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Abstract. We prove common fixed point theorems for self maps satisfying contractive conditions
on spherically complete fuzzy ultrametric spaces.
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1. Introduction and Preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [9] in 1965. To use this
concept in topology and analysis, many authors have expansively developed the theory
of fuzzy sets and applications. George and Veeramani [1] modified the concept of fuzzy
metric space introduced by Kramosil and Michalek [5] and defined the Hausdorff topol-
ogy of fuzzy metric spaces which have very important applications in quantum particle
physics, particularly in connection with both string and E−infinity theory which were
introduced and studied by El Naschie [12,13]. They showed also that every metric induces
a fuzzy metric. In [3,4,11,14,15,16], fixed point theorems in fuzzy (probabilistic) metric
spaces have been proved. Recently, Gajic [10] proved a fixed point theorem in ultrametric
spaces introduced by Van Rooij [2]. Rao et.al.[7,8] extended this result for two and more
mappings. In this paper, we obtain some coincidence and fixed point theorems in fuzzy
ultrametric spaces.First, we give some definitions.

Definition 1. ([3]). A binary operation ∗ : [0, 1]2 −→ [0, 1] is called a continuous t-norm
if it satisfies the following conditions:

(1) ∗ is associative and commutative,

(2) ∗ is continuous,
(3) a ∗ 1 = a for all a ∈ [0, 1],

(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of a continuous t−norm are a ∗ b = ab and a ∗ b = min{a, b}.
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Definition 2. ([1]). The 3-tuple (X,M, ∗) is called a fuzzy metric space if X is an
arbitrary non-empty set, ∗ is a continuous t-norm, and M is a fuzzy set on X2 × [0,∞),
satisfying the following conditions for each x, y, z ∈ X and t, s > 0,

(FM-1) M(x, y, t) > 0,
(FM-2) M(x, y, t) = 1 if and only if x = y,
(FM-3) M(x, y, t) =M(y, x, t),
(FM-4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(FM-5) M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

Let (X,M, ∗) be a fuzzy metric space. For t > 0, the open ball B(x, r, t) with center
x ∈ X and radius 0 < r < 1 is defined by

B(x, r, t) = {y ∈ X :M(x, y, t) > 1− r}.

A subset A ⊂ X is called open if for each x ∈ A, there exist t > 0 and 0 < r < 1 such
that B(x, r, t) ⊂ A. Let τ denote the family of all open subsets of X. Then τ is a topology
on X induced by the fuzzy metric M . This topology is Hausdorff and first countable.

Example 1.1. ([1]) Let X = R. Denote a∗b = a.b for all a, b ∈ [0, 1]. For each t ∈ (0,∞),
define

M(x, y, t) =
t

t+ |x− y|
,

for all x, y ∈ X. Then (X,M, ∗) is a fuzzy metric space.

Definition 3. Let (X,M, ∗) be a fuzzy metric space.
(i) A sequence {xn} in X is said to be convergent to a point x ∈ X if

limn→∞M(xn, x, t) = 1 for all t > 0.
(ii) A sequence {xn} in X is called Cauchy sequence if limn→∞M(xn, xn+p, t) = 1 for

all t > 0 and p > 0.
(iii) A fuzzy metric space in which every Cauchy sequence is convergent is said to be

complete.

Lemma 1. ([11]). For all x, y ∈ X, M(x, y, .) is a non-decreasing function.

Definition 4. Let (X,M, ∗) be a fuzzy metric space. M is said to be continuous on
X2 × (0,∞) if

lim
n→∞

M(xn, yn, tn) =M(x, y, t),

whenever {(xn, yn, tn)} is a sequence in X2 × (0,∞) which converges to a point (x, y, t) ∈
X2 × (0,∞); i.e.,

lim
n→∞

M(xn, x, t) = lim
n→∞

M(yn, y, t) = 1 and lim
n→∞

M(x, y, tn) =M(x, y, t).

Lemma 2. M is a continuous function on X2 × (0,∞).

Proof. See Proposition 1 of [6].J
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A class of implicit relation

Let Ψ be the set of all continuous and decreasing functions ψ : R+ −→ R
+. Two

typical examples of these functions are ψ(x) = 1
x+1 , ψ(x) = 1

xα
for every α > 0.

Lemma 3. Denote a ∗ b = a.b for all a, b ∈ [0, 1]. For each t ∈ (0,∞), define

M(x, y, t) = (
1

1 + d(x, y)
)ψ(t),

for all x, y ∈ X, where d(x, y) is an ordinary metric and ψ ∈ Ψ. Then (X,M, ∗) is a fuzzy
metric space.

Proof. First of all, it is easy to see that M(x, y, t) > 0, M(x, y, t) = 1 ⇐⇒ x = y and
M(x, y, t) =M(y, x, t). For each x, y, z ∈ X and t, s > 0, we have

M(x, z, t + s) = (
1

1 + d(x, y)
)ψ(t+s)

≥ (
1

1 + d(x, z)
.

1

1 + d(z, y)
)ψ(t+s)

≥ (
1

1 + d(x, z)
)ψ(t+s).(

1

1 + d(z, y)
)ψ(t+s)

≥ (
1

1 + d(x, z)
)ψ(t).(

1

1 + d(z, y)
)ψ(s)

≥ M(x, z, t) ∗M(z, y, s).

J

2. Main Results

Generally, to prove fixed or common fixed point theorems for maps satisfying strictly
contractive conditions, the continuity of maps and complete metric spaces are necessary.
In spherically complete ultrametric spaces, the continuity of maps are not necessary to
obtain fixed points. First we state some known definitions.

Definition 5. ([2]). Let (X, d) be a metric space. If the metric d satisfies strong triangle
inequality:

d(x, y) ≤ max{d(x, z), d(z, y)}∀x, y, z ∈ X,

then d is called an ultrametric on X and the pair (X, d) is called an ultrametric space.

Definition 6. ([2]). An ultrametric space (X, d) is said to be spherically complete if every
shrinking collection of balls in X has a non empty intersection.

Rao et.al.[7 ] proved the following
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Theorem 1. Let (X, d) be an ultrametric space, f, S, T : X → X
satisfying the following conditions:
(1) f(X) is spherically complete,
(2) d(Sx, Ty) < max{d(fx, fy), d(fx, Sx), d(fy, Ty)} for x, y ∈ X, x 6= y,
(3) fS = Sf, fT = Tf, ST = TS,
(4) S(X) ⊆ f(X), T (X) ⊆ f(X).
Then either fw = Sw or fw = Tw for some w ∈ X.

Now we extend this Theorem for maps in fuzzy ultrametric spaces.

Definition 7. Let (X,M, ∗) be a fuzzy metric space. If the fuzzy metric M satisfies strong
triangle inequality:

M(x, y, t) ≥ min{M(x, z, t),M(z, y, t)}∀x, y, z ∈ X, t > 0,

then M is called a fuzzy ultrametric on X and the (X,M, ∗) is called a fuzzy ultrametric
space.

Definition 8. A fuzzy ultrametric space (X,M, ∗) is said to be spherically complete if
every shrinking collection of balls in X has a non empty intersection.

Remark 1. (i) Let d be an ultrametric on X and a ∗ b = a.b for all a, b ∈ [0, 1]. For each
t ∈ (0,∞), define

M(x, y, t) = (
1

1 + d(x, y)
)ψ(t),

for all x, y ∈ X, where ψ ∈ Ψ.Then fuzzy metric M is also a fuzzy ultrametric .
(ii)Let an ultrametric space (X, d) be spherically complete and a∗b = a.b for all a, b ∈ [0, 1].
For each t ∈ (0,∞), define

M(x, y, t) = (
1

1 + d(x, y)
)ψ(t),

for all x, y ∈ X, where ψ ∈ Ψ.Then fuzzy ultrametric space (X,M, ∗) is also a spherically
complete.

Theorem 2. Let (X,M, ∗) be a fuzzy ultrametric space, f, S, T : X → X satisfying the
following conditions:
(1) f(X) is spherically complete,
(2) M(Sx, Ty, t) > min{M(fx, fy, t),M(fx, Sx, t),M(fy, Ty, t)}
for all x, y ∈ X such that x 6= y and t > 0
(3) fS = Sf, fT = Tf, ST = TS,
(4) S(X) ⊆ f(X), T (X) ⊆ f(X).
Then either fw = Sw or fw = Tw for some w ∈ X.

Proof. For a ∈ X, let Ba = (fa; 1−min{M(fa, Sa, t),M(fa, Ta, t)}) denote the closed
sphere centered at fa with the radius 1−min{M(fa, Sa, t),M(fa, Ta, t)}.
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Let A be the collection of all the spheres for all a ∈ f(X).
Then the relation Ba ≤ Bb holds if Bb ⊆ Ba is a partial order on A.
Let A1 be a totally ordered subcollection of A.
Since (f(X),M, ∗) is spherically complete, we have

⋂

Ba∈A1

Ba = B 6= φ.

Let fb ∈ B where b ∈ f(X) and Ba ∈ A1. Then fb ∈ Ba . Hence,

M(fb, fa, t) ≥ 1− (1−min {M(fa, Sa, t),M(fa, Ta, t)})
= min {M(fa, Sa, t),M(fa, Ta, t)} · · · · · · (i)

If a = b, then Ba = Bb. Assume that a 6= b.
Let x ∈ Bb. Then

M(x, fb, t) ≥ 1− (1−min{M(fb, Sb, t),M(fb, T b, t)})
= min{M(fb, Sb, t),M(fb, T b, t)}

≥ min

{

min{M(fb, fa, t),M(fa, Ta, t),M(Ta, Sb, t)},
min{M(fb, fa, t),Mfa, Sa, t),M(Sa, T b, t)}

}

> min







M(fb, fa, t),M(fa, Ta, t),M(fa, Sa, t),
min{M(fb, fa, t),M(fb, Sb, t),M(fa, Ta, t)}
min{M(fa, fb, t),M(fa, Sa, t),M(fb, T b, t)}







= min{M(fa, Sa, t),M(fa, Ta, t)} from(i)

Thus, M(x, fb, t) > min{(fa, Sa), d(fa, Ta)} · · · · · · (ii)
Now,

M(x, fa, t) ≥ min {M(x, fb, t),M(fb, fa, t)}
≥ min {M(fa, Sa, t),M(fa, Ta, t)} from(i), (ii)
= 1− (1−min{M(fa, Sa, t),M(fa, Ta, t)})

Thus, x ∈ Ba. Hence, Bb ⊆ Ba for any Ba ∈ A1.
Thus, Bb is an upper bound in A for the family A1 and hence, by Zorn’s Lemma, A has
a maximal element , say Bz, z ∈ f(X).There exists w ∈ X such that z = fw.
Suppose fw 6= Sw and fw 6= Tw. Now from(2) we have
M(Sfw, TSw, t) > min{M(f2w, fSw, t),M(f2w,Sfw, t),M(fSw, TSw, t)}

=M(f2w, fSw, t) · · · · · · (iii) since fS = Sf .
M(STw, Tfw, t) > min{M(fTw, f2w, t),M(fTw, STw, t),M(f2w, Tfw, t)}

=M(f2w, fTw, t)........(iv) since fT = Tf .

M(Sfw, S2w, t) ≥ min
{

M(Sfw, TSw, t),M(TSw, Tfw, t),M(Tfw, S2w, t)
}

≥ min

{

M(f2w, fSw, t),M(f2w, fTw, t),
min{M(fSw, f2w, t),M(fSw, S2w, t),M(f2w, Tfw, t)}

}

= min{M(f2w, fSw, t),M(f2w, fTw, t)}........(v)

From (iii), (v) we have
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min{M(Sfw, TSw, t),M(Sfw, S2w, t)}
> min{M(f2w, fSw, t),M(f2w, fTw, t)}.......(vi)

M(Tfw, T 2w, t) ≥ min{M(Tfw, TSw, t),M(TSw, Sfw, t),M(Sfw, T 2w, t)}
> min{M(f2w, fTw, t),M(f2w, fSw, t),min{M(f2w, fTw, t),

M(f2w,Sfw, t),M(fTw, T 2w, t)}} from (iii), (iv)
= min{M(f2w, fTw, t),M(f2w, fSw, t)}.......(vii)

From (iv), (vii) we have
min{M(STw, Tfw, t),M(Tfw, T 2w, t)}

> min{M(f2w, fTw, t),M(f2w, fSw, t)}......(viii)
If min{M(f2w, fTw, t),M(f2w, fSw, t)} =M(f2w, fSw, t) then
from (vi), min{M(Sfw, TSw, t),M(Sfw, S2w, t)} > M(f2w, fSw, t)
which gives f2w /∈ BSw. Hence, fz /∈ BSw. But fz ∈ Bz. Hence, Bz 6⊆ BSw.
It is a contradiction to the maximality of Bz in A, since Sw ∈ S(X) ⊆ f(X).
If min{M(f2w, fTw, t),M(f2w, fSw, t)} =M(f2w, fTw, t)
then from (viii), min{M(STw, Tfw, t),M(Tfw, T 2w, t)} > M(f2w, fTw, t)
which gives f2w /∈ BTw. Hence, fz /∈ BTw. But fz ∈ Bz. Hence, Bz 6⊆ BTw.
It is a contradiction to the maximality of Bz in A, since Tw ∈ T (X) ⊆ f(X).
Hence, either fw = Sw or fw = Tw.J

Corollary 1. Let (X,M, ∗) be a spherically complete fuzzy ultrametric space and S, T :
X → X be commuting maps such that
M(Sx, Ty, t) > min{M(x, y, t),M(x, Sx, t),M(y, Ty, t)}
for all x, y ∈ X with x 6= y and t > 0 .
Then either S or T has a fixed point in X.

Corollary 2. Let (X,M, ∗) be a spherically complete fuzzy ultrametric space and f, T :
X → X be such that T (X) ⊆ f(X),
(2.9.1) M(Tx, Ty, t) > min{M(fx, fy, t),M(fx, Tx, t),M(fy, Ty, t)}
for all x, y ∈ X with x 6= y and t > 0.
Then there exists z ∈ Xsuch that fz = Tz.
Further, if f and T are coincidentally commuting at z then z is a unique common fixed
point of f and T .

Proof. Let Ba = (fa; 1 −M(fa, Ta, t)) denote the closed sphere centered at fa with
radius 1−M(fa, Ta, t) and let A be a collection of these spheres for all a ∈ X. Proceeding
as in Theorem 2.7, we can conclude that A has a maximal element, say Bz, z ∈ X.
Suppose fz 6= Tz.
Since Tz ∈ T (X) ⊆ f(X), there exists w ∈ X such that Tz = fw.
Clearly, w 6= z. From (2.9.1) we have
M(fw, Tw, t) =M(Tz, Tw, t) > min{M(fz, fw, t),M(fz, T z, t),M(fw, Tw, t)}

=M(fz, fw, t).
Thus, fz /∈ Bw. Hence, Bz 6⊆ Bw . It is a contradiction to the maximality of Bz. Hence,
fz = Tz.
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Further , assume that f and T are coincidentally commuting at z.
Then f2z = f(fz) = fTz = Tfz = T (Tz) = T 2z.
Suppose fz 6= z. From (2.9.1) we have

M(Tfz, Tz, t) > min{M(f2z, fz, t),M(f2z, Tfz, t),M(fz, T z, t)}

=M(Tfz, Tz, t). It is a contradiction.
Hence, fz = z. Thus, z = fz = Tz.
Uniqueness of z follows easily from (2.9.1).J

Corollary 3. Let (X,M, ∗) be a spherically complete fuzzy ultrametric space and T be
self-mappings of X satisfying the following condition:
(i)

M(Tx, Ty, t) > min{M(x, y, t),M(x, Tx, t),M(y, Ty, t)},

for all x, y ∈ X such that x 6= y and t > 0. Then there exists a unique z ∈ X such that
Tz = z.

Corollary 4. Let (X,M, ∗) be a spherically complete fuzzy ultrametric space and T n be
self-mappings of X satisfying the following condition:
(i)

M(T nx, T ny, t) > min{M(x, y, t),M(x, T nx, t),M(y, T ny, t)},

for all x, y ∈ X, ∀n ∈ N such that x 6= y and t > 0. Then there exists a unique z ∈ X
such that Tz = z.
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