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Abstract. In this paper, we analyze some properties and possible structures of almost prime
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1. Introduction

Almost prime ideals in commutative rings with non-zero identity arise from the study
of factorization in Noetherian domains. They were introduced by S. M. Bhatwadekar
and P. K. Sharma in [4]. Weakly prime ideals arise from the study of factorization in
commutative rings with zero divisors. They were studied by D. D. Anderson and E.
Smith in [1]. Also, almost prime ideals and weakly prime ideals have been studied by D.
D. Anderson and M. Bataineh in [2]. A proper ideal P of a commutative ring is almost
prime if ab ∈ P − P 2 implies a ∈ P or b ∈ P . A proper ideal P of a commutative ring
is weakly prime if 0 6= ab ∈ P implies a ∈ P or b ∈ P . As every prime ideal is a weakly
prime ideal, and a weakly prime ideal is an almost prime ideal, weakly prime ideals and
almost prime ideals are both generalizations of prime ideals. However, since {0} is always
a weakly prime ideal (by definition) and hence almost prime ideal, as is every proper ideal
of a local ring (R,P ) (recall that a local ring R is a commutative ring with unique maximal
ideal P ) with P 2 = 0, weakly prime ideals and almost prime ideals need not be prime (see
[1] and [2]).

The concept of semiring was first introduced by H. S. Vandiver in 1935 and has since
then been studied by many authors. Semirings constitute a fairly natural generalization of
rings, with broad applications in the mathematical foundations of computer science (see
[9] and [10]). In this paper we explore various properties of almost prime ideals over a
commutative semiring with identity (see Definition 1 and [4]). We give several equivalent
conditions for an ideal of a semiring to be almost prime ideal which are reminiscent of
conditions for an ideal to be prime, and explore the relationship between almost prime
and weakly prime ideals. In fact, this paper is concerned with generalizing some results of
almost prime ideals and weakly prime ideals listed in [2], from commutative rings theory
to commutative semiring theory (see Section 2).
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For the sake of completeness, we state some definitions and notations which are
used throughout the paper. A commutative semiring R is defined as an algebraic sys-
tem (R,+, .) such that (R,+) and (R, .) are commutative semigroups, connected by
a(b + c) = ab + ac for all a, b, c ∈ R, and there exists 0 ∈ R such that r + 0 = r and
r0 = 0r = 0 for each r ∈ R. In this paper all semirings considered will be assumed to
be commutative semirings. A semiring R is said to be a semidomain if ab = 0 (a, b ∈ R),
then either a = 0 or b = 0. A semifield is a semiring in which non-zero elements form a
group under multiplication.

A subset I of a semiring R will be called an ideal if a, b ∈ I and r ∈ R implies a+ b ∈ I
and ra ∈ I. A subtractive ideal (= k-ideal) K is an ideal such that if x, x + y ∈ K then
y ∈ K(so {0} is a k-ideal of R). The k-closure cl(I) of I is defined as cl(I) = {a ∈ R :
a+c = d for some c, d ∈ I} which is an ideal of R satisfying I ⊆ cl(I) and cl(cl(I)) = cl(I).
So an ideal I of R is a k-ideal if and only if I = cl(I). A prime ideal of R is a proper ideal
P of R in which x ∈ P or y ∈ P whenever xy ∈ P . An ideal I of a semiring R is called a
partitioning ideal (= Q-ideal) if there exists a subset Q of R such that R = ∪{q+I : q ∈ Q}
and if q1, q2 ∈ Q then (q1 + I)∩ (q2 + I) 6= ∅ if and only if q1 = q2. Allen [3] has presented
the notion of Q-ideal I in the semiring R and constructed the quotient semiring R/I (also
see [5] and [7]).

2. Almost prime ideals

Our starting point is the following remark:

Remark 1. Let R be a semiring.

(i) If an ideal of R is the union of two k-ideals, then it is equal to one of them.

(ii) Let I and J be ideals of R. The product of I and J , denoted by IJ , is defined to
be the ideal of R generated by the set {ab : a ∈ I, b ∈ J}. Then we have IJ = {

∑
n

i=1
aibi :

n is a positive integer, a1, ..., an ∈ I, b1, ..., bn ∈ J}. In particular, In is an ideal of R for
every positive integer n.

(iii) Assume that I, J are ideals of R with I being a k-ideal and let x ∈ R. It is easy
to see that (I : J) = {r ∈ R : rJ ⊆ I}, (0 : x) and (I : x) are k-ideals of R.

Definition 1. Let R be a commutative semiring.

(i) An n-almost prime (n ≥ 2) ideal of R is a proper ideal P of R in which x ∈ P or
y ∈ P whenever xy ∈ P −Pn. In particular, the almost prime ideals are just the 2-almost
prime ideals.

(ii) A proper ideal P of R is weakly prime if 0 6= ab ∈ P implies a ∈ P or b ∈ P .

Lemma 1. Let R be a semiring. Then every weakly prime k-ideal of R is an almost prime
ideal.

Proof. Assume that P is a weakly prime k-ideal of R and let x, y ∈ R such that
xy ∈ P −P 2 with x /∈ P . Clearly, P ∪ (0 : x) ⊆ (P : x). Let z ∈ (P : x). If zx 6= 0, then P
weakly prime gives z ∈ P . If zx = 0, then we have z ∈ (0 : x); hence, P ∪ (0 : x) = (P ;x).
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Therefore, (P : x) = P or (P : x) = (0 : x) by Remark 1(i). Since y /∈ (0 : x) and
y ∈ (P : x), we must have y ∈ P , as required. ◭

Let R be a semiring. A non-zero element a of R is said to be semi-unit in R if there
exist r, s ∈ R such that 1 + ra = sa. R is said to be a local semiring if and only if R has
a unique maximal k-ideal. Moreover, a is a semi-unit of R if and only if a lies outside
each maximal k-ideal of R (see [6, Lemma 4]). Recall that if I is a proper Q-ideal of R,
then there exists a maximal k-ideal P of R with I ⊆ P (see [6, Theorem 3]). Clearly, a
prime ideal is a weakly prime ideal, so it is an almost prime ideal by Lemma 1. The ideal
{0} is always weakly prime and hence almost prime, but it is prime if and only if R is a
semidomain. Thus, weakly prime ideals and almost prime ideals need not be prime ideals.
Moreover, an idempotent ideal I (I = I2) is almost prime. We next give a non-trivial
example of an almost prime ideal which is not a prime.

Example 1. Let (R,P ) be a local semiring with P 2 = 0. Let I be a proper k-ideal of R
such that 0 6= ab ∈ I. Since P 2 = 0 and ab 6= 0, either a or b does not lie in P . If a /∈ P ,
then a is a semi-unit; hence, 1 + ra = sa for some r, s ∈ R. Therefore, b + rab = sab,
and so b ∈ I since I is a k-ideal of R. Then every proper k-ideal of I is weakly prime
and hence almost prime. However, if I ⊂ P , I is not prime since P is the unique prime
k-ideal of R.

Example 2. (i) Let R = {0, 1, ..., n} and define x + y = max{x, y} and xy = min{x, y}
for each x, y ∈ R. R together with the two defined operations forms a semiring with an
identity element n. If m ∈ R, then the set P = {r ∈ R : r ≤ m} is an ideal of R. It
is clear from the definition of addition in R that 0 + P = P and s + P = {s} for each
s > m. Thus, P is a Q-ideal when Q = {0} ∪ {s ∈ R : s > m}. Moreover, it is easy to see
that P = P t is a Q-ideal (so k-ideal) of R for every positive integer t. Moreover, P is an
almost prime ideal of R by definition.

(ii) Let R denote the semiring of the set of all non-negative integers with the usual
addition and multiplication. Let P denote the ideal generated by 6. Since 1 ∈ R, it follows
that P = {6k : k ∈ R}. As 2 /∈ P , 3 /∈ P and 2.3 = 6 ∈ P , it is clear that P is not prime.
Moreover, since 3 /∈ P , 8 /∈ P and 3.8 = 24 ∈ P − P 2, we get P is not almost prime.

Theorem 1. Assume that I is a Q-ideal of a semiring R and let P be an almost prime
k-ideal of R such that I ⊆ P . If P 2 is a k-ideal of R, then P/I is an almost prime ideal
of R/I.

Proof. Recall that P/I = {q + I : q ∈ P ∩Q} by [5, Proposition 2.2]. By [5, Lemma
2.12], P 2 + I is a k-ideal of R. First we show that (P 2 + I)/I = (P/I)2. Let X =∑

n

i=1
aibi ∈ (P/I)2 for some ai, bi ∈ P/I. It suffices to show that for each i (1 ≤ i ≤ n),

aibi ∈ (P 2 + I)/I. Since I is a Q-ideal of R, there are elements qi, q
′

i
∈ Q ∩ P such that

ai = qi+I and bi = q′
i
+I, so there is a unique element t of Q such that aibi = t+I, where

qiq
′

i
+ I ⊆ t+ I; hence, qiq

′

i
+ a = t+ b for some a, b ∈ I. Therefore, t ∈ (P 2 + I) ∩Q and

so aibi ∈ (P 2 + I)/I. Thus, (P/I)2 ⊆ (P 2 + I)/I. For the reverse inclusion assume that



Generalizations of Prime Ideals of Semirings 79

q + I ∈ (P 2 + I)/I, where q ∈ (P 2 + I) ∩Q. Then there exist ci, di ∈ P (1 ≤ i ≤ m) and
c ∈ I such that q =

∑
m

i=1
cidi + c. Since I is a Q-ideal and P is a k-ideal of R, there are

elements ui, wi ∈ P ∩Q such that q =
∑

m

i=1
uiwi + d for some d ∈ I. An inspection will

show that q + I =
∑

m

i=1
(ui + I)⊙ (wi + I) ∈ (P/I)2, and so we have equality.

Let q1+ I, q2+ I ∈ R/I such that (q1+ I)⊙ (q2 + I) ∈ P/I − (P/I)2, where q1, q2 ∈ Q.
Then there exists the unique element q3 ∈ Q such that q1q2+I ⊆ q3+I ∈ P/I−(P 2+I)/I,
so q3 ∈ P ∩Q; hence, q1q2 ∈ P and q1q2 /∈ P 2 + I and then q1q2 /∈ P 2. Since P is almost
prime, then q1 ∈ P or q2 ∈ P ; hence, q1 + I ∈ P/I or q2 + I ∈ P/I, as required.◭

Let R be a given semiring, and let S be the set of all multiplicatively cancellable
elements of R (so 1 ∈ S). For the structure of the semiring of fractions RS of R with
respect to S we refer the readers to [9, 11] (also see [5]).

Theorem 2. Let P be an almost prime ideal of a semiring R with P ∩S = ∅. Then PRS

is an almost prime ideal of RS.

Proof. Let r/s, t/u ∈ RS such that (r/s)(t/u) ∈ PRS − (PRS)
2. Then there exist

p ∈ P and w ∈ S such that (rt)/(su) = p/w, so rtw = psu ∈ P . Moreover, rtz /∈ P 2 for
every z ∈ S and so rtw ∈ P − P 2. Then P almost prime gives wt ∈ P or r ∈ P ; hence,
either r/s ∈ PRS or t/u ∈ PRS (see [6, Lemma 6]), as required.◭

Let I be a Q-ideal of a semiring R. An element c ∈ R is called a zero divisor in R/I if
there exists d ∈ R− I such that cd ∈ I. An ideal I of R is called invertible if there is an
ideal J of R (denoted by J−1) such that IJ = R.

Proposition 1. Let R be a semiring . If I, J are k-ideals of R with IJ = I ∩ J , then IJ
is a k-ideal of R.

Proof. (i) It suffices to show that IJ = cl(IJ). Since the inclusion IJ ⊆ cl(IJ) is clear,
we will prove the reverse inclusion. Let z ∈ cl(IJ). Then z + c = d for some c, d ∈ IJ ;
hence, z ∈ I ∩ J = IJ , and we have equality. ◭

Proposition 2. Let P be an n-almost prime Q-ideal of a semiring R such that Pn is a
k-ideal. Then the following hold:

(i) If x ∈ R is a zero divisor in R/P , then either x ∈ P or xP ⊆ Pn.
(ii) If for any ideal I of R, I ⊆ P and I consists of zero divisors on R/P , then

IPn−1 = Pn.
(iii) If P is invertible, then P is a prime k-ideal of R.

Proof. (i) By assumption, there exists y ∈ R− P with xy ∈ P . We may assume that
x /∈ P . Then xy ∈ Pn since P is n-almost prime. It suffices to show that xp ∈ Pn for
every p ∈ P . So suppose that p ∈ P . Then p+y /∈ P and x(p+y) ∈ P since every Q-ideal
is a k-ideal. Hence, as P is n-almost prime, x(y + p) ∈ Pn. Thus, as xy ∈ Pn, xp ∈ Pn

since Pn is a k-ideal. Consequently, xP ⊆ Pn.
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(ii) Let x ∈ I and y ∈ Pn−1. It suffices to show that xy ∈ Pn. Since x is a zero divisor
of R/P , then by (i) either x ∈ P or xP ⊆ Pn. If x ∈ P , then the result is clear. So
suppose that xP ⊆ Pn. It follows that xy ∈ xPn−1 ⊆ xP ⊆ Pn.

(iii) Let xy ∈ P and y /∈ P . Then if y ∈ P , we are done. So suppose that y /∈ P , then
x /∈ P and y /∈ P , but xy ∈ P . So y is a zero divisor in R/P . This implies yP ⊆ Pn by
(i). As P is invertible, yPP−1 ⊂ P−1Pn, so Ry ⊆ Pn−1 implies y ∈ Pn−1 ⊆ P , which is
a contradiction. Thus, P is a prime k-ideal of R. ◭

Theorem 3. Let R be a local semiring with unique maximal k-ideal P and let I be a
Q-ideal of R such that P 2 ⊆ I ⊆ P and I2 is a k-ideal. Then I is almost prime if and
only if P 2 = I2.

Proof. Let I be an almost prime ideal. As P 2 ⊆ I, for any x, y ∈ P , xy ∈ P 2 ⊆ I. We
will show that xy ∈ I2. If not, then I almost prime gives x ∈ I or y ∈ I. Let x ∈ I. Then
y /∈ I, since otherwise xy ∈ I2. Now as y2 ∈ P 2 ⊆ I, y is a zero divisor in R/I. Hence,
by Propositoin 2, xy ∈ yI ⊆ I2 is a contradiction. Thus P 2 − I2. Conversely, assume
that P 2 = I2. Let x, y ∈ R with xy ∈ I − I2. If x /∈ P , then it is a semi-unit in R, so
1 + sx = tx for some s, t ∈ R; hence, y + sxy = txy. It follows that y ∈ I since I is a
k-ideal. Thus, assume x, y ∈ P . In this case xy ∈ P 2 = I2, which is not true. Therefore
it is clear that I is almost prime. ◭

An ideal I of a semiring R is said to be a strong ideal if for each a ∈ I there exists b ∈ I
such that a+ b = 0. Let R = {0, 1, 2, ..., 20}, and define a+ b = max{a, b}, a.b = min{a, b}
for each a, b ∈ R. Then (R,+, .) is easily checked to be a commutative semiring with 20
as identity. Let J4 denote the ring integer modulo 4. Let J4 ⊕R = {(a, b) : a ∈ J4, b ∈ R}
denote the direct sum of semirings J4 and R. Then J4 ⊕ R is a commutative semiring.
An inspection will show that I0 = {(a, 0) : a ∈ J4} is a proper strong ideal in J4 ⊕R and
I10 = {(0, n) : n ≤ 10} is a proper ideal of J4 ⊕R which is not a strong ideal. Also, since
{0} is a proper strong k-ideal of R, the set ∆ of all proper strong k-ideals of R is not
empty. Of course, the relation of inclusion, ⊆, is a partial order on ∆, and by applying
Zorn’s Lemma to this partially ordered set we obtain that a strong maximal k-ideal of R
is just a maximal member of the partially ordered set (∆,⊆). An ideal P of R is called
strong maximal k-ideal if it is maximal in the lattice of strong k-ideals of R. A semiring R
is said to be a strong local semiring if and only if R has a unique strong maximal k-ideal.

Theorem 4. Let (R,P ) be a strong local semiring with every proper principal ideal almost
prime. Then P 2 = 0.

Proof. Let a, b ∈ P − {0}. Consider the ideal < ab >. Suppose that < ab > 6= 0.
Then < ab > is almost prime, so ab ∈< ab >. Then either a ∈< ab >, b ∈< ab >
or ab ∈< ab >2. Suppose first that a ∈< ab >. Then a = rab for some r ∈ R. By
assumption, there is an element b′ ∈ P such that b + b′ = 0, so a(1 + rb′) = 0. By [8,
Lemma 3.4], 1+ rb′ is a semi-unit; hence, 1+ (1+ rb′)s = (1+ rb′)t. Therefore, < a >= 0.
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Similarly, if b ∈< ab >, then < b >= 0 and if ab ∈< ab >2, then < ab >= 0. So in any
case we get a contradiction to our assumption that a 6= 0, b 6= 0, and ab 6= 0.◭

A semiring R is called cancellative if whenever ac = ab for some elements a, b, and c
of R with a 6= 0, then b = c.

Theorem 5. Let R be a strong local semiring with unique maximal k-ideal P . If every
proper principal ideal of R is almost prime, then R is semifield.

Proof. It suffices to show that P = 0. Suppose not. By Theorem 4, there is a non-zero
element a ∈ P such that 0 6=< a > is an almost prime ideal of R with a ∈< a >. So
a = ra for some r ∈ R. If r ∈ P , then a = 0, which is not true. If r /∈ P , then r is a
semi-unit by [6, Lemma 1], so 1 + rs = tr for some t, s ∈ R, which is a contradiction. So
suppose that a2 ∈< a2 >2. By a similar argument, we have a2 is a semi-unit in R, which
is not true. Thus P = 0, and the proof is complete.◭

Lemma 2. Let R be a semiring and a ∈ R. Then cl(Ra2) = (cl(Ra))2. In particular,
(cl(Ra))2 is a k-ideal of R.

Proof. Let y ∈ cl(Ra2). Then y + ra2 = sa2 for some r, s ∈ R. Since ra2, sa2 ∈
(Ra)2 ⊆ (cl(Ra))2, we have cl(Ra2) ⊆ (cl(Ra))2. For the reverse inclusion, assume that
x = st2 ∈ (cl(Ra))2, where t ∈ cl(Ra) and s ∈ R. Then there exist u, v ∈ R such that
t+ua = va, so st2+2su2a2+2stua = sv2a2+ su2a2 and 2stua+2su2a2 = 2suva2; hence,
st2 + 2suva2 = (sv2 + su2)a2. Therefore, x ∈ cl(Ra2), and we have equality.◭

Theorem 6. Let R be a cancellative semiring and x ∈ R. Then cl(Rx) is almost prime
if and only if cl(Rx) is a prime ideal of R.

Proof. Assume that cl(Rx) is almost prime and let a, b ∈ R such that ab ∈ cl(Rx), but
a /∈ cl(Rx) and b /∈ cl(Rx). Then cl(Rx) almost prime gives ab ∈ (cl(Rx))2, so a(b+ x) ∈
cl(Rx) and a, b + x /∈ cl(Rx) since it is a k-ideal of R. It follows from Lemma 2 that
a(b+x) ∈ (cl(Rx))2 = cl(Rx2); hence, ax ∈ cl(Rx2), and this implies that ax+ rx2 = sx2

for some r, s ∈ R, so a+ rx = sx, which is a contradiction. Thus, cl(Rx) is a prime ideal
of R. The converse is trivial for all semirings R.◭

If R1 and R2 are semirings, then R = R1 × R2 = {(r1, r2) : r1 ∈ R1, r2 ∈ R2} is
a semiring under coordinate-wise multiplication. A semiring R is called decomposable if
R = R1×R2 for some non-trivial semirings R1, R2. Otherwise, R is said to be indecompos-
able. Now we show that almost prime ideals are really only of interest in indecomposable
semirings.

Theorem 7. Let R1 and R2 be semirings. An ideal I of R = R1 ×R2 is almost prime if
and only if I has one of the following forms:

(i) I = P1 ×R2 for some almost prime ideal P1 of R1.
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(ii) I = R1 × P2 for some almost prime ideal P2 of R2.

(iii) I = P1 × P2 for some idempotent ideals P1 and P2 of R1 and R2, respectively.

Proof. Let I = P1 × P2 be almost prime ideal of R, where P1 is an ideal of R1 and P2

is an ideal of R2, so I 6= R. We split the proof into two cases.
Case 1: P2 = R2. It suffices to show that P1 is an almost prime ideal of R1. Let

x, y ∈ R1 such that xy ∈ P1 − P 2
1
. Then (x, 1)(y, 1) ∈ (P1 − P 2

1
) × R2 = I − I2; hence, I

almost prime gives either x ∈ P1 or y ∈ P1. Therefore, P1 is an almost prime ideal of R1.
Similarly, if P1 = R1, then P2 is an almost prime ideal of R2.

Case 2: P1 6= R1 and P2 6= R2. If P1 6= P 2

1
, then there is an element x ∈ P1 such that

x /∈ P 2
1
. Then (x, 1)(1, 0) = (x, 0) ∈ I− I2 = ((P1−P 2

1
)×P2)∪ (P1× (P2−P 2

2
)), so either

1 ∈ P1 or 1 ∈ P2, which is a contradiction. The similar reasoning is true for P2 = P 2
2
.

Conversely, assume that I = P1 × R2, where P1 is an almost prime ideal of R1; we
show that I is an almost prime ideal of R. Let (r1, r2), (s1, s2) ∈ R such that (r1s1, r2s2) ∈
I − I2 = (P1 − P 2

1
)×R2, so r1s1 ∈ P1 − P 2

1
; hence, P1 almost prime gives either r1 ∈ P1

or s1 ∈ P1 and therefore either (r1, r2) ∈ I or (s1, s2) ∈ I. Thus, I is almost prime. The
similar reasoning is true for I = R1×P2, where P2 is an almost prime ideal of R2. Finally,
suppose that I = P1 × P2, where P1 = P 2

1
and P2 = P 2

2
. Then I = I2; hence, I is almost

prime by definition, as needed. ◭

We next give three other characterizations of n-almost prime ideals.

Theorem 8. For a proper k-ideal P of a semiring R the following statements are equiva-
lent:

(i) P is n-almost prime.

(ii) For x ∈ R− P , (P : x) = P ∪ (Pn : x).

(iii) For x ∈ R− P , (P : x) = P or (P : x) = (Pn : x).

(iv) For ideals I, J of R with IJ ⊆ P and IJ * Pn, I ⊆ P or J ⊆ P .

Proof. (i) → (ii). Let a ∈ (P : x) where x ∈ R − P . Then ax ∈ P . If ax ∈ Pn, then
a ∈ (Pn : x); while if ax /∈ Pn, then P n-almost prime gives a ∈ P . So (P : x) ⊆ P ∪ (Pn :
x). As the reverse containment holds for any ideal P , we have equality. (ii) → (iii) follows
from Remark 1 (i).

(iii) → (iv) Suppose on contrary that I * P and J * P . Then there exists b ∈ I − P
such that bJ ⊆ P and hence J ⊆ (P : b), but J * P , so by (iii), (P : b) = (Pn : b)
and therefore J ⊆ (Pn : b) which implies that bJ ⊆ Pn. Similarly, there is an element
c ∈ J − P such that cI ⊆ Pn. Finally, for any b ∈ I ∩ P and c ∈ J ∩ P we must have
bc ∈ Pn. Therefore, IJ ⊆ Pn, which is a contradiction. Thus, I ⊆ P or J ⊆ P .

(iv) → (i) Assume that ab ∈ P − Pn (a, b ∈ R) and let I = Ra and J = Rb. Then
IJ ⊆ P , but IJ * Pn. By (iv), either I ⊆ P or J ⊆ P and this implies that P is n-almost
prime ideal of R. ◭
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