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Abstract. In this paper, a class of strong limit theorems for the sequence of multivariate random
truncated functions of an mth-order nonhomogeneous Markov chain on the generalized random
selection system is established by constructing the consistent distribution functions and a nonnega-
tive super-martingale. As corollaries, some strong laws of large numbers represented by inequalities
for the mth-order Markov chain on the generalized random selection system are obtained.
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1. Introduction

Suppose that {Xn, n ≥ 0} is an arbitrary stochastic sequence defined on the probability
space (Ω,F , P ) which takes values in a countable alphabet set S = {s0, s1, s2, · · · }, with
the joint distribution:

P (X0 = x0, · · · ,Xn = xn) = p(x0, · · · , xn) > 0, xi ∈ S, 0 ≤ i ≤ n. (1)

We have by the definition of the conditional probability

p(x0, · · · , xn) = p(x0)
n
∏

k=1

p(xk|x0, · · · , xk−1). (2)

Let {Xn, n ≥ 0} be an mth-order nonhomogeneous Markov chain on the measure P ,
with the m-dimensional initial distribution and mth-order transition probabilities defined
as follows:

qo(i0, · · · , im−1) = P (X0 = i0, · · · ,Xm−1 = im−1), i0, · · · , im−1 ∈ S. (3)
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pn(j|i1, · · ·, im) = Pn(Xn = j|Xn−m = i1, · · ·,Xn−1 = im), i1, · · ·, im, j ∈ S. (4)

The joint distribution of {Xn, n ≥ 0} with respect to the measure P is

p(x0, · · ·, xn) = qo(x0, · · ·, xm−1)

n
∏

k=m

pk(xk|xk−m, · · ·, xk−1),

xi ∈ S, 0 ≤ i ≤ n. (5)

Lemma 1. Suppose that p and q are two arbitrary probability measures, {σn, n ≥ 0} is a
nonnegative stochastic sequence and σn ↑ ∞. Then

lim sup
n→∞

1

σn
log

q(X0, · · · ,Xn)

p(X0, · · · ,Xn)
≤ 0. P − a.s. (6)

The conception of random selection derives from gambling. We consider a sequence of
Bernoulli trials, and suppose that at each trial the bettor has the free choice of whether
or not to bet. A theorem on gambling systems asserts that under any non-anticipative
system the successive bets form a sequence of Bernoulli trials with unchanged probability
for success. The importance of this statement was recognized by von Mises, who introduced
the impossibility of a successful gambling system as a fundamental axiom (see [11], [12]).
This topic was discussed further by Kolmogorov (see[13]) and Liu and Wang (see [14] and
[15]).

In order to explain the conception of random selection, which is the crucial part of the
gambling system, we first give the notion of the generalized random selection system as
following:

Definition 1. Let fn(x1, · · · , xn) be a set of real-valued functions defined on Sn(n =
1, 2, · · · ), which will be called the generalized random selection functions if they take values
in the set [0, b]. Denote

Y1 = y (y is an arbitrary real number)

Yn+1 = fn(X1, · · · ,Xn), n ≥ 1, (7)

where {Yn, n ≥ 1} is called the generalized gambling system (the generalized random selec-
tion system). The traditional random selection system {Yn, n ≥ 0}[4] takes values in the
set of {0, 1}. Let δi(j) be the Kronecker delta function on S, that is for i, j ∈ S

δi(j) =

{

0, i 6= j

1, i = j.

In order to explain the real meaning of the notion of the random selection, we consider
the traditional gambling model. Let {Xn, n ≥ 0} be an mth-order nonhomogeneous
Markov chain, and {gn(x0, · · · , xm), n ≥ m} be a real-valued function sequence defined on
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Sm+1. Interpret Xn as the result of the nth trial, the type of which may change at each
step. Let µn = Yngn(Xn−m, · · · ,Xn) denote the gain of the bettor at the nth trial, where
Yn represents the bet size, gn(Xn−m, · · · ,Xn) is determined by the gambling rules, and
{Yn, n ≥ 0} is called a gambling system or a random selection system. The bettor’s stra-
tegy is to determine {Yn, n ≥ 0} by the results of the last m trials. Let the entrance fee that
the bettor pays at the nth trial be bn. Also suppose that bn depends onXn−1, · · · ,Xn−m as
n ≥ m, and b0, · · · , bm−1 are constants. Thus,

∑n
k=m Ykgk(Xk−m, · · · ,Xk) represents the

total gain,
∑n

k=m bk the accumulated entrance fees, and
∑n

k=m [Ykgk(Xk−m, · · · ,Xk)− bk]
the accumulated net gain. Motivated by the classical definition of ”fairness” of game of
chance (see Kolmogorov[13]), we introduce the following definition:

Definition 2. . The game is said to be fair, if for almost all ω ∈ {ω :
∑∞

k=m Yk = ∞},
the accumulated net gain in the first n trials is to be of smaller order of magnitude than
the accumulated stake

∑n
k=m Yk as n tends to infinity, that is

lim
n→∞

1
∑n

k=m Yk

n
∑

k=m

[Ykgk(Xk−m, · · · ,Xk)− bk] = 0 a.s. on {ω :
∑∞

k=m
Yk = ∞}.

Study for strong limit properties of nonhomogeneous Markov chain is always one of
central parts of the limit theory of probability theory. Many scholars have studied the
subject until now. Liu and and Yang (see[1]) have studied the asymptotic equipartition
properties (AEP) and limit properties of function sequence of nonhomogeneous Markov
chain. Liu (see[2]) has discussed the strong limit theorems relative to the geometric ave-
rage of random transition properties of finite nonhomogeneous Markov chain. Liu and
Yang (see[3]) have investigated the strong deviation theorems of nonhomogeneous Markov
chain relative to arbitrary stochastic sequence and AEP approximation of nonhomoge-
neous Markov information source. Liu (see[5]) has discussed the strong limit theorems for
the harmonic mean of random transition probabilities of nonhomogeneous Markov chain.
Liu and Wang (see[6]) have proved the strong limit properties for the state couples of
nonhomogeneous Markov chain on the random selection system. Wang (see[7]) has stu-
died the AEP and limit theorems for nonhomogeneous Markov chain on the generalized
gambling system. Zhao and Wei (see[16]) have discussed some small deviation theorems
for the truncated function sequence of the nonhomogeneous Markov chain. Afterward,
many scholars (see[17-35]) have studied all kinds of stochastic processes and some limit
properties with their applications for nonhomogeneous Markov chains on the generalized
gambling system.

Many of practical information sources, such as language and image information, are
often mth-order Markov chain, and always nonhomogeneous. mth-order nonhomogeneous
Markov chain is a natural generalization of the general nonhomogeneous Markov chain.
Hence, it is of importance to study the limit properties for the mth-order nonhomogeneous
Markov chain in the information theory and the probability theory. Yang and Liu (see[9])
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have proved the limit theorem for averages of the functions of m + 1 variables of mth-
order nonhomogeneous Markov chain and the AEP formth-order nonhomogeneous Markov
information source. Wang (see[10]) has discussed the Shannon-McMillan theorems for
mth-order nonhomogeneous Markov information source.

The purpose of this paper is to establish a class of strong limit theorems for the sequence
of multivariate truncated functions of mth-order nonhomogeneous Markov chains on the
generalized random selection system by constructing the consistent distribution functions
and a nonnegative super-martingale. As corollaries, we obtain a class of strong laws of
large numbers represented by inequalities for mth-order nonhomogeneous Markov chains
on the generalized random selection system. In the proof, we apply a new type of analytical
techniques to the study of strong limit theorems.

We denote Xn
m = {Xm, · · · ,Xn}, and denote by xnm the realization of Xn

m.

2. Main Result and Its Proof

Theorem 1. Let {Xn, n ≥ 0} be an mth-order nonhomogeneous Markov chain with
the m dimensional initial distribution (3) and the mth-order transition probabilities (4),
{fn(x0, · · · , xm), n ≥ m} be a real-valued function sequence defined on Sm+1, {Yn, n ≥ 0}
be the generalized random selection system defined by (7). Let {an(ω), n ≥ 0} be a positive-
valued increasing stochastic sequence, {gn(x), n ≥ 0} be a series of continuous positive-
valued even functions defined on (−∞,+∞) which satisfy the conditions

gn(x) ↑, gn(x)
/

x2 ↓, (8)

as |x| increases.
Denote

f̃k(Xk−m, · · ·Xk) = fk(Xk−m, · · ·Xk)I{|fk(Xk−m,···Xk)|≤ak}, k ≥ m, (9)

D(ω) = {ω : lim
n→∞

n
∑

k=m

Yk = ∞,

lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

EP [Ykgk(fk(X
k
k−m))|Xk−1

k−m]

gk(ak)
= σ(ω) < ∞}. (10)

Then

lim
n→∞

1
∑n

k=m Yk

n
∑

k=m

Yk[f̃k(X
k
k−m)− EP (f̃k(X

k
k−m)|Xk−1

k−m)]

ak
= 0,

P − a.s. ω ∈ D(ω), (11)

where EP represents the expectation relative to the measure P .
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Proof. We consider the probability measure space (Ω,F ,P). Let λ be a constant.
Denote

Qk(λ;x
k−1
k−m) = EP

{

exp

[

λYk[f̃k(X
k
k−m)− EP (f̃k(X

k
k−m)|Xk−1

k−m)]

ak

]∣

∣

∣

∣

∣

Xk−1
k−m = xk−1

k−m

}

=
∑

xk∈S

pk(xk|x
k−1
k−m) exp

{

λYk[f̃k(x
k
k−m)− EP (f̃k(x

k−1
k−m,Xk)|x

k−1
k−m)]

ak

}

, (12)

mk(λ, x
k
k−m) =

pk(xk|x
k−1
k−m)

Qk(λ;x
k−1
k−m)

exp

{

λYk[f̃k(x
k
k−m)− EP (f̃k(x

k−1
k−m,Xk)|x

k−1
k−m)]

ak

}

, (13)

µ(λ;x0, · · · , xn) = qo(x0, · · · , xm−1)
∏n

k=m
mk(λ, x

k
k−m). (14)

It follows from (12)-(14) that
∑

xn∈S

µ(λ;x0, · · · , xn) =

=
∑

xn∈S

qo(x
m−1
o )

n
∏

k=m

pk(xk|x
k−1
k−m)

Qk(λ;x
k−1
k−m)

exp

{

λYk[f̃k(x
k
k−m)− EP (f̃k(x

k−1
k−m,Xk)|x

k−1
k−m)]

ak

}

= µ(λ;x0, · · · , xn−1)
∑

xn∈S

pn(xn|x
n−1
n−m)

Qn(λ;x
n−1
n−m)

exp

{

λYn[f̃n(x
n
n−m)− EP (f̃n(x

n−1
n−m,Xn)|x

n−1
n−m)]

an

}

= µ(λ;x0, · · · , xn−1)
Qn(λ;x

n−1
n−m)

Qn(λ;x
n−1
n−m)

= µ(λ;x0, · · · , xn−1). (15)

Therefore, µ(λ;x0, · · · , xn), n = 1, 2, · · · are a family of consistent distribution func-
tions on Sn+1. Denote

Tn(λ, ω) =
µ(λ;X0, · · · ,Xn)

p(X0, · · · ,Xn)
. (16)

It is easy to see that {Tn(λ, ω),Fn, n ≥ 1} (where Fn = σ(X0, · · · ,Xn)) is a nonnegative
sup-martingale from Doob’s martingale convergence theorem (see[8]). Moreover,

lim
n→∞

Tn(λ, ω) = T∞(λ, ω) < ∞, P − a.s. (17)

By the first equation of (10), (17) and Lemma 1, we get

lim sup
n→∞

(1
/

∑n

k=m
Yk) lnTn(λ, ω) ≤ 0, P − a.s. ω ∈ D(ω). (18)

By (5), (14) and (16), we can rewrite (18) as

lim sup
n→∞

1
∑n

k=m Yk

{

n
∑

k=m

λYk[f̃k(X
k
k−m)− EP (f̃k(X

k
k−m)|Xk−1

k−m)]

ak
−

n
∑

k=m

lnQk(λ;X
k−1
k−m)

}

≤ 0,
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P − a.s. ω ∈ D(ω). (19)

By (19), we easily obtain

lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

λYk[f̃k(X
k
k−m)− EP (f̃k(X

k
k−m)|Xk−1

k−m)]

ak

≤ lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

lnQk(λ;X
k−1
k−m), P − a.s. ω ∈ D(ω). (20)

By (9) and the property of the conditional expectation, noticing that Yn ∈ [0, b], we
obtain

EP [
λYn[f̃n(X

n
n−m)− EP (f̃n(X

n
n−m)|Xn−1

n−m)]

an
|Xn−1

n−m]

=
λYn[EP (f̃n(X

n
n−m)|Xn−1

n−m)− EP (f̃n(X
n
n−m)|Xn−1

n−m)]

an
= 0, (21)

∣

∣

∣

∣

∣

Yn[f̃n(X
n
n−m)−EP (f̃n(X

n
n−m)|Xn−1

n−m)]

an

∣

∣

∣

∣

∣

≤

Yn

∣

∣

∣
f̃n(X

n
n−m)

∣

∣

∣

an
+

YnEP (
∣

∣

∣
f̃n(X

n
n−m)

∣

∣

∣
|Xn−1

n−m)

an
≤ 2Yn. (22)

Take into account the inequality ex−1−x ≤ (1/2)x2e|x|, (12), (21) and (22), we arrive
at

0 ≤ Qn(λ;X
n−1
n−m)− 1

= EP {exp[
λYn[f̃n(X

n
n−m)− EP (f̃n(X

n
n−m)|Xn−1

n−m)]

an
]− 1

−
λYn[f̃n(X

n
n−m)− EP (f̃n(X

n
n−m)|Xn−1

n−m)]

an
|Xn−1

n−m}

≤
1

2
λ2EP

{

exp{|λ| ·

∣

∣

∣

∣

∣

Yn[f̃n(X
n
n−m)− EP (f̃n(X

n
n−m)|Xn−1

n−m)]

an

∣

∣

∣

∣

∣

}

·
Y 2
n (f̃n(X

n
n−m)− EP (f̃n(X

n
n−m)|Xn−1

n−m))2

a2n

∣

∣

∣

∣

∣

Xn−1
n−m

}

≤
1

2
λ2e2|λ|·Yn

Y 2
n [EP {f̃n(X

n
n−m)2|Xn−1

n−m} − {EP (f̃n(X
n
n−m)|Xn−1

n−m)}2]

a2n

≤
1

2
λ2e2|λ|b

EP{(Ynf̃n(X
n
n−m))2|Xn−1

n−m}

a2n
. (23)
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According to the assumption, gn(x)
/

x2 ↓ as |x| increases, so we obtain

(x/an)
2 ≤ gn(x)/gn(an), |x| ≤ an. (24)

On the other hand, gn(x) ↑ as |x| increases, therefore it follows from (23) that

(

Ynf̃n(X
n
n−m)

an

)2

≤
Y 2
n gn(f̃n(X

n
n−m))

gn(an)
≤

Y 2
n gn(fn(X

n
n−m))

gn(an)
. (25)

By (23) and (25), we get

0 ≤ Qn(λ;X
n−1
n−m)− 1 ≤

1

2
λ2e2|λ|bEP

{

Y 2
n gn(fn(X

n
n−m))

gn(an)

∣

∣

∣

∣

Xn−1
n−m

}

. (26)

It follows from (10) and (26) that

0 ≤ lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

[Qk(λ;X
k−1
k−m)− 1]

≤
1

2
λ2e2|λ|b lim sup

n→∞

1
∑n

k=m Ykn

n
∑

k=m

EP

{

Y 2
k gk(fk(X

k
k−m))

gk(ak)
|Xk−1

k−m

}

≤
1

2
λ2be2|λ|b lim sup

n→∞

1
∑n

k=m Ykn

n
∑

k=m

EP

{

Ykgk(fk(X
k
k−m))

gk(ak)
|Xk−1

k−m

}

≤
1

2
λ2be2|λ|bσ(ω), P − a.s. ω ∈ D(ω). (27)

By use of the inequality 0 ≤ lnx ≤ x− 1 (x > 1), we have from (27) that

0 ≤ lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

lnQk(λ;X
k−1
k−m)

≤ lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

[Qk(λ;X
k−1
k−m)− 1]

≤
1

2
λ2be2|λ|bσ(ω), P − a.s. ω ∈ D(ω). (28)

By applying (20) and (28), we obtain

lim sup
n→∞

λ
∑n

k=m Yk

n
∑

k=m

Yk[f̃k(X
k
k−m)− EP (f̃k(X

k
k−m)|Xk−1

k−m)]

ak
≤

1

2
λ2be2|λ|bσ(ω),

P − a.s. ω ∈ D(ω). (29)
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In the case λ > 0, dividing two sides of (29) by λ, we have

lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

Yk[f̃k(X
k
k−m)− EP (f̃k(X

k
k−m)|Xk−1

k−m)]

ak
≤

1

2
λbe2λbσ(ω),

P − a.s. ω ∈ D(ω). (30)

Taking the limit in (30) as λ → 0+, we obtain

lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

Yk[f̃k(X
k
k−m)−EP (f̃k(X

k
k−m)|Xk−1

k−m)]

ak
≤ 0,

P − a.s. ω ∈ D(ω). (31)

Letting λ < 0, dividing two sides of (29) by λ, we have

lim inf
n→∞

1
∑n

k=m Yk

n
∑

k=m

Yk[f̃k(X
k
k−m)−EP (f̃k(X

k
k−m)|Xk−1

k−m)]

ak
≥

1

2
λbe−2λbσ(ω),

P − a.s. ω ∈ D(ω). (32)

Analogously, taking the limit in (32) as λ → 0−, we obtain

lim inf
n→∞

1
∑n

k=m Yk

n
∑

k=m

Yk[f̃k(X
k
k−m)− EP (f̃k(X

k
k−m)|Xk−1

k−m)]

ak
≥ 0,

P − a.s. ω ∈ D(ω). (33)

Therefore, (11) follows from (31) and (33) immediately. J

Lemma 2. Let {an, n ≥ 0} {σn, n ≥ 0} be increasing positive-valued sequences, {xn, n ≥
0} be a real number sequence. If either of {an, n ≥ 0} and {σn, n ≥ 0} is unbounded, and

lim sup
n→∞

1

σn

n
∑

k=1

xk

ak
≤ b, lim inf

n→∞

1

σn

n
∑

k=1

xk

ak
≥ a, (34)

where a ≤ 0, b ≥ 0, then

lim sup
n→∞

1

anσn

n
∑

k=1

xk ≤ b− a, lim inf
n→∞

1

anσn

n
∑

k=1

xk ≥ a− b. (35)
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3. Strong Laws of Large Numbers for mth-order Nonhomogeneous

Markov Chains on the Generalized Gambling System

Theorem 2. Let {Xn, n ≥ 0} be an mth-order nonhomogeneous Markov chain with

the m dimensional initial distribution (3) and the mth-order transition probabilities (4),

{Yn, n ≥ 0}, {an(ω), n ≥ 0} and {gn(x), n ≥ 0} be all defined as in Theorem 1.

We replace (8) by the following conditions:

gn(x)

|x|
↑,

gn(x)

x2
↓, (36)

as |x| increases.

If for all n ≥ m, EP (Xn|Xn−m, · · · ,Xn−1) = 0 holds, and

∞
∑

k=m

∑

|xk|>ak

pk(xk|xk−m, · · · , xk−1) < ∞, (37)

then

lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

YkXk

ak
≤ σ(ω), P − a.s. ω ∈ Do(ω), (38)

lim inf
n→∞

1
∑n

k=m Yk

n
∑

k=m

YkXk

ak
≥ −σ(ω), P − a.s. ω ∈ Do(ω), (39)

lim sup
n→∞

1

an
∑n

k=m Yk

n
∑

k=m

YkXk ≤ 2σ(ω), P − a.s. ω ∈ Do(ω), (40)

lim inf
n→∞

1

an
∑n

k=m Yk

n
∑

k=m

YkXk ≥ −2σ(ω), P − a.s. ω ∈ Do(ω), (41)

where

Do(ω) = {ω : lim
n→∞

n
∑

k=m

Yk = +∞, lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

EP [Ykgk(Xk)|X
k−1
k−m]

gk(ak)
= σ(ω)}.

(42)

Proof. Letting fk(Xk−m, · · ·Xk) = Xk in Theorem 1, we obtain Do(ω) = D(ω).

Denote X̃k = XkI|Xk|≤ak . Noticing that gn(x)/|x| ↑ implies gn(x) ↑, we see that under the

assumption of Theorem 2, (11) still holds. By (37) we easily obtain that

∞
∑

n=m

P (Xn 6= X̃n|X
n−1
n−m = xn−1

n−m)
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=

∞
∑

n=m

P (XnI{|Xn|>an}|X
n−1
n−m = xn−1

n−m)

=

∞
∑

n=m

∑

|xn|>an

pn(xn|x
n−1
n−m) < ∞.

It means that {Xn, n ≥ 0} is equivalent to {X̃n, n ≥ 0}. Hence, by virtue of
∑n

k=m Yk →

∞, a.s., Yk ∈ [0, b] and an ↑, we obtain

lim
n→∞

1
∑n

k=m Yk

n
∑

k=m

Yk(X̃k −Xk)

ak
= 0, P − a.s. (43)

Since gn(x)/|x| ↑ as |x| increases, we have

|x|

an
≤

gn(x)

gn(an)
, |x| > an. (44)

Denote by F(Xn|Xn−m,··· ,Xn−1)(x|xn−m, · · · , xn−1) = P (Xn ≤ x|Xn−m = xn−m, · · · ,Xn−1 =

xn−1) the conditional distribution function of Xn relative to Xn−m, · · · ,Xn−1. Noticing

EP (Xn|Xn−m, · · · , Xn−1) = 0, we can write ∀xn−m, · · · , xn−1 ∈ S,

|YnEP (X̃n|X
n−1
n−m)|

an
=

|EP (YnXnI|Xn|≤an |X
n−1
n−m)|

an

=
|
∫

|x|≤an
YnxdF(Xn|Xn−m,··· ,Xn−1)(x|xn−m, · · · , xn−1)|

an

=
|
∫

|x|>an
YnxdF(Xn|Xn−m,··· ,Xn−1)(x|xn−m, · · · , xn−1)|

an

≤

∫

|x|>an
Yn|x|dF(Xn|Xn−m,··· ,Xn−1)(x|xn−m, · · · , xn−1)

an

≤

∫

|x|>an

Yngn(x)

gn(an)
dF(Xn|Xn−m,··· ,Xn−1)(x|xn−m, · · · , xn−1)

≤ EP

(

Yngn(Xn)

gn(an)
|Xn−m, · · · ,Xn−1

)

. (45)

Owing to (42) and (45),

lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

|YkEP (X̃k|X
k−1
k−m)|

ak
≤ σ(ω), P − a.s. ω ∈ Do(ω), (46)

which implies that

lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

YkEP (X̃k|X
k−1
k−m)

ak
≤ σ(ω), P − a.s. ω ∈ Do(ω), (47)
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lim inf
n→∞

1
∑n

k=m Yk

n
∑

k=m

YkEP (X̃k|X
k−1
k−m)

ak
≥ −σ(ω), P − a.s. ω ∈ Do(ω). (48)

Noticing

YkXk

ak
=

Yk[(X̃k − EP (X̃k|X
k−1
k−m)) + (Xk − X̃k) + EP (X̃k|X

k−1
k−m)]

ak
, (49)

by use of (11), (43) and (47), we obtain

lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

YkXk

ak

≤ lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

Yk[X̃k − EP (X̃k|X
k−1
k−m)]

ak

+ lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

Yk(Xk − X̃k)

ak
+ lim sup

n→∞

1
∑n

k=m Yk

n
∑

k=m

YkEP (X̃k|X
k−1
k−m)

ak

≤ σ(ω), P − a.s. ω ∈ Do(ω).

Hence, (38) is valid. Analogously, by applying (11), (43) and (48), we acquire (39). By

utilizing Lemma 2, (40) and (41) follow from (38) and (39), respectively.J

Corollary 1. Let {Xn, n ≥ 0} be an mth-order nonhomogeneous Markov chain with the

m dimensional initial distribution (3) and the mth-order transition probabilities (4). Let

{an, n ≥ 0} be an increasing positive-valued stochastic sequence, {gn(x), n ≥ 0} be defined

as in Theorem 2. Denote

J(ω) = {ω : lim
n→∞

n
∑

k=m

Yk = +∞,

∞
∑

k=m

EP [Ykgk(Xk)|X
k−1
k−m]

k
∑

i=m

Yigk(ak)

< ∞}. (50)

Then

lim
n→∞

1
n
∑

k=m

Yk

n
∑

k=m

YkXk

ak
= 0, P − a.s. ω ∈ J(ω), (51)

lim
n→∞

1

an
n
∑

k=m

Yk

n
∑

k=m

YkXk = 0, P − a.s. ω ∈ J(ω). (52)

Proof. By Kronecker’s lemma, we have

∞
∑

k=m

EP [Ykgk(Xk)|X
k−1
k−m]

∑k
i=m Yigk(ak)

< ∞ ⇒ lim
n

1
∑n

k=m Yk

n
∑

k=m

EP [Ykgk(Xk)|X
k−1
k−m]

gk(ak)
= 0. (53)



A Type of Limit Theorems for Random Truncated Functions 71

Hence, J(ω) ⊆ Do(ω). It is obvious σ(ω) = 0 at the moment. Therefore, (51) follows from

(38), (39). And (52) follows from (41), (40).J

Corollary 2. Let {Xn, n ≥ 0} be an mth-order nonhomogeneous Markov chain with

the m dimensional initial distribution (3) and the mth-order transition probabilities (4),

{fn(x0, · · · , xm), n ≥ m}, {an(ω), n ≥ 0} be defined as before. Denote 0 ≤ pn ≤ 2, n ≥ 0,

L(ω) = {ω : lim sup
n→∞

1

n

n
∑

k=m

EP [|fk(X
k
k−m)|pk |Xk−1

k−m]

a
pk
k

= σ(ω) < ∞}. (54)

Then

lim
n→∞

1

n

n
∑

k=m

[f̃k(X
k
k−m)− EP (f̃k(X

k
k−m)|Xk−1

k−m)]

ak
= 0,

P − a.s. ω ∈ L(ω). (55)

Proof. Let Yn ≡ 1, gn(x) = |x|pn , n ≥ 0. Obviously, lim
n→∞

n
∑

k=m

Yk = lim
n→∞

(n−m+1) =

+∞, { |x|pn , n ≥ 0} is a series of continuous positive-valued even functions defined on

(−∞,+∞) which satisfy (8). By (10) we obtain that L(ω) = D(ω). Corollary 2 follows

from Theorem 1.

J

Corollary 3. Let {Xn, n ≥ 0} be an mth-order nonhomogeneous Markov chain with

the m dimensional initial distribution (3) and the mth-order transition probabilities (4).

Denote by σn(i0, · · · , im) the number of occurrence of the state group (i0, · · · , im) in the

random vectors (X0, · · ·Xm), (X1, · · ·Xm+1), · · · , (Xn−m, · · ·Xn) which are selected by the

generalized random selection system {Yn, n ≥ m}. That is,

σn(i0, · · · , im) =
n
∑

k=m

Ykδi0···im(X
k
k−m). (56)

We put

B(ω) = {ω : lim
n→∞

n
∑

k=m

Yk = ∞}. (57)

Then

lim
n→∞

1
∑n

k=m Yk

[σn(i0, · · · , im)−

n
∑

k=m

Ykδi0···im−1
(Xk−1

k−m)pk(im|im−1
0 )] = 0,

P − a.s ω ∈ B(ω). (58)
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Proof. Letting fk(Xk−m, · · ·Xk) = δi0···im(Xk−m, · · ·Xk), ak ≡ 1, k ≥ m in Theorem

1, we can easily see that |δi0···im(Xk−m, · · ·Xk)| ≤ 1, f̃k(Xk−m, · · ·Xk) = fk(Xk−m, · · ·Xk).

By (8) and (10) we have

lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

EP [Ykgk(fk(X
k
k−m))|Xk−1

k−m]

gk(ak)

= lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

EP [Ykgk(δi0···im(X
k
k−m))|Xk−1

k−m]

gk(1)

≤ lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

EP [Ykgk(1)|X
k−1
k−m]

gk(1)

= lim sup
n→∞

1
∑n

k=m Yk

n
∑

k=m

Yk = 1 < ∞.

Therefore, we have D(ω) = B(ω). It follows from (11) that

lim
n→∞

1
∑n

k=m Yk

n
∑

k=m

Yk[f̃k(X
k
k−m)− EP (f̃k(X

k
k−m)|Xk−1

k−m)]

ak

= lim
n→∞

1
∑n

k=m Yk

n
∑

k=m

Yk[δi0···im(X
k
k−m)−EP (δi0···im(X

k
k−m)|Xk−1

k−m)]

= lim
n→∞

1
∑n

k=m Yk

[σn(i0, · · · , im)−

n
∑

k=m

∑

xk∈S

Ykδi0···im(X
k−1
k−m, xk)pk(xk|X

k−1
k−m)]

= lim
n→∞

1
∑n

k=m Yk

[σn(i0, · · · , im)−

n
∑

k=m

Ykδi0···im−1
(Xk−1

k−m)pk(im|Xk−1
k−m)]

= lim
n→∞

1
∑n

k=m Yk

[σn(i0, · · · , im)−

n
∑

k=m

Ykδi0···im−1
(Xk−1

k−m)pk(im|im−1
0 )] = 0.

Hence, (58) follows from (11) immediately.J
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