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Structure of Root Subspaces and Oscillation Properties

of Eigenfunctions of One Fourth Order Boundary Value
Problem

Z. S.Aliyev

Abstract. In this paper, we consider the spectral problem for an ordinary differential operator of
fourth order with regular boundary conditions. We study the general characteristics of the location
of the eigenvalues on the real axis, the structure of the root subspaces and oscillation properties of
eigenfunctions of this problem. It is found that the number of zeros of eigenfunctions corresponding
to the positive eigenvalues behaves in a usual way.
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1. Introduction

We consider the following boundary-value problem

(p(x)y′′(x))′′ − (q(x)y′(x))′ = λ r(x)y(x), 0 < x < l, (1)

a)y′(0) cos α− (py′′)(0) sinα = 0,

b)y(0) cos β + Ty(0) sin β = 0,

(2)

c)y′(l) cos γ + (py′′)(l) sin γ = 0,

d)y(l) cos δ − Ty(l) sin δ = 0,

where λ ∈ C is a spectral parameter, Ty ≡ (py′′)′−qy′, the functions p(x), r(x) are strictly
positive and continuous on [0, l], p(x) has an absolutely continuous derivative on [0, l], q(x)
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is a non-negative absolutely continuous function on [0, l], α, β, γ, δ are real constants and
α, β, γ ∈ [0, π/2], δ ∈ (π/2 ,π).

Eigenvalues of ordinary differential operators can be uniquely related to the number of
zeros of eigenfunctions. The problem of the number of zeros of eigenfunctions (called os-
cillatory properties) in classical oscillatory topics consists of a package of bound properties
(called oscillation spectral properties) – reality, positivity and simplicity of the spectrum,
the availability a certain number of zeros and alternation of zeros, the Chebyshev property
and Markov chains of eigenfunctions. These properties are the classical in the oscillatory
topics started by O.D.Kellog and M.G.Krein. At the beginning of the 20th century [1,
2] O.D. Kellogg introduced a class of kernels (containing Green’s function of the Sturm-
Liouville problem), later named Kellogg kernels, and showed that the integral operators
generated by these kernels have oscillation spectral properties. Surprisingly, these prop-
erties for the Sturm-Liouville problem were detected much earlier by Sturm [3], who used
qualitative methods (such as comparison theorems) without integral equations. Much later
for fourth-order equation O.Davidoglou [4, 5] found only first three of the above oscillation
spectral properties in the case of simple boundary conditions. S.N.Janczewsky [6] did it
for a very broad class of (regular) boundary conditions. M.G. Krein [7], F.R.Gantmakher
and M.G.Krein [8] proved that the class of Kellogg kernels belongs not only to the influ-
ence function of the string, but also to the influence function of the rod (beam) as well
as to the Green’s function for a wide class of two-point boundary value problems for or-
dinary differential equations of higher order, which later provoked the rapid development
of the oscillation theory in the works by A.Yu.Levin and G.D.Stepanov [9, 10] U.Elias
[11] J.Przybycin [12], etc. A.Yu.Levin and G.D.Stepanov established oscillation of the
spectrum of boundary value problems with strong sign-regularity Green’s functions. The
transition from the oscillating kernels to the strongly sign-regular kernels, in general, can
not be reduced to the oscillating (up to a sign) by shifting. Later A.V. Borovskii and
Yu.V.Pokornyi [13] extended Kellogg’s results [2] to discontinuous kernels.

Another approach - the application of the method of polar coordinates to establish
Sturmian oscillation properties dates back to H. Prufer [14]. In [15] this method was
applied to the study of oscillation properties of first-order systems. In [16, 17], D.O Banks
and G.E Kurowski, using Prufer-type transformation, studied the oscillation properties for
the eigenfunctions and their derivatives for the spectral problem (1), (2) with δ ∈ [0, π/2].

Problem (1), (2) in the case of δ ∈ (π/2, π) was considered in [18], but the oscillation
properties of the eigenfunctions were not completely investigated there. In a recent paper
[19] J. Ben Amara studied the oscillation properties of eigenfunctions of this problem for
α = β = 0 in the disfocal case. However, methods of those works do not cover the more
general case we considered here. Moreover, they are not even applicable in our case.

In this paper, using the Prufer -type transformation and Sturm type comparison the-
orems, we fully investigate the general characteristics of the location of eigenvalues on
the real axis, study the structure of the root subspaces and oscillation properties of the
eigenfunctions of the problem (1), (2).
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2. On the existence and uniqueness of solutions of problem (1), (2a) -
(2c)

As in [16, 17], for the analysis of the oscillation properties of eigenfunctions of the
boundary-value problem (1), (2) we shall use a Prufer -type transformation of the following
form:















y(x) = r(x) sinψ(x) cos θ(x),
y′(x) = r(x) cosψ(x) sinϕ(x),
(py)′′(x) = r(x) cosψ(x) cosϕ(x),
T y(x) = r(x) sinψ(x) sin θ(x).

(3)

Equation (1) has the following equivalent formulation in matrix form:

U ′ =MU, (4)

where

U =









y
y′

py′′

Ty









, M =









0 1 0 0
0 0 1/p 0
0 q 0 1
λ r 0 0 0









.

Setting w(x) = ctg ψ(x) and applying the transformation (3) to (4) we obtain a system
of first-order differential equations with respect to the functions r,ψ,θ,ϕ of the following
form:

a)
r′ =

[

sin 2ψ cos θ sinϕ+ (q + 1/p) cos2 ψ sin 2ϕ+ sin 2ψ sin θ cosϕ+

+(λr/2) sin2 ψ sin 2θ
]

r/2,

b)

w′ = −w2 cos θ sinϕ+ (1/2) (q + 1/p)w sin 2ϕ+ sin θ cosϕ− (λr/2)w sin 2θ,

(5)

c)
θ′ = −w sinϕ sin θ + λr cos2 θ,

d)
ϕ′ = (1/p) cos2 ϕ− q sin2 ϕ− (1/w) sin θ sinϕ.

Below we will need the following results.
Lemma A. Let y(x, λ) be a non-trivial solution of equation (1) for λ > 0. If y, y′, y′′, T y
are non-negative and not all equal to zero for x = a ∈ (0, l) , then they are positive for
x > a. On the other hand, if y, −y′, y′′,and −Ty are non-negative and not all equal to
zero for x = b ∈ (0, l) , then they are positive for x < b.
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This lemma was proved in [20] for q(x) ≡ 0 and in [17] for q(x) > 0.
Lemma B [16, 17]. Let y(x, λ) be a non-trivial solution of the problem (1), (2a)-(2c) for
λ > 0 and let θ(x, λ),ϕ(x, λ)and ψ(x, λ) be the corresponding functions in (3). Then i) if
ξ is a zero of y or y′′ in the open interval (0, l), then y′(x)Ty(x) < 0 in a neigborhood of
ξ ; if ς is a zero of y′or Ty in the open interval (0, l), then y(x)y′′(x) < 0 in a neigborhood
of ς ; ii) the Jacobian J [y] = r3 sinψ cosψ of the transformation of (3) does not vanish
in (0, l); iii) θ(0, λ) = β − π /2, ϕ(0, λ) = α, ϕ(l, λ) = kπ − γ, k ∈ N, where α = 0
when ψ(0, λ) = π/2 and γ = 0 when ψ(l, λ) = π/2. Furthermore, w(0, λ) = ctgψ(0, λ) is
determined by at least one of the following relations:

a) w(0, λ) =
y′ (0, λ) sin β

y (0, λ) sinα
, b) w(0, λ) = −(py′′) (0, λ) cos β

Ty (0, λ) cosα
,

c) w(0, λ) =
(py′′) (0, λ) sin β

y (0, λ) cosα
, d) w(0, λ) = − y′ (0, λ) cos β

Ty (0, λ) sinα
.

iv) θ(l, λ) is a strictly increasing continuous function of λ.
We also have the following oscillation theorem.

Theorem A [16, 17]. For fixed α, β, γ the eigenvalues of the problem (1), (2) (except
for the case β = δ = π/2) are real and simple, and form a sequence {µn(δ)}∞n=1 such that

0 < µ1(δ) < µ2(δ) < ... < µn(δ) < ... . Moreover, the eigenfunction ϑ
(δ)
n (x), corresponding

to the eigenvalue µn(δ), has exactly n−1 simple zeros in the interval (0, l), and the function

Tϑ
(δ)
n (x) has exastly n zeros in the interval [0, l], zeros of functions ϑ

(δ)
n (x) and Tϑ

(δ)
n (x)

interleaving.

Remark 1. In the case β = δ = π /2 the first eigenvalue of boundary-value problem (1),
(2) is equal to zero and the corresponding eigenfunction is constant, and the statement of
Theorem A is true for n ≥ 2.

Theorem 1. For each fixed λ ∈ C there exists a non-trivial solution y(x, λ)of the problem
(1), (2a)-(2c), which is unique up to a constant coefficient.

Proof. Let ϕk(x, l), k = 1, 4, be solutions of equation (1) normalized for x = 0 by the
Cauchy conditions

ϕ
(s−1)
k (0, λ) = δks, s = 1, 3, Tϕk(0, λ) = δk4, (6)

where δks is the Kronecker delta.
We shall seek the function y(x, λ) in the following form:

y(x, λ) =

4
∑

k=1

ckϕk(x, λ), (7)

where ck, k = 1, 4 are constants.
Suppose α 6= 0, β 6= 0, γ 6= 0 in the boundary conditions (2a), (2b), (2c). From (6),

(7) and the boundary conditions (2a), (2b) it follows that
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c3 =
c2
p(0)

ctgα, c4 = −c1ctgβ. (8)

Taking into account (8), by (7) we obtain

y(x, λ) = c1 {ϕ1(x, λ)− ϕ4(x, λ)ctgβ} + c2

{

ϕ2(x, λ) + ϕ3(x, λ)
ctgα

p(0)

}

. (9)

Using (9) and (2c), we get the following relation for the determination of c1 and c2:

c1α
∗(λ) + c2β

∗(λ) = 0,

where

α∗(λ) =
{

ϕ′
1(l, λ)ctgγ + p(l)ϕ′′

1(l, λ)
}

− ctgβ
{

ϕ′
4(l, λ)ctgγ + p(l)ϕ′′

4(l, λ)
}

, (10)

β∗(λ) =
{

ϕ′
2(l, λ)ctgγ + p(l)ϕ′′

2(l, λ)
}

+
ctgα

p(0)

{

ϕ′
3(l, λ)ctgγ + p(l)ϕ′′

3(l, λ)
}

. (11)

To complete the proof of Theorem 1 in considered case it is sufficient to demonstrate that

|α∗(λ)|+ |β∗(λ)| > 0. (12)

It follows by Lemma A that ϕ′
k(l, λ) > 0, ϕ′′

k(l, λ) > 0, k = 1, 4 for λ > 0. Hence
(12) holds for λ > 0.

Now let λ ∈ C\(0,+∞). If (12) fails for such λ, then the functions

φ1(x, λ) = ϕ1(x, λ)− ctgβϕ4(x, λ) andφ2(x, λ) = ϕ2(x, λ) +
ctgα

p(0)
ϕ3(x, λ)

solve the problem (1), (2a)-(2c). We now define the function ϑ(x, λ) :

ϑ(x, λ) = φ2(l, λ)φ1(x, λ)− φ1(l, λ)φ2(x, λ).

Since ϑ(l, λ) = 0, then the function ϑ(x, λ) is an eigenfunction of the problem (1), (2)
with δ = 0 corresponding to the eigenvalue λ ∈ C\(0, + ∞). However, this contradicts
Theorem A. This contradiction proves (12).

The remaining cases are treated similarly. Theorem is proved. ◭

Remark 2. It follows from the proof of Theorem 1 that without loss of generality we can
consider each solution y(x, λ) of the problem (1), (2a)-(2c) for fixed x ∈ [0, l] as an entire
function of λ of the following form (for α, β, γ 6= 0):

y(x, λ) = β∗(λ)φ1(x, λ)− α∗(λ)φ2(x, λ).

In fact, the functions ϕk(x, l), k = 1, 4 and their derivatives are entire functions of λ
(see [21],Ch.I), and therefore y(x, λ) is also an entire function of λ for each fixed x ∈ [0, l].
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3. Main properties of the solution of the problem (1), (2a) - (2c)

Let y(x, λ) be a non-trivial solution of the problem (1), (2a)-(2c). Obviously, the
eigenvalues λn(0) and λn(π/2), n ∈ N, of the boundary-value problem (1), (2) for δ = 0
and δ = (π/2) are zeros of the entire functions y(l, λ) and Ty(l, λ), respectively. Note

that the function F (λ) = Ty(l,λ)
y(l,λ) is well defined for λ ∈ A ≡ (

⋃∞
n=1An)

⋃

(C\R), where
An = (λn−1(0), λn(0)), n ∈ N, λ0(0) = −∞, and is a meromorphic function of finite
order, and λn(π/2), λn(0), n ∈ N, are zeros and poles of this function, respectively.

Lemma 1. The following relation holds:

dF (λ)

dλ
=

1

y2(l, λ)

∫ l

0
ry2(x, λ)dx, λ ∈ A. (13)

Proof. By (1) we obtain

(Ty(x, µ))
′

y(x, λ)− y(x, µ)(Ty(x, λ))
′

= (µ− λ)r(x)y(x, µ)y(x, λ).

Integrating this equality from 0 to l, using integration by parts and assuming (2a)-(2c) we
obtain

y(l, λ)Ty(l, µ) − y(l, µ)Ty(l, λ) = (µ− λ)

∫ l

0
r(x)y(x, µ)y(x, λ)dx. (14)

For µ ∈ A, µ 6= λ, we have

Ty(l, µ)

y(l, µ)
− Ty(l, λ)

y(l, λ)
= (µ − λ)

1

y(l, µ)y(l, λ)

∫ l

0
r(x)y(x, µ)y(x, λ)dx. (15)

Dividing both sides of (15) by µ − λ and passing to the limit as µ → λ we obtain (13).
The proof of Lemma 1 is complete. ◭

Remark 3. From property 1 in [17] and formula (13), one has the relations

λ1(π/2) < λ1(0) < λ2(π/2) < λ2(0) < ... (16)

Set λ = ρ4 in equation (1) . By Theorem 1 in [21, p.59], in each subdomain T of the
complex ρ-plane equation (1) has four linearly independent solutions zk(x, ρ), k = 1, 4,
which are regular with respect to ρ (for sufficiently large ρ) and satisfy the relations

z
(s)
k (x, ρ) =

(

ρωk (r/p)
1
4

)s

eρωkX [1 +O (1/ρ)] , k = 1, 4, s = 0, 3, (17)

where ωk, k = 1, 4, are the distinct fourth roots of unity, and X =
∫ x

0 (r/p)
1
4 dt.

Let ω1 = −i, ω2 = i, ω3 = −1, ω4 = 1, and h =
∫ l

0 (r/p)
1
4 dt. We shall seek the

solution y(x, λ) in the following form:
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y(x, λ) =

4
∑

k=1

ckzk(x, ρ). (18)

Taking into account (18) in the boundary conditions (2a) - (2c), we obtain the following
system of equations:































{−i cosα+ ρh0 sinα} c1[1] + {i cosα+ ρh0 sinα} c2[1]−
−{cosα+ ρh0 sinα} c3[1] + {cosα− ρh0 sinα} c4[1] = 0,
{

cos β + iρ3h(0) sin β
}

c1[1] +
{

cos β − iρ3h(0) sin β
}

c2[1]+

+
{

cos β − ρ3h(0) sin β
}

c3[1] +
{

cosβ + ρ3h(0) sin β
}

c4[1] = 0,
{

i cos γ + ρh(1) sin γ
}

e−iρhc1[1]−
{

i cos γ − ρh(1) sin γ
}

e−iρhc2[1]+

+
{

cos γ − ρh(1) sin γ
}

e−ρhc3[1] +
{

cos γ + ρh(1) sin γ
}

eρhc4[1] = 0,

where

h0 =
4

√

p3(0)r(0), h(0) =
4

√

p(0)r3(0), h(1) =
4

√

p3(l)r(l)

and [1] = 1 +O (1/ρ). Solving this system we get:

1) for α ∈ (0, π/2], β = 0, γ ∈ (0, π/2],

c1 = [1], c2 = −[1], c3 = O (1/ρ) , c4 = −2ie−ρh sin ρh[1],

2) for α ∈ (0, π/2], β = 0, γ = 0,

c1 = [1], c2 = −[1], c3 = O (1/ρ) , c4 = 2ie−ρh cos ρh[1],

3) for α ∈ (0, π/2], β ∈ (0, π/2], γ ∈ (0, π/2],

c1 = [1], c2 =
i− 1

i+ 1
[1], c3 =

2i

i+ 1
[1], c4 =

2i(cos ρh− sin ρh)

(i+ 1)
e−ρh[1],

4) for α ∈ (0, π/2], β ∈ (0, π/2], γ = 0,

c1 = [1], c2 =
i− 1

i+ 1
[1], c3 =

2i

i+ 1
[1], c4 =

2i

i+ 1
(cos ρh− sin ρh) e−ρh[1],

5) for α = 0, β = 0, γ ∈ (0, π/2],

c1 = [1], c2 =
i− 1

i+ 1
[1], c3 = − 2i

i+ 1
[1], c4 =

2i

i+ 1
(cos ρh− sin ρh) e−ρh[1],

6) for α = 0, β = 0, γ = 0,

c1 = [1], c2 =
i− 1

i+ 1
[1], c3 = − 2i

i+ 1
[1], c4 =

2i

i+ 1
(cos ρh+ sin ρh) e−ρh[1],
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7) for α = 0, β ∈ (0, π/2], γ ∈ (0, π/2],

c1 = [1], c2 = [1], c3 = O (1/ρ) , c4 = 2e−ρh cos ρh[1],

8) for α = 0, β ∈ (0, π/2], γ = 0,

c1 = [1], c2 = [1], c3 = O (1/ρ) , c4 = 2ie−ρh sin ρh[1].

Given the values obtained for ck, k = 1, 4 in (18), for the function y (x, λ) in the above
cases 1) - 8), we obtain the corresponding asymptotic formulas:

1)y (x, λ) =
[

sin ρX + sin ρ h eρ(X−h)
]

[1],

2)y (x, λ) =
[

sin ρX + cos ρ h eρ(X−h)
]

[1],

3)y (x, λ) =
[

sin ρX − cos ρX − e−ρX +
√
2 sin (ρ h− π/4) eρ(X−h)

]

[1],

4)y (x, λ) =
[

sin ρX − cos ρX + e−ρX −
√
2 sin (ρ h+ π/4) eρ(X−h)

]

[1],

5)y (x, λ) =
[

sin ρX − cos ρX + e−ρX +
√
2 sin (ρ h− π/4) eρ(X−h)

]

[1],

6)y (x, λ) =
[

sin ρX − cos ρX + e−ρX −
√
2 sin (ρ h+ π/4) eρ(X=h)

]

[1],

7)y (x, λ) =
[

cos ρX + cos ρ h eρ(X−h)
]

[1],

8)y (x, λ) =
[

cos ρX + sin ρ h eρ(X−h)
]

[1].

For brevity, we introduce the notation s(δ1, δ2) = sgnδ1 + sgnδ2. Combining these
formulas, for y(x, λ) we obtain the following asymptotic formula:

y (x, λ) =















(

sin
(

ρX + π
2 sgnβ

)

− cos
(

ρh+ π
2 s( β, γ)

)

eρ(X−h)
)

[1],
if s(α, β) = 1,

(

sin ρX − cos ρX + (−1)sgnαe−ρX + (−1)1−sgnγ×
×
√
2 sin

(

ρh+ π
4 (−1)sgnγ

)

eρ(X−h)
)

[1], if s(α, β) 6= 1.

(19)

Similarly, for the function Ty(x, λ) we obtain the following asymptotic behavior

Ty(x, λ) =























−ρ3(pr3)
1
4
[

cos
(

ρX + π
2 sgn β

)

+ cos
(

ρh+ π
2 s( β, γ)

)

×
× eρ(X−h)

]

[1], if s(α, β) = 1,

−ρ3(pr3)
1
4
[

cos ρX + sin ρX + (−1)sgn αe−ρX − (−1)1−sgn γ ×
×
√
2 sin

(

ρh+ π
4 (−1)sgn γ

)

eρ(X−h)
]

[1], if s(α, β) 6= 1.

(20)
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Remark 4. As an immediate consequence of (19), we obtain that the number of zeros of
function y(x, λ) in the interval (0, l) tends to +∞ as λ→ ± ∞ .

Taking into account relations (19) and (20), we obtain the asymptotic formulas

F (λ) =



























−ρ3(p(1)r3(1))
1
4
(
√
2)

1−2sgn γ
cos(ρh+π

2
sgn β+π

4
sgn γ)

cos(ρl+π
2
sgn β+π

4
(1+sgn γ))

×
×[1] , if s(α, β) = 1,

−ρ3(p(1)r3(1))
1
4
(
√
2)

1−2sgn γ
cos(ρh−(1−sgn γ)π

4
)

cos(ρh+π
4
sgn γ )

×
×[1] , if s(α, β) 6= 1.

(21)

In turn, (21) implies the asymptotic formula

F (λ) = −
(√

2
)1−2sgn γ

(p(1) r3(1))
1
4 4

√

|λ|3
(

1 +O
(

1
/

4
√

|λ|
))

, λ→ −∞. (22)

From (22) it follows immediately

Lemma 2. The following relation holds:

lim
λ→−∞

F (λ) = −∞ . (23)

Remark 5. From Lemmas 1 and 2 it follows that F (λ) < 0 for λ < 0 or λ = 0, β ∈
[0, π/2) ; F (λ) = 0 for λ = 0, β = π/2.

Now we study the problem on the number of zeros of function y(x, λ).

Lemma 3. Every zero x(λ) ∈ (0, 1) of the equation y(x, λ) = 0 is simple and is a C1

function of λ ∈ R.

Proof. Impossibility of the multiple zero of the equation y(x, λ) = 0 for λ > 0 follows
from the statement i) of Lemma B.

We suppose now that ξ ∈ (0, l) and λ ≤ 0 with y(ξ, λ) = y′(ξ, λ) = 0. Then the
function y(x, λ) solves the problem (1), (2) for l = ξ, γ = δ = 0, which contradicts the
condition λ ≤ 0 in view of Theorem A. The rest of the proof concerning the smoothness
of x(λ) follows from the well-known implicit function theorem. The Lemma 3 is proved.
◭

Corollary 1. As λ > 0(λ ≤ 0) varies, the solution y(x, λ) can lose or gain zeros only by
these zeros leaving or entering the interval [0, 1] through its endpoint x = 1 (x = 0).

Let s(λ) be the number of zeros of the function y(x, λ) in the interval (0, l).

Lemma 4. Let λ > 0. If λ ∈ (λn−1(0), λn(0)], n ∈ N, then s(λ) = n− 1.
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Proof. Let λ > 0 and θ(x, λ) be the corresponding function in transformation (3). By
statement iii) of Lemma B we have θ(0, λ) = β − π/2. On the basis of Theorem A we
have the equality

θ(l, λn(0)) = (2n − 1)π/2, n ∈ N.

As is known [16, 17], if λ > 0, then the function θ(x, λ), which is strictly increasing,
assumes the values kπ/2 for k = −1 , 0, 1 , ... . From these arguments and Lemma B it
follows that

θ(x, λ) ∈ (−π/2, π/2] for λ ∈ (0, λ1(0)], and

θ(x, λ) ∈ (−π/2, (2n − 1)π /2]for λ ∈ (λn−1(0), λn(0)], n = 2, 3, ....

Hence it follows validity of assertion of the lemma. The Lemma 4 is proved. ◭

By Theorem A we have y(l, λ) 6= 0 for λ < 0. Therefore, by Remark 4 and Corollary
1, as λ < 0 varies the new zeros of the function y(x, λ) can enter the interval (0, 1)
only through the endpoint x = 0. Obviously, if the function y(x, λ) acquires a new zero
for λ = λ∗, then y(0, λ∗) = y′(0, λ∗) = y′′(0, λ∗) for β = 0 or y(0, λ∗) = Ty(0, λ∗) for
β ∈ (0, π/2].

Lemma 5. Let λ0 < 0 and either y′′(0, λ0) 6= 0 for β = 0, or Ty′′(0, λ0) 6= 0 for β ∈
(0, π/2), or y(0, λ0) 6= 0 for β = π/2. Then there exists ε > 0 such that for any λ ∈
(λ0 − ε, λ0 + ε)/{λ0} the number of zeros of the function y(x, λ) belonging to the interval
(0, l) coincides with the number of zeros of the function y(x, λ0) belonging to the interval
(0, l), i.e. s(λ) = s(λ0) for λ ∈ (λ0 − ε, λ0 + ε)/{λ0}.

Proof. Let λ0 < 0 and y′′(0, λ0) 6= 0 for β = 0. Then there exists δ0 > 0 such that the
function y′′(x, λ0) does not vanish on [0, δ0] and the function y(x, λ0) does not vanish on
[l − δ0, l]. By Remark 2 there exists ε1 > 0 such that for any λ ∈ (λ0 − ε1, λ0 + ε1) , the
function y′′(x, λ) does not vanish on [ 0, δ0] and the function y(x, λ) does not vanish on
[ l − δ0, l]. Therefore, for λ ∈ (λ0 − ε1, λ0 + ε1) , all zeros of the function y(x, λ) belonging
to the interval (0, l) are concentrated on the interval (δ0, l − δ0) .

By Lemma 3 all zeros of the function y(x, λ0) on the interval (δ0, l − δ0) are simple
and there exists ε ∈ (0, ε1) such that for any λ ∈ (λ0 − ε, λ0 + ε)/{λ0}, the number
of zeros of the function y(x, λ) on the interval (δ0, l − δ0) coincides with that for the
function y(x, λ0). Since the functions y(x, λ0) and y(x, λ) have no zeros on the half-open
intervals (0, δ0] and [ l − δ0, l) , according to what was said above, we have s(λ) = s(λ0)
for λ ∈ (λ0 − ε, λ+ ε)/{λ0}.

Now let Ty (0, λ0) 6= 0 for β ∈ (0, π/2). By (2b) we have y (0, λ0) 6= 0. Then there
exists δ1 > 0 such that the function y (x, λ0) does not vanish on [0, δ1]

⋃

[l − δ1, l]. By
Remark 2 there exists ε2 > 0 such that for λ ∈ (λ0 − ε2, λ0 + ε2) the function y (x, λ) does
not vanish on [0, δ1]

⋃

[l − δ1, l]. Consequently, for λ ∈ (λ0 − ε2, λ0 + ε2) all zeros of the
function y (x, λ) belonging to the interval (0, l) are concentrated on the interval (δ1, l − δ1).
The rest of the proof is similar to the previous case.
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The case of y (0, λ0) 6= 0 when β = π/2 is considered similarly. The Lemma 5 is proved.
◭

Corollary 2. Let λ(2) < λ (1) < 0 and s(λ (2)) 6= s(λ (1)). Then the interval (λ2, λ1) con-
tains an eigenvalue of the problem defined by the equation (1) and the boundary conditions
y(0) = y′(0) = y′′(0) = 0, (2c) for β = 0, or y(0) = Ty(0) = 0 , (2a), (2c) for β ∈ (0, π/2].

Let λ < 0 and µ be a real eigenvalue of the equation (1) with boundary condition
y(0) = y′(0) = y′′(0) = 0, (2c) for β = 0, or y(0) = Ty(0) = 0, (2a), (2c) for β ∈ (0, π/2].
The oscillation index of this eigenvalue µ is the difference between the number of zeros
of the function y(x, λ) for λ = µ − 0 belonging to the interval (0, l) and the number of
the same zeros for λ = µ + 0 (see [22]). From this definition, it directly follows that the
number of zeros of the function y(x, λ) belonging to the interval (0, l) is equal to the sum of
the oscillation indices of all eigenvalues of the equation (1) with the boundary conditions
y(0) = y′(0) = y′′(0) = 0, (2c) for β = 0, or y(0) = Ty(0) = 0, (2a), (2c) for β ∈ (0, π/2]
belonging to the interval (λ, 0).

Following the scheme of the proof of Theorem 4.1 of [22] we can prove that there
exists ξ < 0 such that lying on the ray (−∞, ξ) the eigenvalues ξk, k = 1, 2, ..., of the
equation (1) with the boundary conditions y(0) = y′(0) = y′′(0) = 0, (2c) for β = 0,
or y(0) = Ty(0) = 0, (2a), (2c) for β ∈ (0, π/2] enumerated in the decreasing order are
simple, admit the asymtotics

ξk =

{

−4
(

k + 1
2 − 1

4sgnγ
)4 (π

h

)4
+ o (k4), if β = 0,

−4
(

k + 1
2 − 1

8 |(−1)sgnα + (−1)sgnγ | (3− s(α, γ))
)4 (π

h

)4
+ o (k4), if β ∈ (0, π/2],

and have oscillation index 1.
Let i(ξk) be the oscillation index of the eigenvalue ξk. From the above it follows that

the formula

s(λ) =
∑

ξk∈(λ,0)

i(ξk) (24)

holds. Now consider the problem (1), (2) for δ ∈ (π/2, π).

Lemma 6. The eigenvalues of the problem (1), (2) for δ ∈ (π/2, π) are simple.

Proof. By [16, 17] the positive eigenvalues of this problem are simple. Let λ∗ ≤ 0 be an
eigenvalue of the problem (1), (2) for δ ∈ (π/2, π), which corresponds to the eigenfunctions
of y(1)(x) and y (2)(x). By Theorem A we have y (1)(l) 6= 0, y (2)(l) 6= 0. We define the
function:

ϑ (x) = y (2)(l)y (1)(x)− y (1)(l) y (2)(x).

Since ϑ(l) = 0, the function ϑ(x) is an eigenfunction of the problem (1), (2) with δ = 0
corresponding to the eigenvalue λ∗ ≤ 0, which contradicts Theorem A. The proof of
Lemma 6 is complete. ◭
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Theorem 2. For fixed α, β, γ the eigenvalues of the problem (1), (2) for δ ∈ (π/2, π)
form a sequence {µn(δ)}∞n=1 such that µ1(δ) < µ2(δ) < ... < µn(δ) < ... and besides
µn(δ) > 0 at n ≥ 2. Moreover, in the case β ∈ [0, π/2) there exists δ0 ∈ (π/2, π) such
that if δ ∈ (π /2, δ0) , then µ1(δ) > 0 , if δ = δ0, then λ1(δ) = 0 , if δ ∈ (δ0, π) , then

λ1(δ) < 0 , and in the case β = π /2 it holds µ1(δ) < 0. The eigenfunction ϑ
(δ)
n (x), n ≥ 2,

corresponding to the eigenvalue µn(δ) , has exactly n− 1 simple zeros in the interval (0, l);

in the case µ1(δ) ≥ 0 the eigenfunction ϑ
(δ)
1 (x) has no zeros in the interval (0, l) ,and in

the case µ1(δ) < 0 the eigenfunction ϑ
(δ)
1 (x) may have any number of zeros in the interval

(0, l), which are also simple (see (24)).

Proof. It is easy to see that the eigenvalues of the problem (1), (2) for δ ∈ (0, π) are
the roots of the equation

F (λ) = ctgδ. (25)

By Lemma 1 and formula (23) the function F (λ) is continuous and increasing in each of the
intervals (µn−1(0), µn(0)) and the relations lim

λ→λn−1(0)+0
F (λ) = −∞, lim

λ→λn(0)−0
F (λ) =

+∞ are true. Hence the function F (λ) assumes each value in (−∞,+∞) at a unique point
in the interval (µn−1(0), µn(0)), n ∈ N. Hence this interval contains a unique point λ = µ∗n
which is a solution of equation (25), i.e., condition (2d) is satisfied. It means µ∗n is an
eigenvalue of problem (1), (2) for δ ∈ (0, π). It is easy to see that µ∗n is an n-th eigenvalue
of this problem, i.e., µn(δ) = λ∗n. By Lemma 1 we have µn(δ) ∈ (µn(π /2) , µn(0)) for
δ ∈ (0, π/2) and µn(δ) ∈ (µn−1(0), µn(π /2)) for δ ∈ (π /2, π) . By Remark 5 we obtain
F (0) < 0 for β ∈ [0, π/2) and F (0) = 0 for β = π /2. Consequently, in the case
β ∈ [0, π/2) we see that µ1(δ) > 0 if ctgδ > F (0), µ1(δ) = 0 if ctgδ = F (0) and µ1(δ) < 0
if ctgδ < F (0), and in the case β = π /2 we have µ1(δ) < 0 (the number δ0 appearing in
the theorem is defined as δ0 = arcctg F (0)).

The last assertion of the theorem follows from Lemma 4 and formula (24). The proof
of Theorem 2 is complete. ◭
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