

1
2k−i ) =

i, i = 0, ..., k, gk(t) = 0 if t < 1
2k
, i − 1 ≤ gk(t) ≤ i if t ∈ ( 1

2k−i+1 ,
1

2k−i ), i = 1, ..., k, and
gk(t) = k if t > 1. Then it can be easily verified that

sup
t∈X

var
π−1

2
(π2(t))

gk(a
1·x) ≤ 1. (54)

Since maxx∈I gk(a
1·x) = k, minx∈I gk(a

1·x) = 0 and varx∈O(t1)gk(a
1· x) = k for t1 =

(1; 0), we obtain that
sup
t∈X

var
O(t)

gk(a
1·x) = k. (55)

Since k may be very large, from (54) and (55) it follows that the inequality (51) cannot
hold for the function gk(a

1 ·x) ∈ R1
c . Thus, the space Rc(I) with the directions a1 = (1; 1)

and a2 = (1; 12) is not proximinal in C(I).



46 Vugar E. Ismailov

It should be remarked that if a compact set X ⊂ R
n satisfies the hypothesis of Theorem

10, then the length of all irreducible paths are uniformly bounded (see the proof of Theorem
10 and lemma in [18]). We have already seen that if the last condition does not hold, then
the proximinality of both Rc(X) in C(X) and Rb(X) in B(X) fail for some sets X. Besides
the examples given above, one can easily construct many other examples of such sets. All
these examples, Theorems 9, 10, 11 and the following remarks justify the statement of the
following conjecture:

Conjecture. Let X be some subset of Rn. The space Rb(X) is proximinal in B(X)
and the space Rc(X) is proximinal in C(X) (in this case, X is considered to be compact)
if and only if the lengths of all irreducible paths of X are uniformly bounded.

After completion of our work [26], Medvedev’s result came to our attention (see [41,
p.58]). His result, in particular, states that the set Rc(X) is closed in C(X) if and only
if the lengths of all irreducible paths of X are uniformly bounded. Thus, in the case of
C(X), the necessity of the above conjecture was proved by Medvedev.

Note that there are situations in which a continuous function (a specially chosen func-
tion on a specially constructed set) has an extremal element in Rb(X), but not in Rc(X)
(see [41, p.73]). One subsection of [41] (see p.68) is devoted to the proximinality of sums
of two univariate functions with continuous and bounded summands in the spaces of con-
tinuous and bounded bivariate functions, respectively. If X ⊂ R

2 and a1,a2 are linearly
independent directions in R

2, then the linear transformation y1 = a1 · x , y2 = a2 · x
reduces the problems of proximinality of Rb(X) in B(X) and Rc(X) in C(X) to the prob-
lems considered in that subsection. But in general, when X ⊂ R

n, n > 2, our case cannot
be obtained from that of [41].
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