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1. Introduction

Consider the following fourth order nonlinear differential equation with multiple devi-
ating arguments

x
(4)
(t)+ a(t)x

(3)
(t)+ b(t)x

(2)
(t)+ c(t)x

(1)
(t)+ g0(t, x(t))+

n∑

i=1

gi(t, x(t− τi(t)) = p(t), (1)

where a, b, c, p, τi(t) ≥ 0 (i = 1, 2...n) are continuous functions on R = (−∞,∞), and
gi(i = 0, 1, 2...n) are continuous functions on R2.

y(t) =
dx(t)

dt
+d1x(t), z(t) =

dy(t)

dt
+d2y(t) and w(t) =

dz(t)

dt
+d3z(t), where d1, d2 and

d3 are some constants. Then we can transform (1) into the following system

dx(t)

dt
= −d1x(t) + y(t),

dy(t)

dt
= −d2y(t) + z(t),

dz(t)

dt
= −d3z(t) + w(t),

dw(t)

dt
= −(a(t)− d1 − d2 − d3)w(t)
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+(−(d1 + d2 − a(t))(d1 + d2 + d3) + (d1d2 − b(t))− d23)z(t)

+((d1 + d2 − a(t))(d21 + d1d2 + d22)− (d1d2 − b(t))(d1 + d2)− c(t))y(t)

+((a(t)− d1 − d2)d
3
1 + (d1d2 − b(t))d21 + d1c(t))x(t)) − g0(t, x(t))

−
n∑

i=1

gi(t, x(t− τi(t)) + p(t). (2)

In applied science some practical problems are associated with higher-order nonlinear
differential equations, such as nonlinear oscillations [1]–[4], electronic theory [5], biological
model and other models [6, 7]. Just as above, in the past few decades, the study for
higher order differential equations has been paid attention to by many scholars. Many
results relative to the stability, boundedness of solutions, and existence of periodic and
anti-periodic solutions for higher-order nonlinear differential equations have been obtained
(see [8]–[16] and references therein).

Besides, the authors in [17] used the Leray-Schauder degree theory to establish some
new results on the existence and uniqueness of anti-periodic solutions for a kind of non-
linear second order Rayleigh equations with delays of the form

x′′ + f(t, x′(t)) + g(t, x(t− τ(t)) = e(t).

The authors in [18] and the author in [19] used the Leray Schauder degree theory to
establish new results on the existence and uniqueness of anti-periodic solutions for a class
of nonlinear nth-order differential equations with delays of the forms

x(n) + f(t, x(n−1)(t)) + g(t, x(t− τ(t)) = e(t),

and

x(n) + f(t, x(n−1)(t)) + g1(t, x(t− τ1(t)) + g2(t, x(t− τ2(t)) = e(t),

respectively.

The authors in [20] pointed out the existence of anti-periodic solutions to a class of
fourth-order nonlinear differential equations with a deviating argument in Remark 3.1
while considering the existence of anti-periodic solutions for a class of fourth-order non-
linear differential equations with variable coefficients in the form of

u′′′(t)− a(t)u′′′(t)− b(t)u′′(t)− c(t)u′(t)− g(t, u(t)) = e(t),

by applying the method of coincidence degree.

On the other hand, the authors in [21] established some sufficient conditions on the
existence and exponential stability of anti-periodic solutions for a class of Cohen–Grossberg
neutral networks(CGNNs) with time-varying delays.

The authors in [22] considered the Liénard-type systems with multiple varying time
delays by establishing some sufficient conditions for the existence and exponential stability
of the almost periodic solutions.
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Especially, the authors in [23] obtained some results as in [21] and [22] for a class of
third-order nonlinear differential equations with a deviating argument of the form

x′′′(t) + a(t)x′′(t) + b(t)x′(t) + g1(t, x(t)) + g2(t, x(t− τ(t)) = p(t),

by using Lyapunov functional method and differential inequality technique.

As mentioned above, there are few studies related to the existence of anti-periodic solu-
tions for a class of fourth order nonlinear differential equations with delay so far. Hence, in
this study we extend the results of [23] to the fourth order nonlinear differential equations
with multiple deviating arguments by not using the methods of [17]–[20]. Moreover, it is
well known that the existence of anti-periodic solutions plays a key role in characterizing
the behavior of nonlinear differential equations (see [24]–[28]). Thus, it is worthwhile to
continue to investigate the existence and stability of anti-periodic solutions of Eq. (1).

A primary purpose of this paper is to study the problem of anti-periodic solutions of Eq.
(1). We will establish some sufficient conditions for the existence and exponential stability
of the anti-periodic solutions of Eq. (1). Incidentally, we do not deal with exact solution,
which is hard to be determined, of the Eq. (1). Therefore, we shall concentrate on some
qualitative behaviors of the solution (x(t), y(t), z(t), w(t)) of the system (2), exclusively.

The paper is organized as follows. After giving some basic definitions and assumptions
in Section 2, we establish some preliminary results which are important in the proofs of
our main results, in Section 3. Based on the preparations in Section 3, we state and prove
our main results in Section 4. Moreover, an illustrative example is given in Section 5.

2. Definitions and Assumptions

Throughout this paper, it will be assumed that there exists a constant T > 0 such that

p(t+ T ) = −p(t),
n∑

i=0

gi(t+ T, u) = −
n∑

i=0

gi(t,−u), a(t+ T ) = a(t),

b(t+ T ) = b(t), c(t+ T ) = c(t), τ(t+ T ) = τ(t), ∀t, u ∈ R. (3)

We suppose that there exists a constant L+ such that L+ > sup
t∈R

|p(t)| .

We assume that h = max
1≤i≤n

{
sup
t∈R

τi(t)

}
≥ 0. Let C ([−h, 0], R) denote the space of

continuous functions ϕ : [−h, 0] → R with the supremum norm ‖.‖.

Definition 1. ([29]) Suppose h ≥ 0 is a given number, R = (−∞,∞), Rn is an
n−dimensional linear vector space over the reals with the norm ‖.‖, C ([a, b], Rn) is the Ba-
nach space of continuous functions mapping the interval [a, b] into Rn with the topology of
uniform convergence. If [a, b] = [−h, 0], we let C = C ([−h, 0], Rn) and define the norm of
an element Φ in C by ‖Φ‖ = sup

−h≤s≤0
Φ(s). If σ ∈ R, T ≥ 0 and x ∈C ([σ − h, σ + T ], Rn) ,

then for any t ∈ [σ, σ + T ], we let xt ∈ C be defined by xt(s) = x(t + s), −h ≤ s ≤ 0. If
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D is a subset of R×C, f : D → Rn is a given function and ”·” represents the right-hand
derivative, we say that the relation

·
x(t) = f(t,xt), (4)

is a retarded(deviated) functional differential equation on D. A function x is said to be a
solution of (4) on [σ−h, σ+T ], if σ ∈ R, T > 0 such that x ∈C ([σ − h, σ + T ], Rn) , (t,xt) ∈
D and x(t) satisfies the equation (4).

We assume that h = max
1≤i≤n

{
sup
t∈R

τi(t)

}
≥ 0. Let C ([−h, 0], R) denote the space of

continuous functions ϕ : [−h, 0] → R with the supremum norm ‖.‖. It is known from [29,
30, 31] that there exists a solution of (2) on an interval [0, T ) satisfying the initial condition
and satisfying (1) on [0, T ) for gi(i = 0, 1, 2, ..., n), ϕ, a, b, c, p and τi(t)(i = 1, 2, ..., n) which
are continuous, and for a given continuous initial function ϕ ∈ C ([−h, 0], R) and a vector
(y0, z0, w0) ∈ R3. If the solution remains bounded, then T = +∞. We denote such a
solution by

(x(t), y(t), z(t), w(t)) =

(x(t, ϕ, y0, z0, w0), y(t, ϕ, y0, z0, w0), z(t, ϕ, y0, z0, w0), w(t, ϕ, y0, z0, w0)),

where y(s) = y(0), z(s) = z(0) and w(s) = w(0) for all s ∈ [−h, 0]. Then it follows
that (x(t), y(t), z(t), w(t)) can be defined on [−h,+∞).

Definition 2. Let u(t) : R → R be continuous in t. Then u(t) is said to be T-anti-periodic
on R, if u(t+ T ) = −u(t) for all t ∈ R.

Definition 3. Let Z∗(t) = (x∗(t), y∗(t), z∗(t), w∗(t)) be a T-anti- periodic solution of
system (2) with initial value (ϕ∗(t), y∗0 , z

∗
0 , w

∗
0) ∈ C ([−h, 0], R)×R3. If there exist constants

λ > 0 and M > 1 such that

max{|x(t)− x∗(t)| , |y(t)− y∗(t)| , |z(t)− z∗(t)| , |w(t)− w∗(t)|}

≤ M max{‖ϕ(t)− ϕ∗(t)‖ , |y0 − y∗0| , |z0 − z∗0 | , |w0 − w∗
0|}e

−λt,∀t > 0,

for every solution Z(t) = (x(t), y(t), z(t), w(t)) of system (2) with any initial value (ϕ(t), y0,
z0, w0) ∈ C ([−h, 0], R) × R3, where ‖ϕ(t)− ϕ∗(t)‖ = sup

t∈[−h,0)
|ϕ(t)− ϕ∗(t)| , then Z∗(t) is

said to be globally exponentially stable.

In this work, we also assume that the following conditions hold:
There exist constants d1 > 1, d2 > 1, d3 > 1, d4 > 0 and nonnegative constants

Li(i = 0, 1, 2, ..., n) such that
i)

∣∣((a(t) − d1 − d2)d
3
1 + (d1d2 − b(t))d21 + d1c(t))u) − g0(t, u)

)
,

−
(
(a(t)− d1 − d2)d

3
1 + (d1d2 − b(t))d21 + d1c(t))v) − g0(t, v))

∣∣ ≤ L0 |u− v| for all
t, u, v ∈ R,

ii) |gi(t, u)− gi(t, v)| ≤ Li |u− v| for all t, u, v ∈ R and i = 1, 2, ..., n,
iii) d4 = inf

t∈R
(a(t)− d1 − d2 − d3)
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−(sup
t∈R

∣∣−(d1 + d2 − a(t))(d1 + d2 + d3) + (d1d2 − b(t))− d23
∣∣

+sup
t∈R

∣∣(d1 + d2 − a(t))(d21 + d1d2 + d22)− (d1d2 − b(t))(d1 + d2)− c(t)
∣∣) >

n∑
i=0

Li.

3. Preliminary Results

The following lemmas will be useful to prove our main results.

Lemma 1. Let (i − iii) hold. Suppose that (x̃(t), ỹ(t), z̃(t), w̃(t)) is a solution of system
(2) with initial conditions x̃(s) = ϕ̃(s), ỹ(0) = y0, z̃(0) = z0, w̃(0) = w0,

max{|ϕ̃(s)| , |y0| , |z0| , |w0|} <
L+

η
, s ∈ [−h, 0], (5)

where η = min

{
d1 − 1, d2 − 1, d3 − 1, d4 −

n∑
i=0

Li

}
. Then

max {|x̃(t)| , |ỹ(t)| , |z̃(t)| , |w̃(t)|} <
L+

η
for all t ≥ 0. (6)

Proof. Assume, by contrapositive, that (6) does not hold. Then, one of the following
cases must occur.

Case 1: There exists t1 > 0 such that

max {|x̃(t1)| , |ỹ(t1)| , |z̃(t1)| , |w̃(t1)|} = |x̃(t1)| =
L+

η
,

and

max {|x̃(t)| , |ỹ(t)| , |z̃(t)| , |w̃(t)|} <
L+

η
, (7)

where t ∈ [−h, t1).
Case 2: There exists t2 > 0 such that

max {|x̃(t2)| , |ỹ(t2)| , |z̃(t2)| , |w̃(t2)|} = |ỹ(t2)| =
L+

η
,

and

max {|x̃(t)| , |ỹ(t)| , |z̃(t)| , |w̃(t)|} <
L+

η
, (8)

where t ∈ [−h, t2).
Case 3: There exists t3 > 0 such that

max {|x̃(t3)| , |ỹ(t3)| , |z̃(t3)| , |w̃(t3)|} = |z̃(t3)| =
L+

η
,
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and

max {|x̃(t)| , |ỹ(t)| , |z̃(t)| , |w̃(t)|} <
L+

η
, (9)

where t ∈ [−h, t3).
Case 4: There exists t4 > 0 such that

max {|x̃(t4)| , |ỹ(t4)| , |z̃(t4)| , |w̃(t4)|} = |w̃(t4)| =
L+

η
,

and

max {|x̃(t)| , |ỹ(t)| , |z̃(t)| , |w̃(t)|} <
L+

η
, (10)

where t ∈ [−h, t4).
If Case 1 holds, calculating the upper right derivative of |x̃(t)|, together with (i− iii),

(2) and (7) imply that

0 ≤ D+(|x̃(t1)|) = sgn(x̃(t1)){−d1x̃(t1) + ỹ(t1)}

≤ −d1 |x̃(t1)|+ |ỹ(t1)| ≤ −(d1 − 1)
L+

η
< 0,

which is a contradiction and implies that (6) holds.
If Case 2 holds, calculating the upper right derivative of |ỹ(t)|, together with (i− iii),

(2) and (8) imply that

0 ≤ D+(|ỹ(t2)|) = sgn(ỹ(t2)){−d2ỹ(t2) + z̃(t2)}

≤ −d2 |ỹ(t2)|+ |z̃(t2)| ≤ −(d2 − 1)
L+

η
< 0,

which is a contradiction and implies that (6) holds.
If Case 3 holds, calculating the upper right derivative of |z̃(t)|, together with (i− iii),

(2) and (9) imply that

0 ≤ D+(|z̃(t3)|) = sgn(z̃(t3)){−d3z̃(t3) + w̃(t3)}

≤ −d3 |z̃(t3)|+ |w̃(t3)| ≤ −(d3 − 1)
L+

η
< 0,

which is a contradiction and implies that (6) holds.
If Case 4 holds, calculating the upper right derivative of |w̃(t)|, together with (i− iii),

(2) and (10) imply that

0 ≤ D+(|w̃(t4)|) = sgn(w̃(t4)){−(a(t4)− d1 − d2 − d3)w̃(t4)

+(−(d1 + d2 − a(t4))(d1 + d2 + d3) + (d1d2 − b(t4))− d23)z̃(t4)

+((d1 + d2 − a(t4))(d
2
1 + d1d2 + d22)− (d1d2 − b(t4))(d1 + d2)− c(t4))ỹ(t4)
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+((a(t4)− d1 − d2)d
3
1 + (d1d2 − b(t4))d

2
1 + d1c(t4))x̃(t4))− g0(t4, x̃(t4))

−

n∑

i=1

gi(t4, x̃(t4 − τi(t4)) + p(t4)}

≤ − inf
t∈R

(a(t4)− d1 − d2 − d3) |w̃(t4)|

+sup
t∈R

∣∣−(d1 + d2 − a(t4))(d1 + d2 + d3) + (d1d2 − b(t4))− d23
∣∣ |z̃(t4)|

+sup
t∈R

∣∣(d1 + d2 − a(t4))(d
2
1 + d1d2 + d22)− (d1d2 − b(t4))(d1 + d2)− c(t4)

∣∣ |ỹ(t4)|

+L0 |x̃(t4)|+

n∑

i=1

Li |x̃(t4 − τi(t4))|+ |p(t4)|

≤ −(d4 −
n∑

i=0

Li)
L+

η
+ |p(t4)| < 0,

which is a contradiction and implies that (6) holds. The proof is now complete.

Remark 1. In view of the boundedness of this solution, from the theory of functional
differential equations in [27], it follows that (x̃(t), ỹ(t), z̃(t), w̃(t)) can be defined on [0,∞).

Lemma 2. Let (i− iii) hold. Moreover, assume that Z∗(t) = (x∗(t), y∗(t), z∗(t), w∗(t)) is
a solution of system (2) with initial value (ϕ∗(t), y∗0 , z

∗
0 , w

∗
0) ∈ C ([−h, 0], R) × R3. Then,

there exist constants λ > 0 and M > 1 such that

max{|x(t)− x∗(t)| , |y(t)− y∗(t)| , |z(t)− z∗(t)| , |w(t) − w∗(t)|}

≤ M max{‖ϕ(t)− ϕ∗(t)‖ , |y0 − y∗0| , |z0 − z∗0 | , |w0 − w∗
0|}e

−λt,

for all t > 0, for every solution Z(t) = (x(t), y(t), z(t), w(t)) of system (2) with any initial
value (ϕ(t), y0, z0, w0) ∈ C ([−h, 0], R) ×R3.

Proof. Since min

{
d1 − 1, d2 − 1, d3 − 1, d4 −

m∑
i=0

Li

}
> 0, it follows that there exists

constant γ such that

γ = min

{
d1 − 1− λ, d2 − 1− λ, d3 − 1− λ, d4 − L0 −

n∑

i=1

Lie
λh − λ

}
> 0. (11)

Let Z∗(t) = (x∗(t), y∗(t), z∗(t), w∗(t)) be a solution of system (2) with initial value (ϕ∗(t), y∗0 ,
z∗0 , w

∗
0) ∈ C ([−h, 0], R) × R3 and Z(t) = (x(t), y(t), z(t), w(t)) be an arbitrary solution

of system (2) with any initial value (ϕ(t), y0, z0, w0) ∈ C ([−h, 0], R) × R3. Set u1(t) =
x(t)− x∗(t), u2(t) = y(t)− y∗(t), u3(t) = z(t)− z∗(t) and u4(t) = w(t)− w∗(t). Then

du1(t)

dt
= −d1u1(t) + u2(t),
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du2(t)

dt
= −d2u2(t) + u3(t),

du3(t)

dt
= −d3u3(t) + u4(t),

du4(t)

dt
= −(a(t)− d1 − d2 − d3)w(t)

+(−(d1 + d2 − a(t))(d1 + d2 + d3) + (d1d2 − b(t))− d23)z(t)

+((d1 + d2 − a(t))(d21 + d1d2 + d22)− (d1d2 − b(t))(d1 + d2)− c(t))y(t)

+((a(t)− d1 − d2)d
3
1 + (d1d2 − b(t))d21 + d1c(t))x(t)) − g0(t, x(t))

−
n∑

i=1

gi(t, x(t− τi(t))− (−(a(t)− d1 − d2 − d3)w
∗(t)

+(−(d1 + d2 − a(t))(d1 + d2 + d3) + (d1d2 − b(t))− d23)z
∗(t)

+((d1 + d2 − a(t))(d21 + d1d2 + d22)− (d1d2 − b(t))(d1 + d2)− c(t))y∗(t)

+((a(t)− d1 − d2)d
3
1 + (d1d2 − b(t))d21 + d1c(t))x

∗(t))− g0(t, x
∗(t))

−

n∑

i=1

gi(t, x
∗(t− τi(t)))). (12)

We consider the Lyapunov functional

V1(t) = |u1(t)| e
λt, V2(t) = |u2(t)| e

λt, V3(t) = |u3(t)| e
λt, V4(t) = |u4(t)| e

λt. (13)

Calculating the upper right derivative of Vi(t) (i = 1, 2, 3, 4) along the solution (u1(t),
u2(t), u3(t), u4(t)) of system (12) with the initial value (ϕ(t)−ϕ∗(t), y0−y∗0, z0−z∗0 , w0−w∗

0),
we have

D+(V1(t)) = λeλt |u1(t)|+ eλtsgn(u1(t)){−d1u1(t) + u2(t)}

≤ eλt {(λ− d1) |u1(t)|+ |u2(t)|} , (14)

D+(V2(t)) = λeλt |u2(t)|+ eλtsgn(u2(t)){−d2u2(t) + u3(t)}

≤ eλt {(λ− d2) |u2(t)|+ |u3(t)|} , (15)

D+(V3(t)) = λeλt |u3(t)|+ eλtsgn(u3(t)){−d3u3(t) + u4(t)}

≤ eλt {(λ− d3) |u3(t)|+ |u4(t)|} , (16)

and

D+(V4(t)) = λeλt |u4(t)|+ eλtsgn(u4(t)){−(a(t) − d1 − d2 − d3)w(t)

+(−(d1 + d2 − a(t))(d1 + d2 + d3) + (d1d2 − b(t))− d23)z(t)
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+((d1 + d2 − a(t))(d21 + d1d2 + d22)− (d1d2 − b(t))(d1 + d2)− c(t))y(t)

+((a(t)− d1 − d2)d
3
1 + (d1d2 − b(t))d21 + d1c(t))x(t)) − g0(t, x(t))

−

n∑

i=1

gi(t, x(t− τi(t))− (−(a(t)− d1 − d2 − d3)w
∗(t)

+(−(d1 + d2 − a(t))(d1 + d2 + d3) + (d1d2 − b(t))− d23)z
∗(t)

+((d1 + d2 − a(t))(d21 + d1d2 + d22)− (d1d2 − b(t))(d1 + d2)− c(t))y∗(t)

+((a(t)− d1 − d2)d
3
1 + (d1d2 − b(t))d21 + d1c(t))x

∗(t))− g0(t, x
∗(t))

−
n∑

i=1

gi(t, x
∗(t− τi(t)))} ≤ eλt{(λ− inf

t∈R
(a(t) − d1 − d2 − d3)) |u4(t)|

+sup
t∈R

∣∣−(d1 + d2 − a(t))(d1 + d2 + d3) + (d1d2 − b(t))− d23
∣∣ |u3(t)|

+sup
t∈R

∣∣(d1 + d2 − a(t))(d21 + d1d2 + d22)− (d1d2 − b(t))(d1 + d2)− c(t)
∣∣ |u2(t)|

+L0 |u1(t)|+

n∑

i=1

Li |u1(t− τi(t))|}. (17)

Let M > 1 denote an arbitrary real number and set

θ = max{‖ϕ− ϕ∗‖ , |y0 − y∗0| , |z0 − z∗0 | , |w0 − w∗
0|} > 0.

It follows from (13) that V1(t) = |u1(t)| e
λt < Mθ, V2(t) = |u2(t)| e

λt < Mθ, V3(t) =
|u3(t)| e

λt < Mθ and V4(t) = |u4(t)| e
λt < Mθ for all t ∈ [−h, 0].

We claim that

V1(t) = |u1(t)| e
λt < Mθ, V2(t) = |u2(t)| e

λt < Mθ,

V3(t) = |u3(t)| e
λt < Mθ and V4(t) = |u4(t)| e

λt < Mθ, (18)

for all t > 0. Contrarily, one of the following cases must occur:
Case I: There exists T1 > 0 such that

V1(T1) = Mθ and Vi(t) < Mθ for all t ∈ [−h, T1), i = 1, 2, 3, 4. (19)

Case II: There exists T2 > 0 such that

V2(T2) = Mθ and Vi(t) < Mθ for all t ∈ [−h, T2), i = 1, 2, 3, 4. (20)

Case III: There exists T3 > 0 such that

V3(T3) = Mθ and Vi(t) < Mθ for all t ∈ [−h, T3), i = 1, 2, 3, 4. (21)

Case IV: There exists T4 > 0 such that

V4(T4) = Mθ and Vi(t) < Mθ for all t ∈ [−h, T4), i = 1, 2, 3, 4. (22)
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If Case I holds, together with (i− iii), (14) and (19) imply that

0 ≤ D+(V1(T1)) ≤ eλT1 {(λ− d1) |u1(T1)|+ |u2(T1)|} ≤ (λ− (d1 − 1))Mθ.

Thus, 0 ≤ λ− (d1 − 1), which contradicts (11). Hence, (18) holds.
If Case II holds, together with (i− iii), (15) and (20) imply that

0 ≤ D+(V2(T2)) ≤ eλT2 {(λ− d2) |u2(T2)|+ |u3(T2)|} ≤ (λ− (d2 − 1))Mθ.

Thus, 0 ≤ λ− (d2 − 1), which contradicts (11). Hence, (18) holds.
If Case III holds, together with (i− iii), (16) and (21) imply that

0 ≤ D+(V3(T3)) ≤ eλT3 {(λ− d3) |u3(T3)|+ |u4(T3)|} ≤ (λ− (d3 − 1))Mθ.

Thus, 0 ≤ λ− (d1 − 1), which contradicts (11). Hence, (18) holds.
If Case IV holds, together with (i− iii), (17) and (22) imply that

0 ≤ D+(V4(T4)) ≤ (λ− inf
t∈R

(a(t)− d1 − d2 − d3)) |u4(T4)| e
λT4

+sup
t∈R

∣∣−(d1 + d2 − a(t))(d1 + d2 + d3) + (d1d2 − b(t))− d23
∣∣ |u3(T4)| e

λT4

+sup
t∈R

∣∣(d1 + d2 − a(t))(d21 + d1d2 + d22)− (d1d2 − b(t))(d1 + d2)− c(t)
∣∣ |u2(T4)| e

λT4

+L0 |u1(T4)| e
λT4 +

n∑

i=1

Li |u1(T4 − τi(T4))| e
λ(T4−τi(T4)eλτi(T4)

≤ (λ+ L0 +

n∑

i=1

Lie
λh − d4)Mθ.

Thus, 0 ≤ λ + L0 +
n∑

i=1
Lie

λh − d4, which contradicts (11). Hence, (18) holds. It follows

that

max{|x(t)− x∗(t)| , |y(t)− y∗(t)| , |z(t)− z∗(t)| , |w(t)− w∗(t)|}

≤ M max{‖ϕ(t)− ϕ∗(t)‖ , |y0 − y∗0| , |z0 − z∗0 | , |w0 − w∗
0|}e

−λt

for all t > 0. This completes the proof of the Lemma.

Remark 2. If Z∗(t) = (x∗(t), y∗(t), z∗(t), w∗(t)) is the T-anti-periodic solution of system
(2), then it follows from Lemma 2 and Definition 3 that Z∗(t) is globally exponentially
stable.

4. Main Results

In this section, we establish some results for the existence, uniqueness and exponential
stability of the T-anti-periodic solution of (2).
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Theorem 1. Suppose that (i− iii) are satisfied. Then system (2) has exactly one T-anti-
periodic solution Z∗(t) = (x∗(t), y∗(t), z∗(t), w∗(t)) . Moreover, Z∗(t) is globally exponen-
tially stable.

Proof. Let v(t) = (v1(t), v2(t), v3(t), v4(t)) = (x(t), y(t), z(t), w(t)) be a solution of
system (2) with initial conditions (5). By Lemma 1, the solution (x(t), y(t), z(t), w(t)) is
bounded and (6) holds. From (3), for any natural number k, we obtain

((−1)k+1x(t+ (k + 1)T ))′ = (−1)k+1x′(t+ (k + 1)T )

= (−1)k+1[−d1x(t+ (k + 1)T ) + y(t+ (k + 1)T )]

= −d1(−1)k+1x(t+ (k + 1)T ) + (−1)k+1y(t+ (k + 1)T ), (23)

((−1)k+1y(t+ (k + 1)T ))′ = (−1)k+1y′(t+ (k + 1)T )

= (−1)k+1[−d2y(t+ (k + 1)T ) + z(t+ (k + 1)T )]

= −d2(−1)k+1y(t+ (k + 1)T ) + (−1)k+1z(t+ (k + 1)T ), (24)

((−1)k+1z(t+ (k + 1)T ))′ = (−1)k+1z′(t+ (k + 1)T )

= (−1)k+1[−d3z(t+ (k + 1)T ) + w(t+ (k + 1)T )]

= −d3(−1)k+1z(t+ (k + 1)T ) + (−1)k+1w(t+ (k + 1)T ) (25)

and

((−1)k+1w(t+ (k + 1)T ))′ = (−1)k+1w′(t+ (k + 1)T )

= (−1)k+1[−(a(t+ (k + 1)T )− d1 − d2 − d3)w(t + (k + 1)T )

+(−(d1 + d2 − a(t+ (k + 1)T ))(d1 + d2 + d3)

+(d1d2 − b(t+ (k + 1)T )) − d23)z(t+ (k + 1)T )

+((d1 + d2 − a(t+ (k + 1)T ))(d21 + d1d2 + d22)

−(d1d2 − b(t+ (k + 1)T ))(d1 + d2)− c(t+ (k + 1)T ))y(t + (k + 1)T )

+((a(t+ (k + 1)T )− d1 − d2)d
3
1 + (d1d2 − b(t+ (k + 1)T ))d21

+d1c(t+ (k + 1)T ))x(t+ (k + 1)T ))

−g0(t+ (k + 1)T, x(t + (k + 1)T ))

−

n∑

i=1

gi(t+ (k + 1)T, x(t+ (k + 1)T − τi(t+ (k + 1)T )) + p(t+ (k + 1)T )]

= −(a(t)− d1 − d2 − d3)(−1)k+1w(t+ (k + 1)T )

+(−(d1 + d2 − a(t))(d1 + d2 + d3)

+(d1d2 − b(t))− d23)(−1)k+1z(t+ (k + 1)T )

+((d1 + d2 − a(t))(d21 + d1d2 + d22)
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−(d1d2 − b(t))(d1 + d2)− c(t))(−1)k+1y(t+ (k + 1)T )

+((a(t)− d1 − d2)d
3
1 + (d1d2 − b(t))d21 + d1c(t))(−1)k+1x(t+ (k + 1)T )

−g0(t, (−1)k+1x(t+ (k + 1)T ))

−

n∑

i=1

gi(t, (−1)k+1x(t+ (k + 1)T − τi(t))) + p(t). (26)

Thus, for any natural number k, (−1)k+1v(t + (k + 1)T ) are the solutions of system
(2) on R. Then, by Lemma 2, there exists a constant M > 0 such that

∣∣∣(−1)k+1vi(t+ (k + 1)T )− (−1)kvi(t+ kT )
∣∣∣

≤ Me−λ(t+kT ) sup
−h≤s≤0

max
1≤i≤4

|vi(s+ T ) + vi(s)|

≤ 2e−λ(t+kT )M
L+

η
for all t+ kT > 0, i = 1, 2, 3, 4. (27)

Hence, for any natural m, we obtain

(−1)m+1vi(t+ (m+1)T )) = vi(t)+
m∑

k=0

[(−1)k+1vi(t+ (k+1)T )− (−1)kvi(t+ kT )], (28)

where i = 1, 2, 3, 4.

In view of (27), we can choose a sufficiently large constant N > 0 and a positive
constant α such that

∣∣∣(−1)k+1vi(t+ (k + 1)T )− (−1)kvi(t+ kT )
∣∣∣ ≤ α(e−λT )k (29)

for all k > N, i = 1, 2, 3, 4 on any compact set of R. It follows from (28) and (29) that
(−1)mvi(t+mT ) uniformly converges to a continuous function Z∗(t) = (x∗(t), y∗(t), z∗(t),
w∗(t))T on any compact set of R.

Now, we will show that Z∗(t) is T-anti-periodic solution of system (2). First, Z∗(t) is
T-anti-periodic, since Z∗(t + T ) = lim

m→∞
(−1)mv(t + T +mT ) = − lim

(m+1)→∞
(−1)m+1v(t +

(m+1)T ) = −Z∗(t). Next, we prove that Z∗(t) is a solution of (1). In fact, together with
the continuity of the right side of (2), the relations (23), (24), (25) and (26) imply that
(−1)m+1v(t + (m + 1)T )′ uniformly converges to a continuous function on any compact
set of R. Thus, letting m → ∞, we obtain

dx∗(t)

dt
= −d1x

∗(t) + y∗(t),

dy∗(t)

dt
= −d2y

∗(t) + z∗(t),

dz∗(t)

dt
= −d3z

∗(t) +w∗(t),
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dw∗(t)

dt
= −(a(t)− d1 − d2 − d3)w

∗(t)

+(−(d1 + d2 − a(t))(d1 + d2 + d3) + (d1d2 − b(t))− d23)z
∗(t)

+((d1 + d2 − a(t))(d21 + d1d2 + d22)− (d1d2 − b(t))(d1 + d2)− c(t))y∗(t)

+((a(t)− d1 − d2)d
3
1 + (d1d2 − b(t))d21 + d1c(t))x

∗(t))− g0(t, x
∗(t))

−

n∑

i=1

gi(t, x
∗(t− τi(t)) + p(t).

Therefore, Z∗(t) is a unique T-anti-periodic solution of (2). Further, by Lemma 2 and
Remark 2, we can prove that Z∗(t) is globally exponentially stable. This completes the
proof.

Remark 3. The authors in [21] and [23] establish some sufficient conditions on the ex-
istence and exponential stability of anti-periodic solutions for a class of Cohen–Grossberg
neutral networks(CGNNs) with time-varying delays and for a class of third-order non-
linear differential equations with a deviating argument, respectively, by using Lyapunov
functional method and differential inequality technique as in Lemma 2 and Theorem 1.
On the other hand, we only find that the authors stress the existence of anti-periodic solu-
tions to a class of fourth-order nonlinear differential equations with a deviating argument
by applying the method of coincidence degree in Remark 3.1 in [20]. In this work, for
the first time some sufficient conditions for the existence and exponential stability of the
anti-periodic solutions of Eq. (1) by extending the results of [23] to a class of fourth-order
nonlinear differential equations with multiple deviating arguments. Thus, our results are
new and complement to previously known results.

5. An Example

Consider the following fourth-order non-linear differential equation

x
(4)
(t) + (14−

1

1 + |sin t|
)x

(3)
(t) + (54−

4

1 + |sin t|
)x

(2)
(t) + (79 −

1is

1 + |sin t|
)x

(1)
(t)

+(37−
3

1 + |sin t|
)x(t) + sinx(t− |sin t|) + cos x(t− 2 |sin t|)

+ cos t sinx(t− e|sin t|) + sin t cos x(t− e2|sin t|) = cos t. (30)

Setting y(t) =
dx(t)

dt
+ 2x(t) and z(t) =

dy(t)

dt
+ 2y(t), we can transform (30) into the

following system

dx(t)

dt
= −2x(t) + y(t),
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dy(t)

dt
= −2y(t) + z(t),

dz(t)

dt
= −2z(t) + w(t),

dw(t)

dt
= −(8−

1

1 + |sin t|
)w(t) + (2−

2

1 + |sin t|
)z(t) + (1−

1

1 + |sin t|
)y(t)

(1−
1

1 + |sin t|
)x(t)− sinx(t− |sin t|)− cos x(t− 2 |sin t|)

− cos t sinx(t− e|sin t|)− sin t cos x(t− e2|sin t|) + cos t. (31)

Then we can satisfy the assumptions (i− iii):

(i)
∣∣∣1− 1

1+|sin t|

∣∣∣ ≤ L0 |u− v| for all t, u, v ∈ R,

(ii) |g1(t, u)− g1(t, v)| = |sinu− sin v| ≤ L1 |u− v| ,
|g2(t, u)− g2(t, v)| = |cosu− cos v| ≤ L2 |u− v| ,

|g3(t, u)− g3(t, v)| = |cos t sinu− cos t sin v| ≤ L3 |u− v| ,

|g4(t, u)− g4(t, v)| = |sin t cos u− sin t cos v| ≤ L4 |u− v| for all t, u, v ∈ R,

(iii) d4 = inf
t∈R

(8 − 1
1+|sin t|) − (sup

t∈R

∣∣∣2− 2
1+|sin t|

∣∣∣ + sup
t∈R

∣∣∣1− 1
1+|sin t|

∣∣∣) = 11
2 > L0 + L1 +

L2 + L3 + L4, where L0 = L1 = L2 = L3 = L4 = 1.

This implies that the system (31) has exactly one π-anti-periodic solution which is
globally exponentially stable.

Acknowledgement. The authors would like to thank the referees for their valuable
suggestions.
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