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Inverse Sturm-Liouville Problem with Eigenparameter

Dependent Boundary and Transmission Conditions

M. Shahriari

Abstract. This paper deals with the boundary value problem involving the differential equation

ℓy := −y′′ + qy = λy

subject to the eigenparameter dependent boundary conditions along with the following disconti-
nuity conditions

y(d+ 0) = ay(d− 0), y′(d+ 0) = ay′(d− 0) + by(d− 0)

at a part d ∈ (0, π), where q(x), a, b are real, q ∈ L2(0, π) and λ is a parameter independent of x.
We develop the Hochestadt’s result based on transformation operator for inverse Sturm-Liouville
problem with eigenparameter dependent boundary and discontinuous conditions. Furthermore, we
establish a formula for q(x) − q̃(x) in the finite interval, where q̃(x) is an analogous function with
q(x).

Key Words and Phrases: inverse Sturm-Liouville problem, jump conditions, parameter depen-
dent boundary condition, Green’s function
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1. Introduction

We consider the boundary value problem

ℓy := −y′′ + qy = λy, (1)

U(y) := y′(0)− hy(0) = 0,

V (y) := Hy′(π) + λy(π) = 0 (2)

with jump conditions

U1(y) := y(d+ 0)− ay(d− 0) = 0, U2(y) := y′(d+ 0)− ay′(d− 0)− by(d− 0) = 0, (3)
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Inverse Sturm-Liouville Problem with Eigenparameter 17

where q(x), h,H, a, b, d are real, q ∈ L2(0, π), d ∈ (0, π), 0 < H <∞ and λ is the spectral
parameter. We use the notation L = L(q(x);h;H; d) for the problem (1)-(3).

The method of separation of variables for solving PDEs with discontinuous boundary
conditions naturally leads to ODE with discontinuities inside the interval which often
appears in mathematics. Inverse spectral problem consists in recovering operators from
their spectral characteristics. For example, the mathematical formulation of a large variety
of technical and physical problems leads to inverse problems such as identifying the density
of the thing from data collected from the sets of frequencies of oscillations of the string
with barrier.

The inverse spectral Sturm-Liouville problem can be regarded as having three aspects,
e.g., existence, uniqueness and reconstruction of the coefficients given specific properties
of eigenvalues and eigenfunctions [1]-[22]. In particular, the operator ℓ plays an important
role of the one-dimensional Schrödinger operator in quantum mechanics and our trans-
mission conditions include the case of point interactions (see e.g. the monographs [23] and
[24]). Our work concerns uniqueness and other properties of potential function.

The applications of boundary value problems with discontinuity conditions inside the
interval are connected with discontinuous material properties. Inverse problems with a
discontinuity condition inside the interval play an important role in mathematics, me-
chanics, radio electronics, geophysics, and other fields of science and technology. As a
rule, such problems are related to discontinuous and non-smooth properties of a medium
(e.g., see [9]-[11] and [31]). In this work, we generalize the Hochstadt’s result [6], refining
the approach of Levinson [4] to show that precisely how much freedom q has where the
λn and all but finitely many of the λ′n are specified. Note that the eigenvalues λ′n are ob-
tained by replacing H with H1 in (2). Nowadays there is a number of papers dedicated to
inverse problems for the Sturm-Liouville operator with eigenparameter dependent bound-
ary conditions (see [21] and [25]-[27]). There are many papers concerning problems with
discontinuous conditions. One can find the similar works for discontinuous conditions in
[11] and [15]-[18], and the similar works for Hochstadt’s result in [12]-[14].

Remark 1. The same result can be obtained by the same method in the more general case
of the following eigenparameter dependent boundary conditions and jump conditions (3):

y′(0)− hy(0) = 0, λ(y′(π)−H1y(π))−H2y
′(π)−H3y(π) = 0.

2. The Hilbert space formulation and asymptotic form of solutions and

eigenvalues

In this section, we introduce the special inner product in the Hilbert space (L2(0, d)⊕
L2(d, π)) ⊕ C and we define a linear operator A such that the considered problem (1)-(3)
can be interpreted as the eigenvalue problem for A. So, we define a new Hilbert space
inner product on H := (L2(0, d) ⊕ L2(d, π)) ⊕ C by

〈F,G〉H = |a|

∫ d

0
f ḡ +

1

|a|

∫ π

d

f ḡ +
1

H|a|
R1(f)R̄1(g), (4)
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where F =

(

f(x)
R1(f)

)

and G =

(

g(x)
R1(g)

)

∈ H. In this Hilbert space we construct the

operator
A : H → H (5)

by

F =

(

f(x)
R1(f)

)

, and AF =

(

ℓf

−R′
1(f)

)

with domain

D(A) =















F =

(

f(x)
R1(f)

)

|f(x), f ′(x) ∈ AC[0, d) ∪ (d, π] and,

f(d± 0), f ′(d± 0) is defined, ℓf ∈ L2[[0, d) ∪ (d, π]]
U(f) = U1(f) = U2(f) = 0, R1(f) := f(π)















, (6)

where R′
1(f) := Hf ′(π). Thus, we can rearrange the boundary value problem (1)-(3) as

follows:

AY = λY Y :=

(

y(x)
R1(y)

)

∈ D(A). (7)

It is easy to see that the eigenvalues of the operator A coincide with those of the problem
(1)-(3). Let ϕ(x, λ) and ψ(x, λ) be solutions of (1) under the jump conditions (3) and
initial conditions

ϕ(0, λ) = 1, ϕ′(0, λ) = h, (8)

and

ψ(π, λ) = H, ψ′(π, λ) = −λ. (9)

By attaching a subscript 1 or 2 to functions ϕ and ψ, we mean to refer to the first
subinterval [0, d) or to the second subinterval (d, π]. For example

ϕ(x, λ) =

{

ϕ1(x, λ) , x ∈ [0, d)
ϕ2(x, λ) , x ∈ (d, π].

By virtue of [16], problem (1) has a unique solution ϕ1(x, λ) or ψ2(x, λ), an entire function
of λ ∈ C, under the initial conditions (8) or (9). We can obtain from the linear differential
equations theory that each of the Wronskians

∆1(λ) := W (ϕ1(x, λ), ψ1(x, λ)) (10)

and
∆2(λ) := W (ϕ2(x, λ), ψ2(x, λ)) (11)

are independent of x for all x ∈ [0, d) ∪ (d, π], respectively. It is easy to see that the
equality ∆2(λ) = a2∆1(λ) holds for each λ ∈ C.
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Corollary 1. The zeros of ∆(λ) := ∆2(λ) = a2∆1(λ) coincide. The eigenvalues of the
problem (1)-(3) coincide with the zeros of the function ∆(λ).

Apply the definition of A to prove the following theorem. For other similar proofs we
can refer to [28], [30] and [31].

Theorem 1. (i) The operator A is self-adjoint.

(ii) By self-adjointness of A and Corollary 1, all eigenvalues of the problem (1)-(3)
are real and simple.

(iii) The sequence ϕn of the orthonormal eigenfunction system (1)-(3) in L2(0, π) is
complete.

Theorem 2. Let λ = ρ2, τ := Imρ. For equation (1) with boundary conditions (2) and
jump conditions (3) as |λ| → ∞, the following asymptotic formulas hold:

ϕ(x;λ) =











cos ρx+ (h+ 1
2

∫ x

0 q(t)dt)
sin ρx
ρ

+O( exp |τ |x
ρ2

), x < d,

a cosρx+ f1(x)
sin ρx
ρ

+ f2(x)
sin ρ(2d−x)

ρ
+O( exp |τ |x

ρ2
), x > d,

(12)

ϕ′(x;λ) =











−ρ sin ρx+ (h+ 1
2

∫ x

0
q(t)dt) cos ρx+O( exp |τ |x

ρ
) x < d,

−aρ sin ρx+ f1(x) cos ρx− f2(x) cos ρ(2d− x) +O( exp |τ |x
ρ

) x > d,

(13)

and

ψ(x;λ) =



















1
a
ρ sin ρ(π − x) + g1(x) cos ρ(π − x) + g2(x) cos ρ(2d+ x− π)

+O( exp |τ |(π−x)
ρ

), x < d,

ρ sin ρ(π − x) + (H + 1
2

∫ π

π−x q(x)dx) cos ρ(π − x) +O( exp |τ |(π−x)
ρ

), x > d,

(14)

ψ′(x;λ) =















− 1
a
ρ2 cos ρ(π − x) + ρ(g1(x) sin ρ(π − x)− g2(x) sin ρ(2d+ x− π))

+O(exp(|τ |π − x)), x < d,

−ρ2 cos ρ(π − x) + ρ(H + 1
2

∫ π

π−x q(x)dx) sin ρ(π − x) +O(exp |τ |(π − x)), x > d,

(15)

f1(x) = a

(

h+
1

2

∫ x

0
q(t)dt

)

+
b

2
, f2(x) =

b

2
.

g1(x) =
1

a

(

H +
1

2

∫ π

π−x
q(t)dt

)

−
b

2a2
, g2(x) = −

b

2a2
.

Moreover, the characteristic function is

∆(λ) = aρ2 cos ρπ + ρ[(f1(π)− aH) sin ρπ + f2(π) sin ρ(2d− π)] +O(exp |τ |π). (16)
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Proof. Let C(x, λ) and S(x, λ) be solutions of (1) under the initial conditions

C(0, λ) = S′(0, λ) = 1, C ′(0, λ) = S(0, λ) = 0,

and the jump conditions (3). It is obvious that ϕ(x, λ) = C(x, λ)+hS(x, λ). By using the
asymptotic formulas of C(x, λ) and S(x, λ) and applying the similar calculations of [16],
we obtain the asymptotic form of ϕ(x, λ) and ϕ′(x, λ). By changing x to π − x, one can
obtain the asymptotic form of ψ(x, λ) and ψ′(x, λ). ◭

Applying the similar calculations of [16], we find that

ρn = n−
1

2
+

θn

n− 1
2

+
κn

n
, κn = o(1) (17)

and

θn =
(−1)(n+1)

2

(

ω1 + ω2 cos 2d(n −
1

2
)

)

,

where

ω1 = a
(

H − h−
1

2

∫ π

0
q(t) dt

)

−
b

2
, ω2 = −

b

2
.

3. Main result

In this section the uniqueness theorem for (1)-(3) is given. We need some lemma and
technical notation to prove our main result. The boundary value problem L = L(q;h;H; d)
is defined with the operator A : H → H. We now consider boundary value problems
L̃ = L(q̃;h;H; d), L1 = L(q;h;H1; d), and L̃1 = L(q̃;h;H1; d), by the same approach
where H1 6= H, with operators Ã, A1, and Ã1, respectively. Suppose that θ(x, λ) is the
solution of (1) satisfying the initial conditions θ(π, λ) = H1, θ

′(π, λ) = λ and the jump
conditions (3). Define φi(λ) := W (ϕi(x, λ), θi(x, λ)), and φ̃i(λ) := W (ϕ̃i(x, λ), θ̃i(x, λ)),
for i = 1, 2.

Lemma 1. If L(q;h;H1; d) and L(q̃;h;H1; d) have the same eigenvalues, then φi(λ) =
φ̃i(λ) for i = 1, 2.

Proof. From [33] it follows that φi and φ̃i are entire functions of order 1
2 , and conse-

quently, by Hadamard’s factorization theorem [34], are determined up to a multiplicative

constant by their zeros. Hence there is a constant k such that k = φi(λ)

φ̃i(λ)
. Using the asymp-

totic form of φi(λ) and φ̃i(λ) as a similar form of (16) with H replaced by H1 we obtain
k = 1 +O(1

ρ
). Letting ρ→ ∞, we obtain k = 1 and so φi(λ) = φ̃i(λ).◭

If ψn(x) := ψ(x, λn) is another eigenfunction of L satisfying the initial conditions (9),
then ϕn(x) and ψn(x) are linearly dependent for each n ∈ N. We have

ψn(x) = knϕn(x), x ∈ [0, d) ∪ (d, π], (18)

where kn is a real number. Define ϕ̃n(x), ψ̃n(x) and k̃n in a similar manner. From now
on, we assume that Λ0 ⊆ N is a finite set and Λ = N\Λ0.
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Lemma 2. If L1 and L̃1 have the same eigenvalues and, in addition, λn = λ̃n for all
n ∈ Λ, where λn and λ̃n are the eigenvalues of L and L̃, respectively, then kn = k̃n for all
n ∈ Λ.

Proof. Define δi(λ) :=W (ψi(x, λ), θi(x, λ)). It is easy to see that δi(λ) is independent
of x. From definition of φ, θ and ψ it follows that

{

W (ϕin(x), ψin(x)) = 0,
W (ϕin(x), θin(x)) = φi(λn),

(19)

for i = 1, 2. The above linear system has a unique solution

ϕin(x) =
ψin(x)φi(λn)

δi(λn)
, (20)

and similarly we obtain

ϕ̃in(x) =
ψ̃in(x)φ̃i(λ̃n)

δ̃i(λ̃n)
. (21)

From λn = λ̃n for all n ∈ Λ and Lemma 1, we have φi ≡ φ̃i. From definition of δi(λ) it
follows that δ2(λn) = δ̃2(λn)|x=π = λn(H −H1). Thus

kn = k̃n =
λn(H −H1)

φ2(λn)

for all n ∈ Λ.◭

Assume that λ is not in the spectrum of (1)-(3) and (7). Let

Sλ = (A− λI)−1|D.

Replace A by Ã and define S̃λ analogously. We consider the following spaces:

K := D(A)⊖ {Φn : n ∈ Λ0}, (22)

K̃ := D(Ã)⊖ {Φ̃n : n ∈ Λ0}. (23)

Define the transformation operator T : K → K̃ by

TΦn = Φ̃n, (24)

where Φn =

(

ϕn(x)
R1(ϕn)

)

and Φ̃n =

(

ϕ̃n(x)
R1(ϕ̃n)

)

for n ∈ Λ. By using the asymptotic

form of solutions (14) and (15) it is easy to verify that T is a bounded operator. From (7)
we have

(λI −A)Φn = (λ− λn)Φn,

thus we obtain
Φn

(λ− λn)
= −SλΦn.

A similar relation is obviously valid for Φ̃n.
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Lemma 3. The relation S̃λT = TSλ holds for λ 6= λn, λ̃n and n ∈ N.

Proof. Let F ∈ K. Then we can expand F in terms of the set Φn:

F (x) =

(

f(x)
R1(f)

)

=
∑

Λ

fnΦn(x), (25)

for n ∈ Λ, where fn = 〈F,Φn〉H
〈Φn,Φn〉H

. Let λ be in complex plane and not an eigenvalue of

A(q;h;H; d). Then the operator Sλ exists and can be written as

− SλF (x) =
∑

Λ

fn

λ− λn
Φn(x). (26)

If we apply T to the above relation, we obtain

−TSλF (x) =
∑

Λ

fn

λ− λn
Φ̃n(x).

If we apply S̃λ and T to (25) respectively, we obtain

−S̃λTF (x) =
∑

Λ

fn

λ− λn
Φ̃n(x).

Then we get
S̃λT = TSλ.

◭

In a general case when the operator L have eigenparameter dependent boundary and
discontinuous conditions, we generalize the well-known result of Hochstadt [6]. We con-
struct the Green’s function for A by using its solutions ϕ(x, λ) and ψ(x, λ). By applying
the Green’s function we now prove our main theorem.

Theorem 3. If L(q;h;H1; d) and L(q̃;h;H1; d) have the same spectrum and λn = λ̃n for
all n ∈ Λ, then

q(x)− q̃(x) =







∑

Λ0
(ỹ1nϕ1n)

′(x), x < d,

∑

Λ0
(ỹ2nϕ2n)

′(x), x > d,

(27)

a.e. on [0, d)∪ (d, π], where ỹin and ϕin for i = 1, 2 are suitable solutions of l̃y = λny and
ly = λny, respectively.

Proof. By using the techniques of [28] for F(x) = (f(x), f1)
T ∈ H, we can prove that

the problem
y′′ + (λ− q(x))y = f(x), x ∈ (0, d) ∪ (d, π) (28)

y′(0)− hy(0) = 0, Hy′(π) + λy(π) = f1, (29)
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with jump conditions (3) has the unique solution y(x, λ), which can be represented as

y(x, λ) =























































ψ1(x,λ)
∆1(λ)

∫ x

0 ϕ1(t, λ)f(t)dt+
ϕ1(x,λ)
∆1(λ)

( ∫ d

x
ψ1(t, λ)f(t)dt

+ 1
a2

∫ π

d
ψ2(t, λ)f(t)dt+

1
a2
f1
)

, 0 < x < d,

ψ2(x,λ)
∆2(λ)

(

a2
∫ d

0 ϕ1(t, λ)f(t)dt+
∫ x

d
ϕ2(t, λ)f(t)dt

)

+ϕ2(t,λ)
∆2(λ)

( ∫ π

x
ψ2(t, λ)f(t)dt+ f1

)

, d < x < π.

(30)

By considering

G(x, t, λ) =

{

|a|ψ(x,λ)ϕ(t,λ)∆(λ) , 0 ≤ t ≤ x ≤ π,

|a|ϕ(x,λ)ψ(t,λ)∆(λ) , 0 ≤ x ≤ t ≤ π,
(31)

where x 6= d and t 6= d, the formula (30) is reduced to

y(x, λ) = |a|

∫ d

0
G(x, t, λ)f(t)dt +

1

|a|

∫ π

d

G(x, t, λ)f(t)dt + f1
ϕ(x, λ)

∆(λ)
. (32)

Let n ∈ Λ and λ not be an eigenvalue of A. Then −SλΦn = Gn, where

Gn(x) =

(

gn(x)
R1(gn)

)

=

(

|a|
∫ d

0 G(x, t, λ)ϕ1n(t)dt+
1
|a|

∫ π

d
G(x, t, λ)ϕ2n(t)dt

R1(ϕn)
λ−λn

)

(33)

and the function G(x, t, λ) is as defined in (31). It is easy to verify that gn(x) obeys the
boundary conditions (2), (3) and that

Φn = (λI −A)Gn.

Using the asymptotic form of ϕ(x, λ), ψ(x, λ), and ∆(λ) for sufficiently large ρ and for ρ 6=
ρn we deduce that the Green’s function G(x, t, λ) is bounded. G(x, t, λ) is a meromorphic
function with the eigenvalues λk as its poles [29]. Let Cn be a sequence of circles about
the origin intersecting the positive λ-axis between λn and λn+1. We have

lim
n→∞

∫

Cn

G(x, t, µ)

λ− µ
dµ = 0, λ ∈ int Cn. (34)

From residue integration it follows that

1

2πi

∫

Cn

G(x, t, µ)

λ− µ
dµ = −G(x, t, λ) +

n
∑

i=0

ϕi(x <)ψi(x >)

∆̇(λi)(λ− λi)
, (35)

where ∆̇(λi) =
d
dλ
∆(λ)|λ=λi . From (34), (35) and the Mittag-Leffler expansion for G(x, t, λ)

we obtain

G(x, t, λ) =
∞
∑

i=0

ϕi(x <)ψi(x >)

∆̇(λi)(λ− λi)
, (36)
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where for simplicity x <:= min{x, t} and x >:= max{x, t} and ϕi(x <), ψi(x >) are
eigenfunctions corresponding to the eigenvalues λi. Therefore for (f(x), R1(f))

T ∈ K,
from (22), (31), (33), and Lemma 2 we have

(

y(x)
R1(y)

)

= Sλ

(

f(x)
R1(f)

)

= SλF (x) =



















a2
ψ1(x)
∆2(λ)

∫ x

0
ϕ1(t)f(t)dt+

ϕ1(x)
∆2(λ)

(

a2
∫ d

x
ψ1(t)f(t)dt+

∫ π

d
ψ2(t)f(t)dt

)

, x < d

ψ2(x)
∆2(λ)

(

a2
∫ d

0
ϕ1(t)f(t)dt+

∫ x

d
ϕ2(t)f(t)dt

)

+ ϕ2(x)
∆2(λ)

∫ π

x
ψ2(t)f(t)dt, d < x < π

R1(y)













=



















∑

Λ

a2ψ1n(x)
∫

x

0
ϕ1n(t)f(t)dt+ϕ1n(x)(a2

∫
d

x
ψ1n(t)f(t)dt+

∫
π

d
ψ2n(t)f(t)dt)

∆̇(λn)(λ−λn)
, x < d

∑

Λ
ψ2n(x)(a

2
∫

d

0
ϕ1n(t)f(t)dt+

∫
x

d
ϕ2n(t)f(t)dt)+ϕ2n(x)

∫
π

x
ψ2n(t)f(t)dt

∆̇(λn)(λ−λn)
, d < x < π

∑

Λ
fnR1(ϕn)
λ−λn













=





















∑

Λ

knϕ1n(x)(a2
∫

d

0
ϕ1n(t)f(t)dt+

∫
π

d
ϕ2n(t)f(t)dt)

∆̇(λn)(λ−λn)
, x < d

∑

Λ

knϕ2n(x)(a2
∫

d

0
ϕ1n(t)f(t)dt+

∫
π

d
ϕ2n(t)f(t)dt)

∆̇(λn)(λ−λn)
, d < x < π

∑

Λ
fnR1(ϕn)
λ−λn















.

(37)

By applying T to both sides of (37), we see that

TSλF (x) =























∑

Λ

knϕ̃1n(x)
(

a2
∫

d

0
ϕ1n(t)f(t)dt+

∫

π

d
ϕ2n(t)f(t)dt

)

∆̇(λn)(λ−λn)
, x < d

∑

Λ

knϕ̃2n(x)
(

a2
∫

d

0
ϕ1n(t)f(t)dt+

∫

π

d
ϕ2n(t)f(t)dt

)

∆̇(λn)(λ−λn)
, d < x < π

∑

Λ
fnR1(ϕ̃n)
λ−λn













. (38)

Define

U(x) :=















a2ψ̃1(x)
∫

x

0
ϕ1(t)f(t)dt+ϕ̃1(x)(a2

∫
d

x
ψ1(t)f(t)dt+

∫
π

d
ψ2(t)f(t)dt)

∆(λ) , x < d

ψ̃2(x)(a2
∫

d

0
ϕ1(t)f(t)dt+

∫
x

d
ϕ2(t)f(t)dt)+ϕ̃2(x)

∫
π

x
ψ2(t)f(t)dt

∆(λ) , d < x < π

R1(u)









. (39)
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By the Mittag-Leffler expansion for U(x), we have

U(x) =





























































∑

Λ0

a2w̃1n(x)
∫

x

0
ϕ1n(y)f(y)dy+z̃1n(x)(a2

∫
d

x
ψ1n(t)f(t)dt+

∫
π

d
ψ2n(t)f(t)dt)

∆̇(λn)(λ−λn)
+

∑

Λ

a2ψ̃1n(x)
∫

x

0
ϕ1n(t)f(t)dt+ϕ̃1n(x)(a2

∫
d

x
ψ1n(t)f(t)dt+

∫
π

d
ψ2n(t)f(t)dt)

∆̇(λn)(λ−λn)
, x < d

∑

Λ0

w̃2n(x)(a2
∫

d

0
ϕ1n(t)f(t)dt+

∫
d

x
ϕ2n(t)f(t)dt)+z̃2n(x)

∫
π

x
ψ2n(t)f(t)dt

∆̇(λn)(λ−λn)
+

∑

Λ

ψ̃2n(x)(a2
∫

d

0
ϕ1n(t)f(t)dt+

∫
d

x
ϕ2n(t)f(t)dt)+ϕ̃2n(x)

∫
π

x
ψ2n(t)f(t)dt

∆̇(λn)(λ−λn)
, d < x < π

∑

n∈N

fnR1(ϕ̃n)
λ−λn



























.

(40)
The second term in the above expression is TSλF , as given in (38). In the first term,

w̃n(x) represents ψ̃(x, λ) and z̃n(x) represents ϕ̃(x, λ) evaluated at λn. Hence

S̃λTF (x) = U(x)−




















∑

Λ0

a2w̃1n(x)
∫

x

0
ϕ1n(t)f(t)dt+z̃1n(x)(a2

∫
d

x
ψ1n(y)f(y)dy+

∫
π

d
ψ2n(t)f(t)dt)

∆̇(λn)(λ−λn)
, x < d

∑

Λ0

w̃2n(x)(a2
∫

d

0
ϕ1n(t)f(t)dt+

∫
d

x
ϕ2n(t)f(t)dt)+z̃2n(x)

∫
π

x
ψ2n(t)f(t)dt

∆̇(λn)(λ−λn)
, d < x < π

∑

Λ0

fnR1(ϕ̃n)
λ−λn















.

(41)

The right and left hand sides of (41) are in the domain S̃λ. Therefore, both sides of (41)
are continuous. By using (37) and differentiating the right-hand side of (41), for x < d we
obtain

[
a2ψ̃′

1(x)
∫ x

0
ϕ1(t)f(t)dt+ ϕ̃′

1(x)
(

a2
∫ d

x
ψ1(t)f(t)dt+

∫ π

d
ψ2(t)f(t)dt

)

∆(λ)

−
∑

Λ0

a2w̃′
1n(x)

∫ x

0
ϕ1n(t)f(t)dt+ z̃′1n(x)

(

a2
∫ d

x
ψ1n(t)f(t)dt+

∫ π

d
ψ2n(t)f(t)dt

)

∆̇(λn)(λ − λn)
]

+

[

ψ̃1(x)ϕ1(x)− ϕ̃1(x)ψ1(x)

∆(λ)
−
∑

Λ0

w̃1n(x)ϕ1n(x) + z̃1n(x)ψ1n(x)

∆̇(λn)(λ − λn)

]

f(x).

An inspection of the term in the second set of braces shows that it vanishes identically.
To verify that, one merely computes the residue at each λn and observes that it becomes
zero. By differentiating the expression in the braces in the last relation, from (41) we
obtain

Tf(x) =

[

ψ̃1(x)ϕ1(x)− ϕ̃1(x)ψ1(x)

∆(λ)
−
∑

Λ0

w̃1n(x)ϕ1n(x) + z̃1n(x)ψ1n(x)

∆̇(λn)(λ − λn)

]

f(x)

−
∑

Λ0

a2w̃1n(x)
∫ x

0 ϕ1n(t)f(t)dt+ z̃1n(x)
(

a2
∫ d

x
ψ1n(t)f(t)dt+

∫ π

d
ψ2n(t)f(t)dt

)

∆̇(λn)
.

(42)



26 M. Shahriari

The operator T is independent of λ. To compute the value of the expression in the braces
in (42) we let λ→ ∞. Using the asymptotic formulas, we see that the term in the braces
is reduced to unity. To simplify the second term in (42) we recall that ψ1n = knϕ1n,
ψ2n = knϕ2n. From (4) we have

|a|

∫ d

0
ψ1n(y)f(y)dy +

1

|a|

∫ π

d

ψ2n(t)f(t)dt+
1

H|a|
ψ2n(π)R1(f) = 0.

Thus from (9),

|a|

∫ d

0
ψ1n(t)f(t)dt+

1

|a|

∫ π

d

ψ2n(t)f(t)dt+
1

|a|
R1(f) = 0.

Then for x < d and from (25),

Tf(x) = f(x)−
1

2

∑

Λ0

ỹ1n(x)

∫ x

0
ϕ1n(t)f(t)dt+

∑

Λ0

fnknz̃1n(x)R1(ϕn)

∆̇(λn)
, (43)

where
1

2
ỹ1n(x) = a2

w̃1n(x)− knz̃1n(x)

∆̇(λn)
,

and for x > d , by applying the similar computation we obtain

Tf(x) = f(x) +
1

2

∑

Λ0

ỹ2n(x)

∫ π

x

ϕ2n(t)f(t)dt+
∑

Λ0

fnw̃2n(x)R1(ϕn)

∆̇(λn)
,

where
1

2
ỹ2n(x) =

w̃2n(x)− knz̃2n(x)

∆̇(λn)
.

Now, from Lemma 3, we conclude that

ÃTF = TAF. (44)

Suppose that F = Φn (n ∈ Λ). Then we get fm = 〈Φm,Φn〉H
〈Φn,Φn〉H

= 0, for m ∈ Λ0. Using (44)
we get

ÃTΦn =Ã









{

ϕ1n − 1
2

∑

Λ0
ỹ1m

∫ x

0 ϕ1m(t)ϕ1n(t)dt, x < d

ϕ2n + 1
2

∑

Λ0
ỹ2m(x)

∫ π

x
ϕ2m(t)ϕ2n(t)dt, d < x < π

R1(ϕ̃n)









=









{

−ϕ′′
1n + q̃ϕ1n − 1

2

∑

Λ0
ℓ̃
(

ỹ1m
∫ x

0
ϕ1m(t)ϕ1n(t)dt

)

, x < d

−ϕ′′
2n + q̃ϕ2n + 1

2

∑

Λ0
ℓ̃
(

ỹ2m(x)
∫ π

x
ϕ2m(t)ϕ2n(t)dt

)

, d < x < π

−R′
1(ϕ̃n)








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=































−ϕ′′
1n + q̃ϕ1n − 1

2

∑

Λ0
ℓ̃ỹ1m

∫ x

0 ϕ1m(t)ϕ1n(t)dt
+ 1

2

∑

Λ0
2ỹ′1m(ϕ1mϕ1n) + ỹ1m(ϕ1mϕ1n)

′, x < d

−ϕ′′
2n + q̃ϕ2n + 1

2

∑

Λ0
ℓ̃ỹ2m

∫ π

x
ϕ2m(t)ϕ2n(t)dt

+ 1
2

∑

Λ0
(−2)ỹ′2m(ϕ2mϕ2n) + ỹ2m(ϕ2mϕ2n)

′, d < x < π

−R′
1(ϕ̃n)

















(45)

and

TAΦ1n =









{

−ϕ′′
1n + qϕ1n −

1
2

∑

Λ0
ỹ1m

∫ x

0 ϕ1mℓϕ1n, t < d

−ϕ′′
2n + qϕ2n +

1
2

∑

Λ0
ỹ2m

∫ π

x
ϕ2mℓϕ2n, d < x < π

−R′
1(ϕ̃n)









=































−ϕ′′
1n + qϕ1n −

1
2

∑

Λ0
ỹ1m

∫ x

0 ϕ1nℓϕ1m

−1
2

∑

Λ0
ỹ1m(ϕ1nϕ

′
1m − ϕ1mϕ

′
1n), x < d

−ϕ′′
2n + qϕ2n +

1
2

∑

Λ0
ỹ2m

∫ π

x
ϕ2nℓϕ2m

+1
2

∑

Λ0
ỹ2m(ϕ2nϕ

′
2m − ϕ2mϕ

′
2n), d < x < π

−R′
1(ϕ̃n)

















.

(46)

Note that

∑

Λ0

ỹ1m

∫ x

0
ϕ1nℓϕ1m =

∑

Λ0

ỹ1m

∫ x

0
λmϕ1mϕ1n

=
∑

Λ0

λmỹ1m

∫ x

0
ϕ1mϕ1n

=
∑

Λ0

ℓ̃ỹ1m

∫ x

0
ϕ1mϕ1n

and
∑

Λ0

ỹ2m

∫ π

x

ϕ2nℓϕ2m =
∑

Λ0

ℓ̃ỹ2m

∫ π

x

ϕ2mϕ2n.

Using (44) we find that

q(x)− q̃(x) =





{ ∑

Λ0
(ỹ1mϕ1m)

′, x < d
∑

Λ0
(ỹ2mϕ2m)

′, d < x < π

0





If Λ0 is empty, then T is a unitary operator and A = Ã. Hence q = q̃.◭
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