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On Direct And Inverse Theorems Of Approximation The-
ory In Variable Lebesgue And Sobolev Spaces

Idris I. Sharapudinov

Abstract. We consider the Lebesgue space L
p(x)
2π with variable exponent p(x). It consists of

measurable functions f(x) for which the integral
∫ 2π

0
|f(x)|p(x)dx exists. We establish an analogue

of Jackson’s second theorem in the case when the 2π-periodic variable exponent p(x) ≥ 1 satisfies
the condition

|p(x)− p(y)| · ln 2π

|x− y|
≤ d, x, y ∈ [0, 2π].

Results obtained in present paper radically differ from other authors’ results on this subject because
we don’t require from variable exponent p(x) the fulfillment of additional condition p(x) ≥ p > 1,

which is closely related with boundedness of Hardy - Littlewood maximal function M(f) in L
p(x)
2π .

In the definition of the modulus of continuity of a function f(x) ∈ Lp(x)2π , we replace the ordinary

shift fh(x) = f(x+h) by an averaged shift determined by Steklov’s function sh(f)(x) = 1
h

∫ h
0
f(x+

t)dt.

Key Words and Phrases: Variable exponent Lebesgue spaces, approximation theory, direct and
inverse theorems

2000 Mathematics Subject Classifications: 42A10, 42B25, 46E30

1. Introduction

In 1976, the year when we began studying the topology of space Lp(x)(E), there was
no theory of variable exponent Lebesgue spaces. There was only example of measurable
functions set noted by Orlicz in [1]. Common modular spaces theory was being developed
by the Japanese mathematicians (H. Nakano [2],[3]), and functional modular spaces theory
- by the Polish mathematicians (J. Musielak and W. Orlicz [4], [5]). Also note the work
of Russian mathematician I. V. Tsenov [6].

But in these theories there was no consideration of a special theory of Lp(x)(E) spaces.
Such spaces were noted only as exotic examples of modular spaces. Spaces of functions
integrable with an exponent ceased to play the role of exotic examples of modular spaces
and set off on their path of development once the topology of these spaces was shown
to be normable, with one of the equivalent norms given by Kolmogorov’s well-known
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theorem on the normability of linear topological spaces having a bounded balanced convex
neighbourhood of zero [7]. A.N.Kolmogorov [7] introduced a norm on such spaces by
means of the Minkowski functional. In the same direction, the author showed in 1976

(but published [8] only in 1979) that the Lebesgue space L
p(x)
µ (E) with variable exponent

p(x) ≥ 1 (this space consists of measurable functions f(x) on E such that |f(x)|p(x) is

integrable on E) is a normed space with the norm of f ∈ Lp(x)µ (E) given by

‖f‖p(·)(E) = inf{α > 0
∣∣ ∫
E

∣∣∣f(x)

α

∣∣∣p(x)µ(dx) ≤ 1}. (1.1)

For unknown reasons, many authors call such norms Luxemburg norms instead of Kol-
mogorov norms.

In [8], conditions on variable exponent p(x) for the Lp(x)(E) space to be a linear
topological space, were found. It was shown that Lp(x)(E) will be a linear topological
space if and only if p(x) is essentially bounded function, i.e. 0 < p(x) ≤ p for almost every
x ∈ E.

The case when p(x) is not essentially bounded was considered in [8]. Such case is
arising in the problem of finding conjugate space [Lp(x)(E)]∗ (space of continuous linear
functionals) when ess inf p(x) = 1. Moreover, there can be cases when p(x) = ∞ on set
with nonzero measure. In all such cases, the corresponding spaces [Lp(x)(E)]∗ were found
in [8].

Results and methods developed in [8] have been used in the sequel by many authors
(quoting or not quoting the paper [8]) and they represent now a kind of folklore in the
theory of spaces Lp(x)(E).

The next stage in the development of the theory of the spaces L
p(x)
µ (E) was the imposi-

tion of stronger conditions on the variable exponent p(x) and obtaining L
p(x)
µ (E) analogues

of classical results that were well known in the case of constant p(x). The first step in
this direction was made by the author [9] who showed that if µ is the ordinary Lebesgue
measure on the line, then Haars system forms a basis for Lp(x)([0, 1]) if and only if the
variable exponent p(x) ≥ 1 satisfies the Dini-Lipschitz condition on [0, 1]:

|p(x)− p(y)| log
1

|x− y|
≤ C (|x− y| ≤ 1

2
).

Under the same hypotheses, the author [10] proved that some families of convolution

operators are uniformly bounded in L
p(x)
µ ([0, 2π]). This covers in particular a large class

of classical operators, including the operators of Fejr, de la Valle-Poussin, Abel, Steklov
and many others.

Substantial contributions to the theory of the spaces L
p(x)
µ (E) were made by V. V.

Zhikov [11]–[13] and L. Diening in [14]-[17]. The best result obtained in [14]-[17] is as
follows. Suppose that Ω is a bounded domain in Rn, µ is the ordinary Lebesgue measure on
Rn, and p(x) is defined on Ω and satisfies the conditions 1 < p−(Ω) ≤ p(x) ≤ p−(Ω) <∞,
|p(x) − p(y)| log 1

|x−y| ≤ C (|x − y| ≤ 1
2 x, y ∈ Ω). Then the operator M(f) of the
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Hardy-Littlewood maximal function acts boundedly on L
p(x)
µ (Ω). As a corollary, it was

shown in [15] that under the same restrictions on p(x) and some additional condition
on p(x) outside some ball, the well-known Calderon-Zygmund operators act boundedly

in L
p(x)
µ (Rn). In particular, for n = 1 it follows that the Hilbert transform is bounded

in L
p(x)
µ (R) provided that 1 < p1 ≤ p(x) ≤ p2 < ∞, |p(x) − p(y)| log 1

|x−y| ≤ C (|x −
y| ≤ 1

2 x, y ∈ R) and p(x) coincides with a constant outside some interval. Thus, the
connection between the Dini-Lipschitz condition for the variable exponent p(x) and the

uniform boundedness in L
p(x)
µ (E) of families of classical operators, described by the author

in [8], [9], turned out to be characteristic in the construction of a deep theory of integral

operators in the spaces L
p(x)
µ (R). Numerous recent results obtained by specialists in the

theory of differential equations show that a similar situation arises when constructing
a deep theory of differential equations in Sobolev spaces with variable exponent. Many
references can be found in the recent monograph [17]. Among them, a special place belongs

to the papers [11][13], where the spaces L
p(x)
µ (E) were used for the first time to study

problems arising in the multidimensional calculus of variations. The properties of singular

integrals in the spaces L
p(x)
µ (E)) were studied in [18][25] under the same logarithmic Dini-

Lipschitz condition on the variable exponent p(x).

Here we consider the problem of the approximation of functions by trigonometric

polynomials in the metric of L
p(x)
µ ([0, 2π]). Suppose that p = p(x) is a measurable 2π-

periodic function, p− = inf{p(x) : x ∈ R}, p− = sup{p(x) : x ∈ R}, 1 ≤ p− ≤ p− < ∞,

L
p(x)
2π is the space of measurable 2π-periodic functions f(x) with

∫ 2π
0 |f(x)|p(x)dx < ∞.

Putting

‖f‖p(·) = inf

α > 0 :

2π∫
0

∣∣∣∣f(x)

α

∣∣∣∣p(x) dx ≤ 1

 , (1.1)

we turn L
p(x)
2π into a Banach space. We write P2π for the set of all 2π-periodic variable

exponents p = p(x) ≥ 1 satisfying the condition

|p(x)− p(y)| ln 2π

|x− y|
≤ d (x, y ∈ [0, 2π]). (1.2)

The subclass of all p = p(x) ∈ P2π satisfying the additional condition p− > 1, is
denoted by P̂2π. The author proved [26] that if p(x) ∈ P̂2π, then the trigonometric system

{eikx}k∈Z forms a basis for the space L
p(x)
2π . In other words, putting

f̂k =
1

2π

π∫
−π

f(t)e−iktdt, k ∈ Z,

Sn(f) = Sn(f, x) =
n∑

k=−n
f̂ke

ikx, (1.3)
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we have the estimate

‖Sn(f)‖p(·) ≤ c(p)‖f‖p(·) (n = 0, 1, . . .). (1.4)

It follows that the Fourier series of a function f ∈ Lp(x)2π converges to it in the norm (1.1),
that is,

‖f − Sn(f)‖p(·) → 0 (n→∞).

Moreover, if p(x) ∈ P̂2π, then the order of approximation of f ∈ Lp(x)2π by the partial
sums (1.3) in the norm (1.1) as n→∞ coincides with the order of best approximation

En(f)p(·) = inf
Tn
‖f − Tn‖p(·), (1.5)

where the infimum is taken over all trigonometric polynomials

Tn(x) =

n∑
k=−n

cke
ikx. (1.6)

We may now ask how the rate of decay of En(f)p(·) as n→∞ depends on the properties

of f ∈ Lp(x)2π . In other words, we want to define the modulus of continuity of a function

f ∈ Lp(x)2π and estimate En(f)p(·) in terms of it. As mentioned in [27], the quantity

ω(f, δ)p(·) = sup
0<h≤δ

‖f − f(∗+ h)‖p(·)

cannot play the role of the modulus of continuity of f ∈ Lp(x)2π in the case of a variable
exponent p = p(x) because, generally speaking, the equation limδ→0 ω(f, δ)p(·) = 0 does
not hold for all such f. If p(x) is not equal to a constant almost everywhere on [0, 2π], then

the shift fh(x) = f(x+ h) of a function f(x) in L
p(x)
2π need not belong to L

p(x)
2π . Quite the

contrary, the integral
∫ 2π
0 |f(x + h)|p(x)dx usually diverges for h 6= 0. This was the main

obstacle in the way of transferring the main theorems of the theory of approximation by

trigonometric polynomials to the case of spaces L
p(x)
2π . We give one of the possible ways

to overcome this obstacle by using certain types of Steklov functions. We put

fh(x) =
1

h

h
2∫

−h
2

f(x+ t)dt, sh(f)(x) = fh

(
x+

h

2

)
=

1

h

h∫
0

f(x+ t)dt (1.7)

and consider the quantity

Ω(f, δ)p(·) = sup
0<h≤δ

‖f − fh(∗+
h

2
)‖p(·) = sup

0<h≤δ
‖f − sh(f)‖p(·). (1.8)



On Direct And Inverse Theorems Of Approximation Theory 59

It follows from the author’s results in [26] that if p(x) ∈ P2π, then the function
Ω(f, δ)p(·) is continuous on [0,∞) and lim

δ→0
Ω(f, δ)p(·) = 0. It also follows from the def-

inition (1.8) that Ω(f, δ)p(·) )is a non-decreasing function of δ. We call Ω(f, δ)p(·) the

modulus of continuity of a function f ∈ Lp(x)2π .

It was proved in author’s works [28] – [30] that if the variable exponent p(x) ∈ P2π
and f ∈ Lp(x)2π , then the following Jackson-type inequality holds:

En(f)p(·) ≤ c(p)Ω(f,
1

n
)p(·). (1.9)

Moreover, if Ω(f, δ)p(·) ≤ cδα (0 < α < 1), then the converse assertion holds. Namely,
if En(f)p(·) ≤ c/nα (n = 1, 2, . . .), then Ω(f, δ)p(·) = O(δα). We note that in [26] we
considered the quantity

Ωγ(f, 0)p(·) = 0, Ωγ(f, δ)p(·) = sup
h,τ

|τ |1/γ≤h≤δ

‖f − fh(∗+ τ)‖p(·), (1.10)

where γ > 0. We call it the γ-modulus of continuity of a function f(x) ∈ Lp(x)2π . It follows
from (1.8) and (1.10) that

Ω(f, δ)p(·) = sup
0<h≤δ

‖f − fh(∗+
h

2
)‖p(·) ≤ Ω1(f, δ)p(·). (1.11)

On the other hand, the following result was proved in [26]:

Theorem A. If p(x) ∈ P2π, f(x) ∈ L
p(x)
2π , then the function g(δ) = Ωγ(f, δ)p(·) is

non-decreasing on [0,∞] and continuous at the point δ = 0.

In particular, Theorem A and the estimate (1.11) yield the equation

lim
δ→0

Ω(f, δ)p(·) = 0, (1.12)

mentioned above.

The proof of Theorem A is based on the uniform boundedness in L
p(x)
2π 0 < h ≤ 1,

|τ | ≤ πhγ of the family of shifts of the Steklov functions

Sh,τ (f) = Sh,τ (f)(x) = fh,τ (x) = fh(x+ τ) =
1

h

x+τ+h
2∫

x+τ−h
2

f(t)dt.

Namely, it was proved in [26] that if p(x) ∈ P2π, then

‖Sh,τ (f)‖p(·) ≤ c(d)(2π + 1)p
−‖f‖p(·) 0 < h ≤ 1, |τ | ≤ πhγ , (1.13)

where d is the constant in the inequality (1.2).
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We mention that the direct and inverse theorems of approximation theory in the spaces

L
p(x)
2π were obtained in [31][34] under the assumption that p(x) ∈ P̂2π. The principal

difference between our results and those in [31][34] is that we are able to get rid of the
restriction p− > 1 and prove the direct and inverse theorems of approximation theory

in L
p(x)
2π under the natural assumption p− ≥ 1 , where p− = inf{p(x) : x ∈ R} (by the

definition above). The results in [31][34] were obtained for p− > 1, and we stress that
this is not accidental. The methods used in those papers to study the direct and inverse

problems of approximation theory L
p(x)
2π (and even in the more general weighted spaces

L
p(x)
2π,ρ with variable exponent)are based, either directly or indirectly, on the boundedness

in L
p(x)
2π of the operator M(f) given by the Hardy-Littlewood maximal function (or of

its analogues and generalizations in L
p(x)
2π,ρ), and it is well known that this holds only for

p− > 1. For example, in [31] the proof of a direct Jackson-type theorem for L
p(x)
2π under

the assumption that p(x) ∈ P̂2π is based on the facts that the operator of conjugation (of

functions) is bounded in L
p(x)
2π and the trigonometric system forms a basis there. These

facts were established by the author [26] using the boundedness in L
p(x)
2π of the Hilbert

transform under the assumption that p(x) ∈ P̂2π , and this boundedness was deduced
in [15] from that of the maximal function, which was proved in [14]. To obtain direct

and inverse theorems of approximation theory in L
p(x)
2π , where the variable exponent

p(x) ∈ P2π satisfies the Dini-Lipschitz condition (1.2) and may be equal to 1 at some
points (that is, p− = 1), it is required to develop essentially new approaches which do not
use the properties of the maximal function M(f). In author’s works [28] – [30] we make
an attempt to solve the part of this problem that concerns Jackson’s first theorem. One

of the instruments in the proof of Jackson’s first theorem in L
p(x)
2π is Jackson’s well-known

operator (trigonometric polynomial of degree 2n− 2)

Dn(f) = Dn(f)(x) =
1

π

∫ π

−π
f(x− t)Jn(t)dt (n = 1, 2, . . .),

where

Jn(x) =
3

2n(2n2 + 1)

(
sin nx

2

sin x
2

)4

.

We proved in [29],[30] that Dn(f)(x) approximates every f(x) ∈ L
p(x)
2π with accuracy

O(Ω(f, 1n)p(·)). In other words, if f(x) ∈ Lp(x)2π with p(x) ∈ P2π, then

‖f −Dn(f)‖p(·) ≤ c(p)Ω(f,
1

n
)p(·),

which again gives the inequality (1.9).

The proof of the inequality (analogue of Jackson’s second theorem)

En(f)p(·) ≤ c(p)
1

nr
Ω(f (r),

1

n
)p(·) (1.14)



On Direct And Inverse Theorems Of Approximation Theory 61

encounters additional difficulties, and in [28]–[30] we have not been able to overcome them
in the general case when p(x) ∈ P2π. Therefore in [28]-[30] we only give it for p(x) ∈ P̂2π.

But in present work we consider the general case when p(x) ∈ P2π. We succeeded in
proving that the inequality (1.14) holds for every function f(x) ∈W r

p(·), where p(x) ∈ P2π,

W r
p(·) is the Sobolev space of 2π-periodical functions f(x) such that f (r−1)(x) is absolutely

continuous in [0, 2π] and f (r)(x) ∈ Lp(x)2π . In the author’s works [35] – [36] it is shown that
one of instruments in the proof of inequality (1.14) is the Valle - Poussin’s well-known
means

V n
m(f) = V n

m(f, x) =
1

m+ 1

m∑
l=0

Sn+l(f, x),

where Fourier sums Sk(f, x) are defined in (1.3). Namely, in [35]–[36] the following in-
equality

‖f − V n
m(f)‖p(·) ≤

c(p)

nr
En(f (r))p(·) (1.15)

is proved, where p = p(x) ∈ P2π, r ≥ 0, f(x) ∈W r
p(·), m ∈ {n− 1, n}. The estimate (1.14)

(analogue of Jackson’s second theorem) follows from (1.9) and (1.15) as a corollary.
The complete proof of inequality (1.15) is given in a next section.

2. The approximation of functions in L
p(x)
2π

by Vallee-Poussin means

We will consider in Lp(x) Sobolev type classes W r
p(·)(M), which consist of 2π-periodical

r − 1 times continuously differentiable functions f(x), whose derivative f (r−1)(x) is abso-

lutely continuous in [0, 2π] and f (r)(x) ∈ Lp(x)2π , ‖f (r)‖p(·) ≤M . Let us assume

W r
p(·) =

⋃
M>0

W r
p(·)(M), W 0

p(·) = L
p(x)
2π .

We can consider the Fourier series for f ∈ Lp(x)2π :

f ∼ a0
2

+
∞∑
k=1

ak cos kx+ bk sin kx (2.1)

and partial sum of Fourier series

Sn(f) = Sn(f, x) =
a0
2

+
n∑
k=1

ak cos kx+ bk sin kx, (2.2)

where

ak = ak(f) =
1

π

π∫
−π

f(t) cos ktdt, bk = bk(f) =
1

π

π∫
−π

f(t) sin ktdt.
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If r ≥ 1, p(x) ≥ 1 and f ∈W r
p(·), then [37, p. 75]

f(x) =
a0
2

+
1

π

π∫
−π

f (r)(t)Br(t− x)dt, (2.3)

where

Br(u) =
∞∑
k=1

cos(ku+ πr
2 )

kr
(2.4)

is the Bernoulli function. Since S
(r)
n (f, x) = Sn(f (r), x), then we conclude from (2.3) and

(2.4) an equality for f ∈W r
p(·)

f(x)− Sn(f, x) =
1

π

π∫
−π

f (r)(t)Rr,n(t− x)dt, (2.5)

Rr,n(u) =
∞∑

k=n+1

cos(ku+ πr
2 )

kr
. (2.6)

We will define Vallee-Poussin means V n
m(f) = V n

m(f, x) by equality

V n
m(f) = V n

m(f, x) =
1

m+ 1

m∑
l=0

Sn+l(f, x). (2.7)

Matching equalities (2.5) and (2.6) with (2.7) we notice

f(x)− V n
m(f, x) =

1

π

π∫
−π

f (r)(t)
1

m+ 1

m∑
l=0

Rr,n+l(t− x)dt. (2.8)

We will assume

Knr,m+1(u) = (m+ 1)r−1
m∑
l=0

Rr,n+l(n) (2.9)

and transcribe (2.8)

f(x)− V n
m(f, x) =

1

π(m+ 1)r

π∫
−π

f (r)(t)Knr,m+1(t− x)dt. (2.10)

Since, by (2.9), Krr,m+1(x) is orthogonal to all trigonometric polynomials of degree not
greater than n, then we obtain from (2.10)

f(x)− V n
m(f, x) =

1

π(m+ 1)r

π∫
−π

(f (r)(t)− Tn(t))Knr,m+1(t− x)dt, (2.11)
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where Tn(x) is an arbitrary trigonometric polynomial of degree n. Now we can state the
next result.

Theorem 2.1. Let p = p(x) ∈ P2π, r ≥ 0, f(x) ∈ W r
p(·). Then the following

estimates hold:

‖f − V n
n−1(f)‖p(·) ≤

c(p)

nr
En(f (r))p(·), (2.12)

‖f − V n
n (f)‖p(·) ≤

c(p)

nr
En(f (r))p(·). (2.13)

Proof of the theorem 2.1. is based on a number of auxiliary assertions concerning
functions Knr,m+1(u).

Lemma 2.1. We have the following equalities

κn2s,n(u) =

(−1)sn2s−1
n−2∑
l=0

∞∑
k=0

sin l+1
2 u sin k+1

2 u cos(2n+ k + l + 2)u2
2 sin2 u

2

∆2gs(n+ 1 + k + l)

+(−1)s−1n2s−1
∞∑
k=0

sin n
2u sin k+1

2 u cos(3n+ k + 1)

2 sin2 u
2

∆qs(2n+ k), (2.14)

κn2s−1,n(u) =

(−1)sn2s−2
n−2∑
l=0

∞∑
k=0

sin l+1
2 u sin k+1

2 u cos(2n+ k + l + 2)u2
2 sin2 u

2

∆2gs(n+ 1 + k + l)

+(−1)s−1n2s−2
∞∑
k=0

sin n
2u sin k+1

2 u cos(3n+ k + 1)

2 sin2 u
2

∆qs(2n+ k), (2.15)

where gs(t) = t−2s, qs(t) = t−2s+1, ∆ϕ(t) = ϕ(t + 1) − ϕ(t), ∆2ϕ(t) = ϕ(t + 2) − 2ϕ(t +
1) + ϕ(t).

Proof. From (2.6) and (2.9) we have

κnr,m+1(u) = (m+ 1)r−1
m∑
l=0

∞∑
k=0

cos
[
(n+ k + l + 1)u+ πr

2

]
(n+ k + l + 1)r

,

So, with the help of Abel transform, we can write

κnr,m+1(u) = (m+ 1)r−1
m∑
l=0

∞∑
k=0

[
1

(n+ 1 + k + l)r
− 1

(n+ 2 + k + l)r

]
vnk,l(u), (2.16)

where

vnk,l(u) =

k∑
j=0

cos[(n+ 1 + l + j)u+
πr

2
]. (2.17)



64 I. I. Sharapudinov

We will consider the case when m = n−1 and the two cases of r, even and odd. If r = 2s,
then cos(µu+ πr

2 ) = (−1)s cosµu. Therefore, (2.17) takes the form

vnk,l(u) = (−1)s
k∑
j=0

cos(n+ 1 + l + j)u =

= (−1)s ·
sin(2(n+ 1 + l + k) + 1)u2 − sin(2(n+ l) + 1)u2

2 sin u
2

(2.18)

From (2.16) and (2.18) we have

κn2s,n(u) = (−1)s−1n2s−1×

∞∑
k=0

n−1∑
l=0

∆gs(n+ 1 + k + l)
sin(2(n+ 1 + l + k) + 1)u2 − sin(2(n+ l) + 1)u2

2 sin u
2

. (2.19)

We apply Abel transform to the inner sum again. From (2.19) we get

κn2s,n(u) = (−1)s−1n2s−1
∞∑
k=0

n−2∑
l=0

∆gs(n+ 1 + k + l)
Wn
k,l(u)−Wn

0,l(u)

2 sin u
2

+

+(−1)s−1n2s−1
∞∑
k=0

∆gs(2n+ k)
Wn
k,n−1(u)−Wn

0,n−1(u)

2 sin u
2

, (2.20)

where

Wn
k,l(u) =

l∑
µ=0

sin(2(n+ 1 + µ+ k) + 1)
u

2
=

sin2(n+ l + k + 2)u2 − sin2(n+ k + 1)u2
sin u

2

=

=
1

sin u
2

(sin(n+ l + k + 2)− sin(n+ k + 1)
u

2
)(sin(n+ l + k + 2) + sin(n+ k + 1)

u

2
) =

4

sin u
2

sin
l + 1

4
u · cos(n+ k + 1 +

l + 1

2
)
u

2
· sin(n+ k + 1 +

l + 1

2
)
u

2
cos

l + 1

4
. (2.21)

From (2.21) we get

Wn
k,l(u)−Wn

0,l(u) =

=
4

sin u
2

sin
l + 1

2
cos

l + 1

2

(
sin(n+ k + 1 +

l + 1

2
)
u

2
cos(n+ k + 1 +

l + 1

2
)
u

2
−

− sin(n+
l + 1

2
)
u

2
cos(n+

l + 1

2
)
u

2

)
=
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sin l+1
2

sin u
2

(
sin(2(n+ k + 1) + l + 1)

u

2
− sin(2n+ l + 1)

u

2

)
=

1

sin u
2

sin
l + 1

2
u sin

k + 1

2
u cos(2n+ k + l + 2)

u

2
. (2.22)

So, the equality (2.14) follows from (2.20) and (2.22). Equality (2.15) is proved similarly.
Lemma 2.1 is proved.

Lemma 2.2. Suppose 0 ≤ k ≤ l. Then

Ak,l =

π∫
0

| sin k+1
2 u sin l+1

2 u|
sin u

2

du ≤ 2(k + 1)(2 + ln
l + 1

k + 1
) +

π

3− π2

8

.

Proof. We have

Ak,l = 2

π
2∫

0

| sin(k + 1)u sin(l + 1)|
sin2 u

du = 2

π
2∫

0

| sin(k + 1)u sin(l + 1)|
u2

du+

2

π
2∫

0

| sin(k + 1)u sin(l + 1)u|ϕ(u)du, (2.23)

where

ϕ(u) =
1

sin2 u
− 1

u2
=
u2 − sin2 u

u2 sin2 u
.

Suppose 0 < u < π
2 . Then

ϕ(u) =
(u+ sinu)(u− sinu)

u2 sin2 u
=

(2u− u3

3! + u5

5! − . . .)(
u3

3! −
u5

5! + . . .)

u2 sin2 u
=

(2− u2

3! + u4

5! − . . .)(
1
3! −

u2

5! + . . .)(
sinu
u

)2 =
(2− u2

3! + u4

5! − . . .)(
1
3! −

u2

5! + . . .)

(1− u2

3! + u4

5! − . . .)2
<

<
2
3!(

1− u2

3!

)2 =
1

3(1− π2

24 )
=

1

3− π2

8

and, therefore,

2

π
2∫

0

| sin(k + 1)u sin(l + 1)u|ϕ(u)du ≤ 1

3− π2

8

. (2.24)

On the other hand,

π
2∫

0

| sin(k + 1)u sin(l + 1)u|
u2

du = (k + 1)

π
2
(k+1)∫
0

| sinu sin l+1
k+1u|

u2
du ≤
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(k + 1)

1∫
0

| sin l+1
k+1u|
u

du+ (k + 1)

π
2
(k+1)∫
1

du

u2
=

(k + 1)

l+1
k+1∫
0

| sinu|
u

du+ (k + 1) = (k + 1)


1∫

0

sinu

u
du+

l+1
k+1∫
0

du

u
+ 1

 <
(k + 1)

(
2 + ln

l + 1

k + 1

)
. (2.25)

The statement of the lemma follows from equality (2.23) and inequalities (2.24) and
(2.25).J

Lemma 2.3. If r ≥ 1, then

π∫
−π

|κnr,n|du ≤ c(r).

Proof. Consider the case of even r = 2s. Then, from Lemma 2.1 we have

π∫
−π

|κn2s,n|du ≤ n2s−1
n−2∑
l=0

∞∑
k=0

∆2gs(n+ k + l)
1

2

π∫
−π

| sin k+1
2 u sin l+1

2 u|
sin2 u

2

du+

n2s−1
∞∑
k=0

∆gs(2n+ k)
1

2

π∫
−π

| sin n
2u sin k+1

2 u|
sin2 u

2

du. (2.26)

Because of the Lemma 2.2,

1

2

π∫
−π

| sin k+1
2 u sin l+1

2 u|
sin2 u

2

du =

2(k + 1)(2 + ln l+1
k+1) + π

3−π2
8

, k ≤ l,

2(k + 1)(2 + ln k+1
l+1 ) + π

3−π2
8

, l < k.
(2.27))

Next, since the ∆2gs(t) = g′′s (t̄) (t ≤ t̄ ≤ t+ 2), then

∆2gs(n+ 1 + k + l) = g′′s (t̄) =
2s(2s+ 1)

t̄2s+2
≤ 2s(2s+ 1)

(n+ 1 + k + l)2s+2
, (2.28)

where n+ 1 + k + l < t̄ < n+ 1 + k + l + 2 and, similarly,

∆gs(2n+ k) ≤ 2s

(2n+ k)2s+1
. (2.29)

From (2.27) and (2.28) we have (l ≤ n− 2)

∞∑
k=l

∆2gs(n+ 1 + k + l)
1

2

π∫
−π

| sin k+1
2 u sin l+1

2 u|
sin2 u

2

du ≤
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≤
∞∑
k=l

4s(2s+ 1)[2 + ln k+1
l+1 ] + π

3−π2
8

(n+ 1 + k + l)2s+2
≤

≤
∞∑
k=l

4s(2s+ 1)[2(l + 1) + k − l + π

3−π2
8

]

(n+ 1 + k + l)2s+2
≤ c(s)n−2s, (2.30)

l∑
k=0

2s(2s+ 1)[(k + 1)(2 + ln l+1
k+1 + π

3−π2
8

)]

(n+ 1 + k + l)2s+2
≤ c(s)n−2s, (2.31)

therefore

n2s−1
n−2∑
l=0

∞∑
k=0

∆2gs(n+ 1 + k + l)
1

2

π∫
−π

| sin k+1
2 u sin l+1

2 u|
sin2 u

2

du ≤

c(s)n2s−1
n−2∑
l=0

n−2s ≤ c(s). (2.32)

Next, from (2.27) and (2.29) we have

n2s−1
∞∑
k=0

∆gs(2n+ k)
1

2

π∫
−π

| sin n
2u sin k+1

2 u|
sin2 u

2

du ≤

n2s−1
n∑
k=0

4s

[
(k + 1)(2 + ln n

k+1) + π

3+π2

8

]
(2n+ k)2s+ 1

+

n2s−1
∞∑

k=n+1

4s

[
n(ln n

k+1 + 2) + π

3+π2

8

]
(2n+ k)2s+ 1

=

n2s−1
∞∑

k=n+1

4s(2n+ π

3+π2

8

)

2n+ k

2s+1

+ n2s−1
∞∑

k=n+1

4sn ln k+1
n

(2n+ k)2s+1
≤

c1(s) + c2(s)n
2s

∞∑
k=n+1

ln(1 + k−n+1
n )

(2n+ k)2s+1
=

c1(s) + c2(s)n
2s
∞∑
j=1

ln(1 + j
n)

(3n− 1 + j)2s+1
= c(s) +

c(s)

n

∞∑
j=1

ln(1 + j
n)

(3− 1
n + j

n)2s+1
≤

c(s)(1 +

∞∫
0

ln(1 + x)dx

(2 + x)2s+1
) ≤ c(s). (2.33)
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Comparing (2.32) and (2.33) with (2.26), we complete the proof of Lemma (2.3) for even
r ≥ 1. Lemma (2.3) is proved similarly in case of odd r = 2s− 1.J

Lemma 2.4. For n−
1
2 ≤ u ≤ 2π − n−

1
2 we have inequality

|κnr,n(u)| ≤ c(r).

Proof. If n−
1
2 ≤ u ≤ 2π− n−

1
2 , then 1

sin2 u
2

≤ π2

4 n and, therefore, from Lemma 2.1 and

inequalities (2.28) and (2.29) we have

|κn2s,n(u)| ≤ c(s)n2s
(
n−2∑
l=0

∞∑
k=0

1

(n+ 1 + k + l)2s+2
+
∞∑
k=0

1

(2n+ k)2s+1

)
≤ c(s)

and, similarly, |κn2s−1(u)| ≤ c(s). Lemma 2.4 is proved.J
Lemma 2.5. We have the estimate

max
u
|κnr,n(u)| ≤ c(r)n (n = 1, 2, . . .).

Proof. Consider the case r = 1. So, from (2.6) we have (0 ≤ u ≤ 2π)

R1,n(u) =
∞∑

k=n+1

sin ku

k
=
π − u

2
−

n∑
k=1

sin ku

k
. (2.34)

It is well known [37, p.105], that∣∣∣∣∣
n∑
k=1

sin ku

k

∣∣∣∣∣ ≤ c (n = 1, 2, . . .),

Assertion of Lemma 2.5 follows from (2.9), (2.35) and (2.36).J
Now we need one result established in author’s paper [10]. Define for every λ ≥ 1 a

measurable 2π-periodical essentionally confined function (kernel) κλ = κλ(x). Then we
can define linear operator

Kλ(f) = Kλ(f)(x) =

π∫
−π

f(t)κλ(t− x)dt, (2.37)

functional in space L
p(x)
2π . We will say that the kernel family {κλ(x)}1≤λ<∞ satisfies the

conditions A), B) C), respectively, if the following estimates hold:

A)

π∫
−π

|κλ(t)|dt ≤ c1,

B) sup
x
|κλ(x)| ≤ c2λv,
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C) |κλ(x)| ≤ c3 λ−γ ≤ |x| ≤ π,
where v, γ, cj > 0 are independent of λ. The theorem below was proved in [10].

Theorem I. Let κλ = κλ(x) (1 ≤ λ < ∞) satisfy the conditions A)—C). If p(x) ∈
P2π, then the operator family convolution {Kλ(f)}λ≥1, defined by the equality (2.37), is

uniformly bounded in L
p(x)
2π .

Now we can formulate the following auxiliary assertion:

Lemma 2.6. Let p(x) ∈ P2π, f ∈ Lp(x)2π ,

Kn(f) = Kn(f)(x) =

π∫
−π

f(t)κnr,n(t− x)dt, (n = 1, 2, . . .). (2.38)

Then we have the estimate
‖Kn(f)‖p(·) ≤ cr(p)‖f‖p(·).

The assertion of this Lemma follows directly from Theorem I, because in view of
Lemmas 2.3—2.5 the kernel family κnr,n(x) (n = 1, 2, . . .) satisfies the conditions A)—C).

Let’s return to the Proof of Theorem 2.1. From the equality (2.11) and Lemma 2.6 we
have

‖f − V n
n−1(f)‖p(·) ≤

cr(p)

nr
‖f (r) − Tn‖p(·), (2.39)

where Tn = Tn(x) is an arbitrary trigonometric polynomial of degree n. The estimate
(2.12) follows from (2.39). As for estimate (2.13), its proof is quite similar. The Theorem
2.1 is proved.

Now let’s mention the theorem proved in [29]:

Theorem J. Let p = p(x) ∈ P2π, f(x) ∈ Lp(x)2π . Then the following estimate holds:

En(f)p(·) ≤ c(p)Ω(f,
1

n
)p(·).

Combined, Theorem J and Theorem 2.1 make it possible to formulate
Consequence 2.1. Let p = p(x) ∈ P2π, r ≥ 0, f(x) ∈ W r

p(·). Then the following
estimates hold:

‖f − V n
n−1(f)‖p(·) ≤

c(p)

nr
Ω(f (r),

1

n
)p(·), (2.40)

‖f − V n
n (f)‖p(·) ≤

c(p)

nr
Ω(f (r),

1

n
)p(·). (2.41)

Consequence 2.2. Let p = p(x) ∈ P2π, r ≥ 0, f(x) ∈ W r
p(·). Then the following

estimate holds (m = 1, 2, . . .):

Em(f)p(·) ≤
c(p)

mr
Ω(f (r),

2

m
)p(·). (2.42)

Proof. If m = 2n, then estimate (2.42) follows from (2.40). If m = 2n − 1, then (2.42)
follows from (2.41). Consequence 2.2 is proved.J
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