Some Properties for Certain Subclass of p-Valent Analytic Functions Defined Using Convolution

M. K. Aouf*, A. A. Shamandy, A. O. Mostafa, A. K. Wagdy

Abstract

In this paper, we introduce a new subclass of analytic p-valent functions defined using convolution and investigate many properties of functions of this class using Jack's lemma.

Key Words and Phrases: Analytic, p-valent, Hadamard product, Jack's lemma, convolution 2000 Mathematics Subject Classifications: 30C45

1. Introduction

Let $A(p)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}(p \in \mathbb{N} ; \mathbb{N}=\{1,2, \ldots\}), \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the open unit disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$.
For two functions f and ϕ, analytic in \mathbb{U}, we say that the function $f(z)$ is subordinate to $\phi(z)$ in \mathbb{U}, written $f(z) \prec \phi(z)$, if there exists a Schwarz function $w(z)$, which (by definition) is analytic in \mathbb{U} with $w(0)=0$ and $|w(z)|<1$, such that $f(z)=\phi(w(z))$. Indeed, it is known that

$$
f(z) \prec \phi(z) \Rightarrow f(0)=\phi(0) \text { and } f(\mathbb{U}) \subset \phi(\mathbb{U}) .
$$

Furthermore, if the function ϕ is univalent in \mathbb{U}, then we have the following equivalence (see [1] and [6]):

$$
\begin{equation*}
f(z) \prec \phi(z) \Leftrightarrow f(0)=\phi(0) \text { and } f(\mathbb{U}) \subset \phi(\mathbb{U}) . \tag{1.2}
\end{equation*}
$$

Let $g, h \in A(p)$ be given by

$$
\begin{equation*}
g(z)=z^{p}+\sum_{k=p+1}^{\infty} b_{k} z^{k} \tag{1.3}
\end{equation*}
$$

* Corresponding author.
http://www.azjm.org 94 (C) 2010 AZJM All rights reserved.
and

$$
\begin{equation*}
h(z)=z^{p}+\sum_{k=p+1}^{\infty} c_{k} z^{k} . \tag{1.4}
\end{equation*}
$$

Given two functions f and g in the class $A(p)$, where $f(z)$ is given by (1.1) and $g(z)$ is given by (1.3), the Hadamard product (or convolution) $f * g$ of f and g is defined (as usual) by

$$
\begin{equation*}
(f * g)(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) . \tag{1.5}
\end{equation*}
$$

A function $f(z) \in A(p)$ is said to be in the class of p-valently strongly starlike functions of order β, denoted by $\overline{S_{p}^{*}}(\beta)$, if

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\beta \pi}{2 p} \quad(0 \leq \beta<p ; p \in \mathbb{N} ; z \in \mathbb{U}) .
$$

A function $f(z) \in A(p)$ is said to be in the class of p -valently strongly convex functions of order β, denoted by $\overline{K_{p}}(\beta)$, if

$$
\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right|<\frac{\beta \pi}{2 p} \quad(0 \leq \beta<p ; p \in \mathbb{N} ; z \in \mathbb{U})
$$

A function $f(z) \in A(p)$ is said to be in the class of p -valently strongly close-to-convex functions of order β, denoted by $\overline{C K_{p}}(\beta)$, if

$$
\left|\arg \left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}\right|<\frac{\beta \pi}{2 p} \quad(0 \leq \beta<p ; p \in \mathbb{N} ; z \in \mathbb{U}) .
$$

The classes $\overline{S_{p}^{*}}(\beta), \overline{K_{p}}(\beta)$ and $\overline{C K_{p}}(\beta)$ were introduced by Sharma and Srivastava [8].
For $f(z) \in A(p)$ of the form (1.1) and $g(z) \in A(p)$ of the form (1.3), we have (see Chen et al. [3])

$$
\begin{equation*}
(f * g)^{(m)}(z)=\delta(p, m) z^{p-m}+\sum_{k=p+1}^{\infty} \delta(k, m) a_{k} b_{k} z^{k-m}\left(m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) \tag{1.6}
\end{equation*}
$$

where
$\delta(p, m)=.1 \quad(m=0) p(p-1) \ldots(p-m-1) \quad(m \neq 0)$.

Definition 1. A function $f(z) \in A(p)$ is said to be in the class $K(g, h, p, m, \lambda, \beta)$ if and only if for any functions $g, h \in A(p)$ of the form (1.3) and (1.4), respectively, we have

$$
\begin{equation*}
\left.\left|\frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)^{(m+2)}(z)}{(1-\lambda)(f * h)^{(m)}(z)+\lambda z(f * h)^{(m+1)}(z)}-(p-m)\right|<\beta\right\}, \tag{1.8}
\end{equation*}
$$

$$
\left(0 \leq \lambda \leq 1 ; 0<\beta \leq p-m ; p \in \mathbb{N} ; p>m ; m \in \mathbb{N}_{0} ; z \in \mathbb{U}\right)
$$

or, equivalently,

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)^{(m+2)}(z)}{(1-\lambda)(f * h)^{(m)}(z)+\lambda z(f * h)^{(m+1)}(z)}\right\}>p-m-\beta \tag{1.9}\\
& \left(0 \leq \lambda \leq 1 ; 0<\beta \leq p-m ; p \in \mathbb{N} ; p>m ; m \in \mathbb{N}_{0} ; z \in \mathbb{U}\right)
\end{align*}
$$

Putting $h(z)=g(z)$ in (1.8), we obtain:

$$
\begin{gather*}
K(g, g, p, m, \lambda, \beta)=K L(g, p, m, \lambda, \beta) \\
=\left\{f \in A(p):\left|\frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)^{(m+2)}(z)}{(1-\lambda)(f * g)^{(m)}(z)+\lambda z(f * g)^{(m+1)}(z)}-(p-m)\right|<\beta\right\} . \tag{1.10}
\end{gather*}
$$

Remark 1. Putting $\lambda=0$ in (1.8) or (1.9) reduces the class $K(g, h, p, m, \lambda, \beta)$ to the class $R_{h}^{g}(p, m, \beta)$ introduced and studied by Sharma and Srivastava [8].

We can obtain the following new classes for various choices of g, h, λ, p, m and β :
(i) $K L\left(\frac{z^{p}}{1-z}, p, m, \lambda, \beta\right)=K L(p, m, \lambda, \beta)$

$$
=\left\{f \in A(p):\left|\frac{z f^{(m+1)}(z)+\lambda z^{2} f^{(m+2)}(z)}{(1-\lambda) f^{(m)}(z)+\lambda z f^{(m+1)}(z)}-(p-m)\right|<\beta\right\} ;
$$

(ii) $K L(g, p, m, 1, \beta)=K L(g, p, m, \beta)$

$$
=\left\{f \in A(p):\left|1+\frac{z(f * g)^{(m+2)}(z)}{(f * g)^{(m+1)}(z)}-(p-m)\right|<\beta\right\} ;
$$

(iii) $K L\left(z^{p}+\sum_{k=p+1}^{\infty}\left[\frac{\ell+p+\mu(k-p)}{\ell+p}\right]^{n} z^{k}, p, m, \lambda, \beta\right)=K L(n, \mu, \ell ; p, m, \lambda, \beta)$

$$
=\left\{f \in A(p):\left|\frac{z\left(I_{p}^{n}(\mu, \ell) f(z)\right)^{(m+1)}+\lambda z^{2}\left(I_{p}^{n}(\mu, \ell) f(z)\right)^{(m+2)}}{(1-\lambda)\left(I_{p}^{n}(\mu, \ell) f(z)\right)^{(m)}+\lambda z\left(I_{p}^{n}(\mu, \ell) f(z)\right)^{(m+1)}}-(p-m)\right|<\beta\right\},
$$

where $n \in \mathbb{N}_{0}, \mu, \ell \geq 0$ and the operator $I_{p}^{n}(\mu, \ell)$ was defined by Cătas [2], which is a generalization of many other linear operators considered earlier.

In order to prove our results, we shall make use of the following lemmas.

Lemma 1. [4] (Jack's lemma). Let $w(z)$ be analytic in \mathbb{U} and such that $w(0)=0$. Then if $|w(z)|$ attains its maximum value on a circle $|z|=r<1$ at a point $z_{0} \in \mathbb{U}$, we have

$$
z_{0} w^{\prime}\left(z_{0}\right)=\zeta w\left(z_{0}\right)
$$

where $\zeta \geq 1$ is a real number.

Lemma 2. [5]. Let $\varphi(u, v)$ be a complex valued function:

$$
\varphi: D \longrightarrow \mathbb{C},(D \subset \mathbb{C} \times \mathbb{C} ; \mathbb{C} \text { is a complex plane })
$$

and let $u=u_{1}+i u_{2}$ and $v=v_{1}+i v_{2}$. Suppose that the function $\varphi(u, v)$ satisfies the following conditions:
(i) $\varphi(u, v)$ is continuous in D;
(ii) $(1,0) \in D$ and $\operatorname{Re}(\varphi(1,0))>0$;
(iii) $\operatorname{Re}\left(\varphi\left(i u_{2}, v_{1}\right)\right) \leq 0$ for all $\left(i u_{2}, v_{1}\right) \in D$ and such that $v_{1} \leq-\left(1+u_{2}^{2}\right) / 2$.

Let $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ be regular in \mathbb{U} such that $\left(p(z), z p^{\prime}(z)\right) \in D$ for all $z \in U$. If $\operatorname{Re}\left(\varphi\left(p(z), z p^{\prime}(z)\right)\right)>0(z \in \mathbb{U})$, then $\operatorname{Re}(p(z))>0(z \in \mathbb{U})$.

Lemma 3. [7]. Let a function $p(z)$ be analytic in $\mathbb{U}, p(0)=1$ and $p(z) \neq 0(z \in \mathbb{U})$. If there exists a point $z_{0} \in \mathbb{U}$ such that

$$
|\arg p(z)|<\frac{\pi}{2} \delta \text { for }|z|<\left|z_{0}\right|
$$

and

$$
\left|\arg p\left(z_{0}\right)\right|=\frac{\pi}{2} \delta,
$$

with $0<\delta \leq 1$, then we have

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i t \delta
$$

where

$$
t \geq 1 \text { when } \arg p\left(z_{0}\right)=\frac{\pi}{2} \delta
$$

and

$$
t \leq-1 \text { when } \arg p\left(z_{0}\right)=-\frac{\pi}{2} \delta
$$

2. Main results for the class $K(g, h, p, m, \lambda, \beta)$

Theorem 1. Let the functions $f(z), g(z), h(z) \in A(p)$ be defined by (1.1), (1.3) and (1.4), respectively. If

$$
\begin{equation*}
\left|1+\frac{z(1+\lambda)(f * g)^{(m+2)}(z)+\lambda z^{2}(f * g)^{(m+3)}(z)}{(f * g)^{(m+1)}(z)+\lambda z(f * g)^{(m+2)}(z)}-\frac{z(f * h)^{(m+1)}(z)+\lambda z^{2}(f * h)^{(m+2)}(z)}{(1-\lambda)(f * h)^{(m)}(z)+\lambda z(f * h)^{(m+1)}(z)}\right|<\frac{\beta}{p-m+\beta}, \tag{2.1}
\end{equation*}
$$

then $f(z) \in K(g, h, p, m, \lambda, \beta)$.
Proof. Let $w(z)$ be defined by

$$
\begin{equation*}
\frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)^{(m+2)}(z)}{(1-\lambda)(f * h)^{(m)}(z)+\lambda z(f * h)^{(m+1)}(z)}=(p-m)+\beta w(z) \tag{2.2}
\end{equation*}
$$

where $w(z)$ is analytic in \mathbb{U} and $w(0)=0$. Differentiating (2.2) logarithmically with respect to z, we obtain

$$
1+\frac{z(1+\lambda)(f * g)^{(m+2)}(z)+\lambda z^{2}(f * g)^{(m+3)}(z)}{(f * g)^{(m+1)}(z)+\lambda z(f * g)^{(m+2)}(z)}-\frac{z(f * h)^{(m+1)}(z)+\lambda z^{2}(f * h)^{(m+2)}(z)}{(1-\lambda)(f * h)^{(m)}(z)+\lambda z(f * h)^{(m+1)}(z)}=\frac{\beta z w^{\prime}(z)}{(p-m)+\beta w(z)} .
$$

Suppose that there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\max _{|z|<\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1 \quad\left(w\left(z_{0}\right) \neq 1\right) .
$$

By using Lemma 1 and taking $w\left(z_{0}\right)=e^{i \theta}(\theta \neq 0)$, we have

$$
\begin{aligned}
& \left|1+\frac{z_{0}(1+\lambda)(f * g)^{(m+2)}\left(z_{0}\right)+\lambda z_{0}^{2}(f * g)^{(m+3)}\left(z_{0}\right)}{(f * g)^{(m+1)}\left(z_{0}\right)+\lambda z_{0}(f * g)^{(m+2)}\left(z_{0}\right)}-\frac{z_{0}(f * h)^{(m+1)}\left(z_{0}\right)+\lambda z_{0}^{2}(f * h)^{(m+2)}\left(z_{0}\right)}{(1-\lambda)(f * h)^{(m)}\left(z_{0}\right)+\lambda z_{0}(f * h)^{(m+1)}\left(z_{0}\right)}\right| \\
= & \left|\frac{z_{0} \beta w^{\prime}\left(z_{0}\right)}{\left[(p-m)+\beta w\left(z_{0}\right)\right]}\right|=\frac{\beta \zeta}{\left[(p-m)^{2}+\beta^{2}+2 \beta(p-m) \cos \theta\right]^{\frac{1}{2}}} \\
\geq & \frac{\beta}{p-m+\beta}(\zeta \geq 1),
\end{aligned}
$$

which contradicts the condition (2.1) of Theorem 1. Then we have $|w(z)|<1$ for all $z_{0} \in \mathbb{U}$. Consequently, we conclude that $f(z) \in K(g, h, p, m, \lambda, \beta)$, which complete the proof of Theorem 1.

Theorem 2. If $p>m$, then $K L(g, p, m+1, \lambda, \beta) \subset K L(g, p, m, \lambda, \alpha)$, where

$$
\begin{equation*}
0<\alpha \leq \frac{-(p-m-\beta+1)+\sqrt{(p-m-\beta+1)^{2}+4 \beta(p-m)}}{2} \leq p-m \tag{2.3}
\end{equation*}
$$

Proof. Let $f(z) \in K L(g, p, m+1, \lambda, \beta)$. Then we have

$$
\begin{equation*}
\left|\frac{z(f * g)^{(m+2)}(z)+\lambda z^{2}(f * g)^{(m+3)}(z)}{\lambda z(f * g)^{(m+2)}(z)+(1-\lambda)(f * g)^{(m+1)}(z)}-(p-m-1)\right|<\beta, \tag{2.4}
\end{equation*}
$$

and let $w(z)$ be defined by

$$
\begin{equation*}
\frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)^{(m+2)}(z)}{\lambda z(f * g)^{(m+1)}(z)+(1-\lambda)(f * g)^{(m)}(z)}-(p-m)=\alpha w(z) . \tag{2.5}
\end{equation*}
$$

Clearly, $w(z)$ is analytic in \mathbb{U} and $w(0)=0$. Differentiating (2.5) logarithmically with respect to z, we obtain

$$
1+\frac{z(1+\lambda)(f * g)^{(m+2)}(z)+\lambda z^{2}(f * g)^{(m+3)}(z)}{(f * g)^{(m+1)}(z)+\lambda z(f * g)^{(m+2)}(z)}-\frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)(m+2)(z)}{(1-\lambda)(f * g)^{(m)}(z)+\lambda z(f * g)^{(m+1)}(z)}=\frac{\alpha z w^{\prime}(z)}{(p-m)+\alpha w(z)},
$$

that is,

$$
\frac{z(1+\lambda)(f * g)^{(m+2)}(z)+\lambda z^{2}(f * g)^{(m+3)}(z)}{(f * g)^{(m+1)}(z)+\lambda z(f * g)^{(m+2)}(z)}-(p-m-1)=\alpha w(z)\left[1+\frac{z w^{\prime}(z)}{w(z)[p-m)+\alpha w(z)]}\right] .
$$

Suppose that there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\max _{|z|<\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1\left(w\left(z_{0}\right) \neq 1\right) .
$$

By using Lemma 1 and taking $w\left(z_{0}\right)=e^{i \theta}(\theta \neq 0)$, we have

$$
\begin{aligned}
& \left|\frac{z_{0}(f * g)(m+2)\left(z_{0}\right)+\lambda z_{2}^{2}(f * g)^{(m+3)}\left(z_{0}\right)}{\left.(1-\lambda)(f * g)^{(m+1)}\left(z_{0}\right)+\lambda z_{0}(f * g)\right)^{(m+2)}\left(z_{0}\right)}-(p-m-1)\right|=\left|\alpha w\left(z_{0}\right)\right|\left|1+\frac{z_{0} w^{\prime}\left(z_{0}\right)}{w\left(z_{0}\right)\left[(p-m)+\alpha w\left(z_{0}\right)\right)}\right| \\
& \quad=\alpha\left|1+\frac{\zeta}{\left.[p-m)+\alpha e^{i \theta]}\right]}\right| \geq \alpha\left\{1+\frac{\zeta}{(p-m)} R e\left[\frac{1+\frac{\alpha}{(p-m)} \cos \theta-\frac{i \alpha}{(p-m)} \sin \theta}{1+\frac{2 \alpha}{(p-m)} \cos \theta-\frac{2 i \alpha}{(p-m)} \sin \theta+\frac{\alpha^{2}}{(p-m)^{2}}}\right]\right\} \\
& \geq \alpha\left\{1+\frac{1}{(p-m)}\left[\frac{1+\frac{\alpha}{(p-m)} \cos \theta}{1+\frac{2 \alpha}{(p-m)} \cos \theta+\frac{\alpha^{2}}{(p-m)^{2}}}\right]\right\}=\alpha\left\{1+\frac{1}{(p-m)}\left[\frac{1}{2+\frac{\alpha^{2}}{(p-m)^{2}}-1}\right]\right\} \\
& \geq \alpha\left\{1+\frac{1}{(p-m)}\left[\frac{(p-m+\alpha)(p-m)}{2(p-m+\alpha)(p-m)+\alpha^{2}-(p-m)^{2}}\right]\right\}=\alpha\left[\frac{p-m+\alpha+1}{p-m+\alpha}\right] .
\end{aligned}
$$

From (2.3) we have

$$
\left|\frac{z(f * g)^{(m+2)}(z)+\lambda z^{2}(f * g)^{(m+3)}(z)}{\lambda z(f * g)^{(m+2)}(z)+(1-\lambda)(f * g)^{(m+1)}(z)}-(p-m-1)\right| \geq \beta,
$$

which contradicts (2.4). Hence, $|w(z)|<1$ for all $z \in \mathbb{U}$. Consequently, we conclude that $f(z) \in K L(g, p, m, \lambda, \alpha)$. Thus, the proof of Theorem 2 is completed.

Theorem 3. Let $f(z) \in A(p)$. If

$$
\begin{equation*}
\operatorname{Re}\left\{\psi \frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)^{(m+2)}(z)}{\lambda z(f * h)^{(m+1)}(z)+(1-\lambda)(f * h)^{(m)}(z)}+(1-\psi) z\left[\frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)^{(m+2)}(z)}{\lambda z(f * h)^{(m+1)}(z)+(1-\lambda)(f * h)^{(m)}(z)}\right]^{\prime}\right\}>\gamma, \tag{2.6}
\end{equation*}
$$

for some $\gamma<\psi(p-m), 0 \leq \psi \leq 1, z \in \mathbb{U}$, then $f(z) \in K(g, h, p, m, \lambda, \beta)$, where $\beta=\frac{2[\psi(p-m)-\gamma]}{1+\psi} \leq p$.

Proof. If $\psi=1$, the result holds true. Let $0 \leq \psi<1$ and define the function $p(z)$ by

$$
\begin{equation*}
\frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)^{(m+2)}(z)}{\lambda z(f * h)^{(m+1)}(z)+(1-\lambda)(f * h)^{(m)}(z)}=(p-m-\beta)+\beta p(z) . \tag{2.7}
\end{equation*}
$$

Then $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ is regular in \mathbb{U}. Differentiating (2.7) logarithmically with respect to z, we have

$$
1+\frac{z(1+\lambda)(f * g)(m+2)(z)+\lambda z^{2}(f * g)^{(m+3)}(z)}{(f * g)^{(m+1)}(z)+\lambda z(f * g)^{(m+2)}(z)}-\frac{z(f * h)^{(m+1)}(z)+\lambda z^{2}(f * h)^{(m+2)}(z)}{(1-\lambda)(f * h)^{(m)}(z)+\lambda z(f * h)^{(m+1)}(z)}=\frac{\beta z p^{\prime}(z)}{[(p-m-\beta)+\beta p(z)]},
$$

that is,

$$
z \frac{\left[\lambda z(f * h)^{(m+1)}(z)+(1-\lambda)(f * h)^{(m)}(z)\right]}{\left[(f * g)^{(m+1)}(z)+\lambda z(f * g)^{(m+2)}(z)\right]}\left\{\frac{(f * g)^{(m+1)}(z)+\lambda z(f * g)^{(m+2)}(z)}{\lambda z(f * h)^{(m+1)}(z)+(1-\lambda)(f * h)^{(m)}(z)}\right\}^{\prime}=\frac{\beta z p^{\prime}(z)-[(p-m-\beta)+\beta p(z)]}{[(p-m-\beta)+\beta p(z)]},
$$

or, equivalently,

$$
z^{2}\left\{\frac{(f * g)^{(m+1)}(z)+\lambda z(f * g)^{(m+2)}(z)}{\lambda z(f * h)^{(m+1)}(z)+(1-\lambda)(f * h)^{(m)}(z)}\right\}^{\prime}=\beta z p^{\prime}(z)-[(p-m-\beta)+\beta p(z)]
$$

Therefore, we have

$$
\begin{aligned}
& \operatorname{Re}\left\{\left\{\psi \frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)^{(m+2)}(z)}{\lambda z(f * h)^{(m+1)}(z)+(1-\lambda)(f * h)^{(m)}(z)}+(1-\psi) z\left[\frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)^{(m+2)}(z)}{\lambda z(f * h)^{(m+1)}(z)+(1-\lambda)(f * h)^{(m)}(z)}\right]^{\prime}\right\}-\gamma\right\} \\
& =\operatorname{Re}\left\{\left\{\frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)^{(m+2)}(z)}{\lambda z(f * h)^{(m+1)}(z)+(1-\lambda)(f * h)^{(m)}(z)}+(1-\psi) z^{2}\left[\frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)^{(m+2)}(z)}{\left.\left.\left.\lambda z(f * h)^{(m+1)(z)+(1-\lambda)(f * h)^{(m)}(z)}\right]^{\prime}\right\}-\gamma\right\}} \begin{array}{c}
=\operatorname{Re}\left\{\psi(p-m-\beta)+\beta \psi p(z)+(1-\psi) \beta z p^{\prime}(z)-\gamma\right\}>0 .
\end{array}\right.\right.\right.
\end{aligned}
$$

If we define a function $\varphi(u, v)$ by

$$
\begin{equation*}
\varphi(u, v)=\psi(p-m-\beta)+\beta \psi u+(1-\psi) \beta v-\gamma \tag{2.8}
\end{equation*}
$$

with $u=u_{1}+i u_{2}$ and $v=v_{1}+i v_{2}$, then
(i) $\varphi(u, v)$ is continuous in D;
(ii) $(1,0) \in D$ and $\operatorname{Re}(\varphi(1,0))=\psi(p-m)-\gamma>0$;
(iii) For all $\left(i u_{2}, v_{1}\right) \in D$ and such that $v_{1} \leq-\left(1+u_{2}^{2}\right) / 2$, we have

$$
\operatorname{Re}\left(\varphi\left(i u_{2}, v_{1}\right)\right)=\psi(p-m-\beta)+(1-\psi) \beta v_{1}-\gamma
$$

$$
\leq \psi(p-m-\beta)-(1-\psi) \beta\left(1+u_{2}^{2}\right) / 2-\gamma \leq-(1-\psi) \beta u_{2}^{2} / 2 \leq 0
$$

Therefore, $\varphi(u, v)$ satisfies the conditions of Lemma 2. This shows that $\operatorname{Re}(p(z))>0$ $(z \in \mathbb{U})$, that is,

$$
\operatorname{Re}\left\{\frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)^{(m+2)}(z)}{\lambda z(f * h)^{(m+1)}(z)+(1-\lambda)(f * h)^{(m)}(z)}\right\}>p-m-\beta(z \in \mathbb{U})
$$

which proves that $f(z) \in K(g, h, p, m, \lambda, \beta)$. This completes the proof of Theorem 3 .

Theorem 4. If

$$
\begin{gather*}
\left|\arg \left\{\frac{1}{(p-m)}\left\{\frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)^{(m+2)}(z)}{\lambda z(f * h)^{(m+1)}(z)+(1-\lambda)(f * h)^{(m)}(z)}+z\left[\frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)^{(m+2)}(z)}{\lambda z(f * h)^{(m+1)}(z)+(1-\lambda)(f * h)^{(m)}(z)}\right]^{\prime}\right\}\right\}\right| \\
<\frac{\delta \pi}{2 p}+\tan ^{-1}\left(\frac{\delta}{p}\right)(z \in \mathbb{U}) \tag{2.9}
\end{gather*}
$$

then

$$
\left|\arg \left\{\frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)^{(m+2)}(z)}{\lambda z(f * h)^{(m+1)}(z)+(1-\lambda)(f * h)^{(m)}(z)}\right\}\right|<\frac{\delta \pi}{2 p} \quad(z \in \mathbb{U}) .
$$

In particular, if

$$
\left|\arg \left\{\frac{z f^{\prime}(z)}{p f(z)}\left[2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right]\right\}\right|<\frac{\delta \pi}{2 p}+\tan ^{-1}\left(\frac{\delta}{p}\right) \quad(z \in \mathbb{U}),
$$

then $f(z) \in \overline{S_{p}^{*}}(\beta)$.
Proof. Let

$$
\varphi(z)=\frac{1}{(p-m)}\left\{\frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)^{(m+2)}(z)}{\lambda z(f * h)^{(m+1)}(z)+(1-\lambda)(f * h)^{(m)}(z)}\right\}
$$

Then

$$
z \varphi^{\prime}(z)=\frac{z}{(p-m)}\left\{\frac{z(f * g)^{(m+1)}(z)+\lambda z^{2}(f * g)^{(m+2)}(z)}{\lambda z(f * h)^{(m+1)}(z)+(1-\lambda)(f * h)^{(m)}(z)}\right\}^{\prime}
$$

Suppose that there exists a point $z_{0} \in \mathbb{U}$ such that

$$
|\arg \varphi(z)|<\frac{\delta \pi}{2 p} \text { for }|z|<\left|z_{0}\right|, \quad\left|\arg \varphi\left(z_{0}\right)\right|=\frac{\delta \pi}{2 p}
$$

By using Lemma 3, we have

$$
\arg \left\{\frac{1}{(p-m)}\left\{\frac{z_{0}(f * g)^{(m+1)}\left(z_{0}\right)+\lambda z_{0}^{2}(f * g)^{(m+2)}\left(z_{0}\right)}{\lambda z_{0}(f * h)^{(m+1)}\left(z_{0}\right)+(1-\lambda)(f * h)^{(m)}\left(z_{0}\right)}+z_{0}\left[\frac{z_{0}(f * g)^{(m+1)}\left(z_{0}\right)+\lambda z_{0}^{2}(f * g)^{(m+2)}\left(z_{0}\right)}{\lambda z_{0}(f * h)^{(m+1)}\left(z_{0}\right)+(1-\lambda)(f * h)^{(m)}\left(z_{0}\right)}\right]^{\prime}\right\}\right\}
$$

$$
\begin{align*}
& =\arg \left\{\varphi\left(z_{0}\right)+z_{0} \varphi^{\prime}\left(z_{0}\right)\right\}=\arg \left\{\varphi\left(z_{0}\right)\left[1+\frac{z_{0} \varphi^{\prime}\left(z_{0}\right)}{\varphi\left(z_{0}\right)}\right]\right\} \\
& =\arg \varphi\left(z_{0}\right)+\arg \left(1+i t \frac{\delta}{p}\right)=\arg \left(\varphi\left(z_{0}\right)\right)+\tan ^{-1}\left(t \frac{\delta}{p}\right) \tag{2.10}
\end{align*}
$$

When $\arg \varphi\left(z_{0}\right)=\frac{\delta \pi}{2 p}$, we have

$$
\begin{gather*}
\arg \left\{\frac{1}{(p-m)}\left\{\frac{z_{0}(f * g)^{(m+1)}\left(z_{0}\right)+\lambda z_{0}^{2}(f * g)^{(m+2)}\left(z_{0}\right)}{\lambda z_{0}(f * h)^{(m+1)}\left(z_{0}\right)+(1-\lambda)(f * h)^{(m)}\left(z_{0}\right)}+z_{0}\left[\frac{\left.\left.\left.z_{0}(f * g)^{(m+1)}\left(z_{0}\right)+\lambda z_{0}^{2}(f * g)^{(m+2)}\left(z_{0}\right)\right]^{\prime}\right\}\right\}}{\lambda z_{0}(f * h)^{m+1}\left(z_{0}\right)+(1-\lambda)(f * h)^{(m)}\left(z_{0}\right)}\right]^{\prime}\right\}\right. \\
\geq \frac{\delta \pi}{2 p}+\tan ^{-1}\left(\frac{\delta}{p}\right) \tag{2.11}
\end{gather*}
$$

Similarly, if $\arg \varphi\left(z_{0}\right)=-\frac{\delta \pi}{2 p}$, then we have

$$
\begin{gather*}
\arg \left\{\frac{1}{(p-m)}\left\{\frac{z_{0}(f * g)^{(m+1)}\left(z_{0}\right)+\lambda z_{0}^{2}(f * g)^{(m+2)}\left(z_{0}\right)}{\lambda z_{0}(f * h)^{(m+1)}\left(z_{0}\right)+(1-\lambda)(f * h)^{(m)}\left(z_{0}\right)}+z_{0}\left[\frac{z_{0}(f * g)^{(m+1)}\left(z_{0}\right)+\lambda z_{0}^{2}(f * g)^{(m+2)}\left(z_{0}\right)}{\lambda z_{0}(f * h)^{(m+1)}\left(z_{0}\right)+(1-\lambda)(f * h)^{(m)}\left(z_{0}\right)}\right]^{\prime}\right\}\right\} \\
\leq-\left(\frac{\delta \pi}{2 p}+\tan ^{-1}\left(\frac{\delta}{p}\right)\right) \tag{2.12}
\end{gather*}
$$

We find that (2.11) and (2.12) conradict the condition (2.9). Consequently, we conclude that

$$
|\arg \varphi(z)|<\frac{\delta \pi}{2 p}(z \in \mathbb{U})
$$

This completes the proof of Theorem 4.

Remark 2. (i) Putting $\lambda=0$ in the above results, we obtain the corresponding results of Sharma and Srivastava [8, Theorem 3, 4, 5 and 6];
(ii) For special choices of g, h, λ, p, m and β, we can obtain corresponding results for different classes defined in the introduction.

References

[1] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[2] A. Catas, On certain classes of p-valent functions defined by multiplier transformations, in: Proc. Book of the International Symposium on Geometric Function Theory and Applications, Istanbul, Turkey, August 2007, 241-250.
[3] M.-P. Chen, H. M. Irmak and H. M. Srivastava, Some families of multivalently analytic functions with negative coefficients, J. Math. Anal. Appl., 214(1997), 674-690..
[4] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc., 3(1971), 469-474.
[5] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 289-305.
[6] S. S. Miller and P. T. Mocanu, Differential Subordinations Theory and Applications, in: Series on Monographs and Textbooks in Pure and Appl. Math., 255, Marcel Dekker, Inc, New York, 2000.
[7] M. Nunokawa, On some angular estimates of analytic functions, Math. Japon. 41(1995), 447-452.
[8] P. Sharma and P. Srivastava, Some properties of a class of p-valent analytic functions associated with convolution, European J. Pure Appl. Math., 3(2010), 1093-1112.
M. K. Aouf

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt E-mail:mkaouf127@yahoo.com

A. A. Shamandy
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt E-mail:aashamandy@hotmail.com

A. O. Mostafa

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt E-mail: adelaeg254@yahoo.com
A. K. Wagdy

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
E-mail:awagdyfos@yahoo.com

Received 06 April 2012
Published 09 October 2012

