Discrete Singular Operators and Equations in a HalfSpace

A.V. Vasilyev, V.B. Vasilyev*

Abstract

Discrete multidimensional singular integral equations with Calderon-Zygmund kernels are considered in a discrete half-space. The solvability of such equations is studied using the properties of discrete Fourier transform and corresponding properties of Calderon-Zygmund operators. Key Words and Phrases: discrete convolution, Calderon-Zygmund operator, periodic Riemann problem, symbol

2000 Mathematics Subject Classifications: 47B35, 47G30

1. Introduction

We consider discrete operator generated by Calderon-Zygmund kernel $K(x)$, which is defined for discrete argument function $u_{h}(\tilde{x}), \tilde{x} \in \mathbf{Z}_{h}^{m}$, where \mathbf{Z}_{h}^{m} is an integer lattice (modulo h) in \mathbf{R}^{m}. We also consider the corresponding equation

$$
\begin{equation*}
a u_{h}(\tilde{x})+\sum_{\tilde{y} \in \mathbf{Z}_{h,+}^{m}} K(\tilde{x}-\tilde{y}) u_{h}(\tilde{y}) h^{m}=v_{h}(\tilde{x}), \quad \tilde{x} \in \mathbf{Z}_{h,+}^{m}, \tag{1}
\end{equation*}
$$

in discrete half-space $\mathbf{Z}_{h,+}^{m}=\left\{\tilde{x} \in \mathbf{Z}_{h}^{m}: x \tilde{x_{m}}>0\right\}, u_{h}, v_{h} \in L_{2}\left(\mathbf{Z}_{h,+}^{m}\right) \equiv l_{h}^{2}$.
By definition, we let $K(0)=0$, and define the symbol of operator

$$
u_{h}(\tilde{x}) \mapsto a u(\tilde{x})+\sum_{\tilde{y} \in \mathbf{Z}_{h}^{m}} K(\tilde{x}-\tilde{y}) u_{h}(\tilde{y}) h^{m}, \quad \tilde{x} \in \mathbf{Z}_{h}^{m},
$$

as a periodic function

$$
\begin{equation*}
\sigma_{h}(\xi)=a+\sum_{\tilde{x} \in \mathbf{Z}_{h}^{m}} e^{-i \xi \tilde{x}} K(\tilde{x}) h^{m}, \tag{2}
\end{equation*}
$$

with period $\left[-\pi h^{-1} ; \pi h^{-1}\right]^{m}$.
The sum in (2) is defined as a limit of partial sums over cubes Q_{N}

$$
\lim _{N \rightarrow \infty} \sum_{\tilde{x} \in Q_{N}} e^{-i \xi \tilde{x}} K(\tilde{x}) h^{m},
$$

*Corresponding author.

$$
Q_{N}=\left\{\tilde{x} \in \mathbf{Z}_{h}^{m}:|\tilde{x}| \leq N,|\tilde{x}|=\max _{1 \leq k \leq m}\left|\tilde{x}_{k}\right|\right\}
$$

This reminds us of the symbol of classical Calderon-Zygmund operator [7] defined as a Fourier transform of kernel $K(x)$ in the sense of principal value

$$
\sigma(\xi)=\lim _{\substack{N \rightarrow \infty \\ \varepsilon \rightarrow 0 \\ \varepsilon<|x|<N}} \int_{\substack{ \\i}} K(x) e^{i \xi x} d x
$$

It has been shown by earlier studies [9] that the images of $\sigma(\xi)$ and $\sigma_{h}(\xi)$ coincide with each other, and this makes it possible to treat such equations in more detail in a half-space.

2. Background

The continual analog of equation (1) is the equation

$$
\begin{equation*}
a u(x)+\int_{\mathbf{R}_{+}^{m}} K(x-y) u(y) d y=v(x), \quad x \in \mathbf{R}_{+}^{m}, \tag{3}
\end{equation*}
$$

in the space $L_{2}\left(\mathbf{R}_{+}^{m}\right)$.
This is a well-studied equation [5]. Using the Fourier transform, it can be reduced to the classical Riemann boundary value problem for upper and lower half-planes [1] with the coefficient $\sigma\left(\xi^{\prime}, \xi_{m}\right)$, where ξ is a dual (in the Fourier sense) variable and $\xi^{\prime}=\left(\xi_{1}, \ldots, \xi_{m-1}\right)$ is a parameter.

For discrete convolution in a half-axis, one of the authors of this paper showed [8] that such equation is equivalent to certain Riemann boundary value problem in a strip. It is easy to verify that for discrete half-space we have the similar problem in a strip for which the coefficients are defined by symbol $\sigma_{h}\left(\xi^{\prime}, \xi_{m}\right)$, and ξ^{\prime} is a parameter. For continual equation we have the Riemann boundary value problem with parameter ξ^{\prime} and a coefficient defined by $\sigma\left(\xi^{\prime}, \xi_{m}\right)$. The unique solution of this problem is determined by topological index with respect to the variable ξ_{m}.

The topological index of such problem is determined, roughly speaking, by the variation of the argument of function $\sigma\left(\cdot, \xi_{m}\right)$, as the argument ξ_{m} varies from $-\infty$ to $+\infty$ and does not depend on $\xi^{\prime}(m \geq 3)$. The same is true for the discrete equation (1), and its solvability is determined by the variation of argument $\sigma\left(\cdot, \xi_{m}\right)$, as the variable ξ_{m} varies in the interval $\left[-\pi h^{-1}, \pi h^{-1}\right]$.

The key moment is to get the following relation:

$$
\begin{equation*}
\lim _{h \rightarrow 0} \int_{-\pi h^{-1}}^{\pi h^{-1}} d \arg \sigma_{h}(\cdot, t)=\int_{-\infty}^{+\infty} d \arg \sigma(\cdot, t) . \tag{4}
\end{equation*}
$$

The validity of (4) implies the solvability (or unsolvability) of equations (1) and (3). Based on the results of [2], we can assert that the relation (4) is satisfied at least for continuous symbol $\sigma(\xi)$ on sphere S^{m-1}, if $\sigma(0 ;+1)=\sigma(0 ;-1)$.

3. Discrete Convolutions on a Half-Axis

A convolution of two functions f and g on a straight line is defined by the integral

$$
(f \star g)(x)=\int_{-\infty}^{+\infty} f(x-y) g(y) d y
$$

which exists if $f, g \in L_{2}(\mathbf{R})$. This is a continual convolution. Discrete convolution is defined in the same way. If f and g are functions of discrete argument, i.e. if they are sequences, then

$$
\begin{gather*}
(f \star g)(n) \equiv \sum_{k \in \mathbf{Z}} f(n-k) g(k) \equiv \sum_{k \in \mathbf{Z}} f_{n-k} g_{k} \tag{5}\\
f_{k} \equiv f_{k}, g(k) \equiv g_{k}, k \in \mathbf{Z}
\end{gather*}
$$

which exists for $f, g \in l_{2}$.
The Fourier transform of discrete function is defined by the following formula:

$$
(F f)(\xi) \equiv \tilde{f}(\xi)=\sum_{k \in \mathbf{Z}} f_{k} e^{-i k \xi}, \xi \in[-\pi, \pi]
$$

Applying the Fourier transform to (5), we come to the standard formula

$$
F(f \star g)=\tilde{f} \cdot \tilde{g},
$$

which immediately provides a solvability condition for discrete convolution equation

$$
\begin{equation*}
a u(n)+\sum_{k \in \mathbf{Z}} M(n-k) u(k)=v(n), \tag{6}
\end{equation*}
$$

where a is a constant, M and v are the given discrete functions, and u is a sought function.
Function $a+\tilde{M}(\xi), \xi \in[-\pi, \pi]$, is called a symbol of the equation (6).
Thus, the equation (6) has a unique solution if its symbol never vanishes, $M, v \in l_{2}$.
The situation gets much more complicated if we suppose that the equation (6) is defined not on the whole space \mathbf{Z}, , but only on $\mathbf{Z}_{+}=\{0,1,2, \ldots\}$, i.e.

$$
\begin{equation*}
a u(n)+\sum_{k \in \mathbf{Z}_{+}} M(n-k) u(k)=v(n), n \in \mathbf{Z}_{+}, \tag{7}
\end{equation*}
$$

where discrete function M is defined on the whole \mathbf{Z}, while the given v (and the sought $u)$ are only defined on \mathbf{Z}_{+}.

Consider two projectors:

$$
\left(P_{+} u\right)(n)=\left\{\begin{array}{r}
u(n), n \geq 0 \\
0, n<0,
\end{array} \quad\left(P_{-} u\right)(n)=\left\{\begin{array}{r}
0, n \geq 0 \\
u(n), n<0
\end{array}\right.\right.
$$

and discrete convolution operator $M: u(n) \longmapsto a u(n)+\sum_{k \in \mathbf{Z}_{+}} M(n-k) u(k)$. Then the equation (7) can be rewritten as follows:

$$
\begin{equation*}
P_{+} M u_{+}=f_{+}, \tag{8}
\end{equation*}
$$

where functions u_{+}(the sought one) and f_{+}(the given one) are defined on \mathbf{Z}_{+}. It is clear that the equation (8) is equivalent (from the viewpoint of solvability) to so called paired equation

$$
\begin{equation*}
\left(M_{1} P_{+}+M_{2} P_{-}\right) U=F, \tag{9}
\end{equation*}
$$

on the whole lattice $\mathbf{Z}, M_{2}=I$.
The use of discrete Fourier transform leads us to the summation of divergent series

$$
\begin{equation*}
\sum_{k \in \mathbf{Z}_{+}} e^{-i k \xi} \tag{10}
\end{equation*}
$$

To get rid of divergence, we add a multiplier $e^{i s}$ and then pass to the limit as $s \rightarrow 0$. As a result, we obtain operator P_{+}in terms of Fourier images.

So,

$$
\sum_{k \in \mathbf{Z}_{+}} e^{-i k \xi} e^{i k s}=\sum_{k \in \mathbf{Z}_{+}} e^{-i k(\xi+i s)}=\sum_{k \in \mathbf{Z}_{+}} e^{-i k \zeta}, \zeta=\xi+i s
$$

The obtained series is convergent and its sum is equal to

$$
\sum_{k \in \mathbf{Z}_{+}} e^{-i k \zeta}=1 / 2-i / 2 \cot (\zeta / 2) .
$$

Thus,

$$
\left(F P_{+} u\right)=1 / 2 \tilde{u}(\xi)-i / 2 \lim _{s \rightarrow 0+} \int_{-\pi}^{\pi} \cot \frac{\zeta-\tau}{2} \tilde{u}(\tau) d \tau
$$

Note that we would come to the similar integral (in the sense of principal value) if we summed the series (10) in a usual way (using Dirichlet kernel and passage to the limit in partial sums [4]). That would lead us to the periodical version of Hilbert transform

$$
(H u)(x)=v \cdot p \cdot \int_{-\pi}^{\pi} \cot \frac{x-t}{2} u(t) d t
$$

If projector P_{-}, is considered, then the sum (9) becomes

$$
=i / 2+i / 2 \cot (\zeta / 2),
$$

and we get the following formula:

$$
\left(F P_{-} u\right)=-1 / 2 \tilde{u}(\xi)+i / 2 \lim _{s \rightarrow 0+} \int_{-\pi}^{\pi} \cot \frac{\zeta-\tau}{2} \tilde{u}(\tau) d \tau
$$

4. Periodic Riemann Boundary Value Problem

Consider the function

$$
\Phi(\zeta)=\frac{1}{4 \pi i} \int_{-\pi}^{\pi} \cot \frac{\zeta-t}{2} \phi(t) d t
$$

and suppose that $\phi(t)$ satisfies Hölder condition on $[-\pi, \pi]$:

$$
\left|\phi\left(t_{1}\right)-\phi\left(t_{2}\right)\right| \leq c\left|t_{1}-t_{2}\right|^{\alpha},
$$

$\forall t_{1}, t_{2} \in[-\pi, \pi], 0<\alpha \leq 1, \phi(-\pi)=\phi(\pi)$.
Boundary values $(s \rightarrow \pm 0)$ can be calculated by passing from $[-\pi, \pi]$ to the unit circumference and applying classical Sokhotskii-Plemelj formulas. As a result, we get
Theorem 1. The formulas

$$
\begin{equation*}
\Phi^{ \pm}(\xi)= \pm \frac{\phi(t)}{2}+\frac{1}{2 \pi i} v \cdot p \cdot \int_{-\pi}^{\pi} \cot \frac{\xi-t}{2} \phi(t) d t \tag{11}
\end{equation*}
$$

are true, where $\Phi^{ \pm}(\xi)$ denote the boundary values $\Phi^{ \pm}(\zeta)$ as $s \rightarrow \pm 0$.
These formulas lead us to the following formulation of periodic Riemann boundary value problem: find the pair of functions $\Phi^{ \pm}(z)$, analytic in half-strips

$$
\Pi_{ \pm}=\{z \in \mathbf{C}: z=t+i s, t \in[-\pi, \pi], \pm s>0\}
$$

for which their boundary values satisfy linear relation

$$
\Phi^{+}(t)=G(t) \Phi^{-}(t)+g(t), t \in[-\pi, \pi],
$$

as $s \rightarrow 0 \pm$, where $G(t)$ and $g(t)$ are the given functions on $[-\pi, \pi]$.
If we suppose that $G(t) \in C[-\pi, \pi], G(-\pi)=G(\pi)$, then the index of function G on the interval $[-\pi, \pi]$ is defined as the variation of $\arg G(t)$ divided by 2π as t varies from $-\pi$ to π. This is an integer denoted by $æ$.

Theorem 2. If $G(t)$ satisfies Hölder condition, $\mathfrak{x}=0$, then the periodic Riemann boundary value problem has a unique solution $\Phi^{ \pm}(t) \in L_{2}[-\pi, \pi]$, which is constructed using function $\Phi(\zeta)$.

5. Equations in Continual Case and the Classical Riemann Boundary Value Problem

5.1. Half-Axis Case

Reduction of equation (9) to so called characteristic singular integral equation is realized with the help of special Hilbert transform [1], [2], [6]

$$
\begin{aligned}
& (H u)(x) \equiv \frac{1}{\pi i} v \cdot p \cdot \int_{-\infty}^{+\infty} \frac{u(s)}{s-x} d s \\
& \equiv \frac{1}{\pi i} \lim _{\substack{N \rightarrow+\infty \\
\varepsilon \rightarrow 0+}}\left(\int_{-N}^{x-\varepsilon}+\int_{x+\varepsilon}^{N}\right) \frac{u(s)}{s-x} d s .
\end{aligned}
$$

The properties of this operator are well-studied. In particular, operator $H: L_{2}(\mathbf{R}) \rightarrow$ $\mathbf{L}_{\mathbf{2}}(\mathbf{R})$ is a bounded linear operator with its spectrum consisting of two points ± 1, and $H^{2}=I$.

Besides, the following two operators

$$
P=1 / 2(I+H), Q=1 / 2(I-H)
$$

are the projectors on the subspace $A(\mathbf{R}) \subset L_{2}(\mathbf{R})$ of functions admitting analytic extension to the upper complex half-plane \mathbf{C}_{+}and on the subspace $B(\mathbf{R}) \subset L_{2}(\mathbf{R})$ of functions admitting analytic extension to the lower complex half-plane \mathbf{C}_{-}, respectively. So

$$
A(\mathbf{R}) \oplus B(\mathbf{R})=L_{2}(\mathbf{R})
$$

The following identities are true:

$$
P^{2}=P, Q=I-P, Q^{2}=Q, P Q=Q P=0
$$

If we denote by P_{+}, and P_{-}the operators of restriction to the positive and negative half axes, respectively, then it is easy to verify [2] that

$$
\begin{equation*}
F P_{+}=Q F, F P_{-}=P F \tag{12}
\end{equation*}
$$

Next, by applying Fourier transform to one-dimensional equation (9) we get

$$
\frac{1}{2} \sigma_{M_{1}}(\xi)(I-H) \tilde{U}(\xi)+\frac{1}{2} \sigma_{M_{2}}(\xi)(I+H) \tilde{U}(\xi)=\tilde{F}(\xi)
$$

where $\sigma_{M_{1}}, \sigma_{M_{2}}$ are the symbols of operators M_{1}, M_{2}. By grouping terms, we can rewrite the last equation as follows:

$$
\begin{gather*}
\frac{\sigma_{M_{1}}(\xi)+\sigma_{M_{2}}(\xi)}{2} \tilde{U}(\xi)+ \\
+\frac{\sigma_{M_{1}}(\xi)+\sigma_{M_{2}}(\xi)}{2 \pi i} v \cdot p \cdot \int_{-\infty}^{+\infty} \frac{\tilde{U}(\eta)}{\eta-\xi} d \eta=\tilde{F}(\xi) \tag{13}
\end{gather*}
$$

Equation (13) is well-known in the theory of singular integral equations [1]. It is called a characteristic singular integral equation, and its solution is closely related to the classical Riemann boundary value problem for upper and lower half-planes $\mathbf{C}_{ \pm}$. This problem is
formulated as follows: finding two functions $\Phi^{ \pm}(t)$, defined on \mathbf{R}, which admit analytic extension to $\mathbf{C}_{ \pm}$and satisfy the linear relation

$$
\begin{equation*}
\Phi^{+}(t)=G(t) \Phi_{-}(t)+g(t) \tag{14}
\end{equation*}
$$

on straight line \mathbf{R}, where $G(t)$ and $g(t)$ are the given functions on \mathbf{R}. If we denote

$$
a(t)=\frac{\sigma_{M_{1}}(t)+\sigma_{M_{2}}(t)}{2}, b(t)=\frac{\sigma_{M_{1}}(t)-\sigma_{M_{2}}(t)}{2}
$$

then we will see that the equation (13) in space $L_{2}(\mathbf{R})$ and the problem (14) for $\Phi^{ \pm} \in$ $L_{2}(\mathbf{R})$ are equivalent [1], i.e. coefficient $G(t)$ and the right hand side $g(t)$ are easily calculated by a and b :

$$
G(t)=\frac{a(t)+b(t)}{a(t)-b(t)}, g(t)=\frac{\tilde{F}(t)}{a(t)-b(t)}
$$

and, vice versa, problem (14) corresponds to the characteristic singular integral equation (13). It is also known [1] that the solvability conditions of equation (13) are determined by certain topological invariants called indices. Note that in our case

$$
\begin{equation*}
G(t)=\sigma_{M_{1}}(t) \sigma_{M_{2}}^{-1}(t) \tag{15}
\end{equation*}
$$

We assume that the following condition is satisfied for (15). Denote by $\overline{\mathbf{R}}$ the one-point compactification of \mathbf{R} and suppose that $G(t)$ is continuous on $\overline{\mathbf{R}}$ and vanishes nowhere. The variation of argument of $G(t)$ divided by 2π, as t varies from $-\infty$ to $+\infty$, is called the index $æ$ of this function. If $æ=0$, then the solution of equation (13) is unique and can be written out explicitly using Hilbert transform [1].

5.2. Half-Space Case

Back to equation (9), where M_{1}, and M_{2} are Calderon-Zygmund operators (as in equation (3)) and by P_{+}, P_{-}we mean the operators of restriction to the half-space $\mathbf{R}_{ \pm}^{m}=$ $\left\{x=\left(x_{1}, \ldots, x_{m}\right), \pm x_{m}>0\right\}$.

It is evident that, slightly complemented, the previous reasoning stays true. If we denote by F the Fourier transform (as we did before), then we have the following relations:

$$
\begin{gathered}
F P_{+}=Q_{\xi^{\prime}} F, F P_{-}=P_{\xi^{\prime}} F, \\
P=1 / 2\left(I+H_{\xi^{\prime}}\right), Q=1 / 2\left(I-H_{\xi^{\prime}}\right) .
\end{gathered}
$$

Here $H_{\xi^{\prime}}$ is a Hilbert transform in variables $\xi_{m}, \xi^{\prime}=\left(\xi_{1}, \ldots, \xi_{m-1}\right)$:

$$
\left(H_{\xi^{\prime}} u\right)\left(\xi^{\prime}, \xi_{m}\right) \equiv \frac{1}{\pi i} v \cdot p \cdot \int_{-\infty}^{+\infty} \frac{u\left(\xi^{\prime}, \tau\right)}{\tau-\xi_{m}} d \tau .
$$

In such case, the equation (13) turns to the following one with the parameter ξ^{\prime} :

$$
\begin{gather*}
\frac{\sigma_{M_{1}}\left(\xi^{\prime}, \xi_{m}\right)+\sigma_{M_{2}}\left(\xi^{\prime}, \xi_{m}\right)}{2} \tilde{U}(\xi)+ \\
+\frac{\sigma_{M_{1}}\left(\xi^{\prime}, \xi_{m}\right)+\sigma_{M_{2}}\left(\xi^{\prime}, \xi_{m}\right)}{2 \pi i} v \cdot p \cdot \int_{-\infty}^{+\infty} \frac{\tilde{U}\left(\xi^{\prime}, \eta\right)}{\eta-\xi_{m}} d \eta=\tilde{F}(\xi) . \tag{16}
\end{gather*}
$$

This equation corresponds to the Riemann boundary value problem (with parameter ξ^{\prime}) with coefficient

$$
\begin{equation*}
G\left(\xi^{\prime}, \xi_{m}\right)=\sigma_{M_{1}}\left(\xi^{\prime}, \xi_{m}\right) \sigma_{M_{2}}^{-1}\left(\xi^{\prime}, \xi_{m}\right) . \tag{17}
\end{equation*}
$$

To ensure the unique solvability of equation (16), the index of $G\left(\xi^{\prime}, \xi_{m}\right)$ with respect to variable ξ_{m} needs to be equal to 0 .

The symbol of Calderon-Zygmund operator has a very specific nature. It is a homogeneous function of degree 0 , i.e. it is in fact defined on the unit sphere S^{m-1}. Let $m \geq 3$. Take $\xi^{\prime} \in S^{m-2}$ and suppose that $G(0,-1)=G(0,+1)$. As ξ_{m} varies between $-\infty$ to $+\infty$, the function $G(\xi)$ will take values on the arc of large semi-circle joining the points $(0,-1)$ and $(0,+1)$. At the same time, the symbol will take values alongside the closed curve in the complex plane. These curves will be homotopic for different values of ξ^{\prime}, i.e. they will have the same index æ with respect to 0 . The condition $æ=0$ provides the uniqueness of the solution of equation (16).

6. Back To Discrete Case

We are back to discrete equations, assuming that $P_{ \pm}$in (9) are the operators of restriction to $\mathbf{Z}_{h, \pm}^{m}$, and M_{1}, M_{2} are discrete Calderon-Zygmund operators generated by kernels $M_{1}(x)$, and $M_{2}(x)$, which are bounded in space $L_{2}\left(\mathbf{Z}_{h}^{m}\right)$.

Discrete Fourier transform for discrete argument functions defined on lattice \mathbf{Z}_{h}^{m} is given by the formula

$$
u(\tilde{x}) \longmapsto \frac{1}{(2 \pi)^{m}} \sum_{\tilde{x} \in \mathbf{Z}_{h}^{m}} u(\tilde{x}) e^{-i \tilde{x} \cdot \xi} h^{m} \equiv \tilde{u}(\xi), \xi \in\left[-h^{-1} \pi, h^{-1} \pi\right]^{m}
$$

Such Fourier transform has the same properties as the classical one [3].
In accordance with Theorem 1 and Section 5, we define the periodical analog of Hilbert transform with respect to the variable $\xi_{m}\left(\xi \in[-\pi, \pi]^{m}, \xi^{\prime}\right.$ is fixed) by the formula

$$
\begin{equation*}
\left(H_{\xi^{\prime}}^{p e r} u\right)\left(\xi_{m}\right)=\frac{1}{2 \pi i} \int_{-\pi h^{-1}}^{\pi h^{-1}} u(t) \cot \frac{h\left(t-\xi_{m}\right)}{2} d t . \tag{18}
\end{equation*}
$$

Periodical analogs of projectors (12) look as follows:

$$
P_{\xi^{\prime}}^{p e r}=1 / 2\left(I+H_{\xi^{\prime}}^{p e r}\right), Q_{\xi^{\prime}}^{p e r}=1 / 2\left(I-H_{\xi^{\prime}}^{p e r}\right) .
$$

And the periodical analog of equation (16) will be

$$
\begin{gather*}
\frac{\sigma_{1, h}\left(\xi^{\prime}, \xi_{m}\right)+\sigma_{2, h}\left(\xi^{\prime}, \xi_{m}\right)}{2} \tilde{U}(\xi)+ \\
+\frac{\sigma_{1, h}\left(\xi^{\prime}, \xi_{m}\right)+\sigma_{2, h}\left(\xi^{\prime}, \xi_{m}\right)}{4 \pi i} \times \\
\times v \cdot p \cdot \int_{-\pi h^{-1}}^{\pi h^{-1}} \tilde{U}\left(\xi^{\prime}, \eta\right) \cot \frac{h\left(\eta-\xi_{m}\right)}{2} d \eta=\tilde{F}(\xi), \tag{19}
\end{gather*}
$$

where $\sigma_{1, h}, \sigma_{2, h}$ are the symbols (2) of discrete operators M_{1}, M_{2}. Of course, equation (19) is related to the corresponding Riemann boundary value problem, and the unique solvability condition for this problem is given in Theorem 2. In our case, this condition is

$$
\operatorname{Ind} \sigma_{1, h}\left(\cdot, \xi_{m}\right) \sigma_{2, h}^{-1}\left(\cdot, \xi_{m}\right)=0
$$

7. Passage From Discrete Case To Continual One

First we recall that the images of symbols σ and σ_{h} coincide with each other [9]. Moreover, index is an integer-valued characteristic in both continual (if the transmission condition $\sigma(0,-1)=\sigma(0,+1)$ is satisfied) and discrete (periodical) cases. Analyzing variations $\arg \sigma_{h}\left(\cdot, \xi_{m}\right)$ alongside the arcs of large semi-circumferences on S^{m-1} and taking into account that

$$
\lim _{h \rightarrow 0} \sigma_{h}(\xi)=\sigma(\xi), \quad \forall \xi \in S^{m-1}
$$

we arrive at the conclusion that the following theorem is true:
Theorem 3. The equations (1) and (3) are either both solvable or both unsolvable.

References

[1] I.Z. Gohberg, N.Y. Krupnik, Introduction To The Theory Of One-Dimensional Singular Integral Operators, Stiinta, Chisinau, 1973.
[2] G.I. Eskin, Boundary Value Problems For Elliptic Pseudo-Differential Equations, Nauka, Moscow, 1973.
[3] S.L. Sobolev, Introduction To The Theory Of Cubature Formulas, Nauka, Moscow, 1974.
[4] F.D. Gakhov, Boundary Value Problems, Nauka, Moscow, 1977.
[5] R.E. Edwards, Fourier Series. A Modern Introdution. V.1,2. Springer-Verlag, New York-Heidelberg-Berlin, 1979.
[6] F.W.King, Hilbert Transforms. V.1,2, Cambridge University Press, Cambridge, 2009
[7] S.G Mikhlin, S.Proessdorf, Singular Integral Operators, Akademie-Verlag, Berlin, 1986.
[8] V.B. Vasilyev, Discrete Convolutions and Difference Equations, Proceedings of Dynamic Systems and Applications, G.S. Ladde, N.G. Medhin, Chuang Peng and M. Sambandham, Dynamic Publishers, USA, 1973, p.474-480.
[9] V.B. Vasilyev, Elliptic Equations and Boundary Value Problems in Non-Smooth Domains, Operator Theory: Advances and Applications, Birkhauser, 213, 2011, L. Rodino and M.W. Wong, Basel

Alexander V. Vasilyev
Department of Mathematics and Information Technologies, Belgorod State University, Studencheskaya
14, Belgorod 308015, Russia
E-mail: alexvassel@gmail.com
Vladimir B. Vasilyev
Chair of Pure Mathematics, Lipetsk State Technical University, Moskovskaya 30, Lipetsk 398600, Russia E-mail: vbv57@inbox.ru

Received 13 August 2012
Published 20 September 2012

