A-Statistical Supremum-Infimum and A-Statistical Convergence

M. Altınok, M. Küçükaslan

Abstract

In this paper, the concept of A-statistical supremum $\left(\sup _{A} x\right)$ and A-statistical infumum $\left(\inf _{A} x\right)$ for real valued sequences $x=\left(x_{n}\right)$ are defined and studied. It is mainly shown that, the equality of $\sup _{A} x$ and $\inf _{A} x$ is necessary but not sufficient for to existence of usual limit of the sequence. On the other hand, the equality of $\sup _{A} x$ and $\inf _{A} x$ is necessary and sufficient for to existence of A-statistical limit of the real valued sequences.

Key Words and Phrases: statistical supremum, statistical infimum, statistical convergence, upper (lower) peak point

2010 Mathematics Subject Classifications: 40A05, 40C05

The concept of statistical convergence is introduced by Fast and Steinhaus in [7] and [14], respectively. The idea of this concept based on asymptotic density of the subset K of natural numbers \mathbb{N} (see [3]).

Over the years, by using asymptotic density some concepts in mathematics are generalized.

Let K be a subset of natural numbers \mathbb{N} and

$$
K(n):=\{k: k \leq n, k \in \mathbb{K}\} .
$$

Then, the asymptotic density of $K \subseteq \mathbb{N}$ is defined by

$$
\delta(K):=\lim _{n \rightarrow \infty} \frac{1}{n}|K(n)|
$$

if the limit exists. The symbol $|K(n)|$ indicates the cardinality of the set $K(n)$.
A real or complex valued sequence $x=\left(x_{n}\right)$ is said to be statistically convergent to the number L, if for every $\varepsilon>0$, the set

$$
K(n, \varepsilon):=\left\{k: k \leq n,\left|x_{k}-L\right| \geq \varepsilon\right\}
$$

has zero asymptotic density, i. e.,

$$
\delta(K(n, \varepsilon)):=\lim _{n \rightarrow \infty} \frac{1}{n}|K(n, \varepsilon)|=0,
$$

and it is denoted by $x_{n} \rightarrow L(S)$.
Let $A=\left(a_{n, k}\right)$ be a non-negative matrix. If $A=\left(a_{n, k}\right)$ transforms all convergent sequences to convergent sequences with the same limit, then it is called regular matrix transformation. The theorem in (1.3.3 Theorem [13]) gives the conditions for a matrix to be regular:
(a) There exists a constant K such that $\sum_{k=1}^{\infty}\left|a_{n, k}\right|<K$ for all n,
(b) For every $k, \lim _{n \rightarrow \infty} a_{n k}=0$,
(c) $\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} a_{n, k}=1$.

A-density of the set $K \subset \mathbb{N}$ is defined by

$$
\delta_{A}(K):=\lim _{n \rightarrow \infty} \sum_{k \in K} a_{n, k}
$$

if the limit exists.
The sequence $x=\left(x_{n}\right)$ is A-statistical convergent to $L \in \mathbb{R}$, if for every $\varepsilon>0$ the set $K(n, \varepsilon):=\left\{k: k \leq n,\left|x_{k}-L\right| \geq \varepsilon\right\}$ has A-density zero. It is denoted by $x_{n} \rightarrow L(A-s t)$.

By using A-density, matrix characterization of statistical convergence has been given in [8]. After this study, some concepts in classical analysis has been generalized [1, 2, 4, $5,6,9,10,12]$, etc.

In this study, A-statistical lower and upper bound of real valued sequences will be defined. By using this concept, A-statistical supremum and A-statistical infimum will be investigated and mainly their relations between A -statistical convergence will be given.

Definition 1. (A-Statistical Lower Bound) The point $l \in \mathbb{R}$ is called A - statistical lower bound of the sequence $x=\left(x_{n}\right)$, if the following

$$
\begin{equation*}
\delta_{A}\left(\left\{k: x_{k} \geq l\right\}\right)=1 \quad\left(\text { or } \quad \delta_{A}\left(\left\{k: x_{k}<l\right\}\right)=0\right) \tag{1}
\end{equation*}
$$

hold.
The set of A-statistical lower bound of the sequence $x=\left(x_{n}\right)$ is denoted by $L_{A}(x)$:

$$
L_{A}(x):=\{l \in \mathbb{R}: l \text { satisfies }(1)\}
$$

Let us denote the set of usual lower bound of the sequence $x=\left(x_{n}\right)$ by $L(x)$:

$$
L(x):=\left\{l \in \mathbb{R}: l \leq x_{n} \text { for all } n \in \mathbb{N}\right\} .
$$

From the above definition we have following simple result:
Theorem 1. If $l \in \mathbb{R}$ is an usual lower bound of the sequence $x=\left(x_{n}\right)$, then $l \in \mathbb{R}$ is an A-statistical lower bound of the sequence $x=\left(x_{n}\right)$.

Proof. Let us assume $l \in \mathbb{R}$ is a lower bound of the sequence $x=\left(x_{n}\right)$. From the definition of usual lower bound we have $l \leq x_{n}$ for all $n \in \mathbb{N}$. So, the set

$$
\left\{k: x_{k} \geq l\right\}=\mathbb{N}
$$

Therefore,

$$
\delta_{A}\left(\left\{k: x_{k} \geq l\right\}\right)=1
$$

holds. This shows that every usual lower bound is an A-statistical lower bound,
i. e, $\left(L(x) \subseteq L_{A}(x)\right)$.

Remark 1. The inverse of Theorem 1 is not true in general.
Let us consider the sequence $x=\left(x_{n}\right)=\left(-\frac{1}{n}\right)$ and $l=-\frac{1}{2} \in \mathbb{R}$. If we choose a regular matrix as

$$
a_{n k}=\left\{\begin{array}{cc}
\frac{2 k}{n^{2}}, & 1 \leq k \leq n \\
0, & k>n
\end{array}\right.
$$

It is clear that $l=-\frac{1}{2}$ is an A-statistical lower bound but it is not usual lower bound for the sequence $x=\left(x_{n}\right)=\left(-\frac{1}{n}\right)$.

Definition 2. (A-statistical Upper Bound) The point $m \in \mathbb{R}$ is called A-statistical upper bound of the sequence $x=\left(x_{n}\right)$, if the following

$$
\begin{equation*}
\delta_{A}\left(\left\{k: x_{k} \leq m\right\}\right)=1\left(\text { or } \delta_{A}\left(\left\{k: x_{k}>m\right\}\right)=0\right) \tag{2}
\end{equation*}
$$

hold.
The set of A-statistical upper bound of the sequence $x=\left(x_{n}\right)$ is denoted by $U_{A}(x)$:

$$
U_{A}(x):=\{m \in \mathbb{R}: m \text { satisfies }(2)\}
$$

Let us denote the set of usual upper bound of the sequence $x=\left(x_{n}\right)$ by $U(x)$:

$$
U(x):=\left\{m \in \mathbb{R}: x_{n} \leq m \text { for all } n \in \mathbb{N}\right\}
$$

From the above definition we have following simple result:
Theorem 2. If $m \in \mathbb{R}$ is an usual upper bound of the sequence $x=\left(x_{n}\right)$, then it is an A-statistical upper bound of the sequence $x=\left(x_{n}\right)$.

Proof. Let us assume $m \in \mathbb{R}$ is an usual upper bound of the sequence $x=\left(x_{n}\right)$. From the definition of usual upper bound we have $x_{n} \leq m$ for all $n \in \mathbb{N}$. So, the set

$$
\left\{k: x_{k} \leq m\right\}=\mathbb{N}
$$

Therefore,

$$
\delta_{A}\left(\left\{k: x_{k} \leq m\right\}\right)=1
$$

holds. This shows that every usual upper bound is an A-statistical upper bound, i. e, $U(x) \subset U_{A}(x)$.

Remark 2. The inverse of Theorem 2 is not true in general.
Let us consider the sequence $x=\left(x_{n}\right)=\left(\frac{1}{n}\right)$ and $l=\frac{1}{2} \in \mathbb{R}$. If we choose

$$
a_{n k}=\left\{\begin{array}{cl}
\frac{2 k-1}{n^{2}}, & 1 \leq k \leq n, \\
0, & k>n .
\end{array}\right.
$$

regular matrix. It is clear that $l=\frac{1}{2}$ is an A-statistical upper bound but it is not usual upper bound for the sequence $x=\left(x_{n}\right)=\left(\frac{1}{n}\right)$.

Corollary 1. If $l \in \mathbb{R}$ is an A-statistical lower bound of the sequence $x=\left(x_{n}\right)$ and $l^{\prime}<l$, then $l^{\prime} \in \mathbb{R}$ is also A-statistical lower bound of the sequence $x=\left(x_{n}\right)$.

Proof. Assume that $l \in \mathbb{R}$ is an A-statistical lower bound of the sequence $x=\left(x_{n}\right)$. Then,

$$
\delta_{A}\left(\left\{k: x_{k} \geq l\right\}=1\right) .
$$

Since $l^{\prime}<l$, then the inclusion

$$
\left\{k: x_{k} \geq l\right\} \subset\left\{k: x_{k} \geq l^{\prime}\right\}
$$

holds. So, we have

$$
1 \leq \delta_{A}\left(\left\{k: x_{k} \geq l^{\prime}\right\}\right) .
$$

Therefore,

$$
\delta_{A}\left(\left\{k: x_{k} \geq l^{\prime}\right\}\right)=1 .
$$

So, $l^{\prime} \in \mathbb{R}$ is an A-statistical lower bound of the sequence $x=\left(x_{n}\right)$.
Corollary 2. If $m \in \mathbb{R}$ is an A-statistical upper bound of the sequence $x=\left(x_{n}\right)$ and $m<m^{\prime}$, then $m^{\prime} \in \mathbb{R}$ is also A-statistical upper bound of the sequence $x=\left(x_{n}\right)$.

Proof. Assume that $m \in \mathbb{R}$ is an A-statistical upper bound of the sequence $x=\left(x_{n}\right)$. Then,

$$
\delta_{A}\left(\left\{k: x_{k} \leq m\right\}=1\right) .
$$

Since $m<m^{\prime}$, then the inclusion

$$
\left\{k: x_{k} \leq m\right\} \subset\left\{k: x_{k} \leq m^{\prime}\right\}
$$

holds. So, we have

$$
1 \leq \delta_{A}\left(\left\{k: x_{k} \leq m^{\prime}\right\}\right) .
$$

Therefore,

$$
\delta_{A}\left(\left\{k: x_{k} \leq m^{\prime}\right\}\right)=1 .
$$

So, $m^{\prime} \in \mathbb{R}$ is an A-statistical upper bound of the sequence $x=\left(x_{n}\right)$.
Remark 3. If the sequence $x=\left(x_{n}\right)$ has an A-statistical lower (upper) bound, then it has infinitely many A-statistical lower (upper) bounds.

Definition 3. (A-Statistical Infimum $\left.\left(\inf _{A}\right)\right)$ n number $s \in \mathbb{R}$ is called A-statistical infimum of the sequence $x=\left(x_{n}\right)$ if $s \in \mathbb{R}$ is supremum of $L_{A}(x)$. That is

$$
\inf _{A} x:=\sup L_{A}(x)
$$

Definition 4. (A-Statistical Supremum $\left.\left(\sup _{A}\right)\right)$ n number $s^{\prime} \in \mathbb{R}$ is called A-statistical supremum of the sequence $x=\left(x_{n}\right)$ if $s^{\prime} \in \mathbb{R}$ is infimum of $U_{A}(x)$. That is

$$
\sup _{A} x:=\inf U_{A}(x) .
$$

Theorem 3. Let $x=\left(x_{n}\right)$ be a sequence of real numbers. Then,

$$
\inf x_{n} \leq \inf _{A} x_{n} \leq \sup _{A} x_{n} \leq \sup x_{n}
$$

hold.
Proof. From the definition of usual infimum we have

$$
\delta_{A}\left(\left\{k: \inf x_{n} \leq x_{k}\right\}\right)=\delta_{A}(\mathbb{N})=1
$$

This gives $\inf x_{n} \in L_{A}(x)$. Since $\inf _{A} x=\sup L_{A}(x)$, then $\inf _{A} x \geq \inf x_{n}$ hold.
From the definition of usual supremum we have

$$
\delta_{A}\left(\left\{k: \sup x_{n} \geq x_{k}\right\}\right)=\delta_{A}(\mathbb{N})=1
$$

This gives $\sup x_{n} \in U_{A}(x)$. Since $\sup _{A} x_{n}=\inf U_{A}(x)$, then $\sup _{A} x \leq \sup x_{n}$ hold. For to completion of the proof it is enough to show that the inequality

$$
\begin{equation*}
l \leq m \tag{3}
\end{equation*}
$$

holds for any $l \in L_{A}(x)$ and $m \in U_{A}(x)$.
Let us assume (3) is not true. That is there exist a $l^{\prime} \in L_{A}(x)$ and $m^{\prime} \in U_{A}(x)$ such that $m^{\prime}<l^{\prime}$ is satisfied. Since m^{\prime} is an A-statistical upper bound, then from Corollary 1 (II) l^{\prime} is also A-statistical upper bound of the sequence. This is the contradiction to the assumption of l^{\prime}. Therefore, $l \leq m$ hold.

Remark 4. Let $A=\left(a_{n k}\right)$ be a non-negative regular matrix.
a) If $x=\left(x_{n}\right)$ is a constant sequence then,

$$
\inf x_{n}=\inf _{A} x_{n}=\sup _{A} x_{n}=\sup x_{n}
$$

b) If we consider the sequence $x=\left(x_{n}\right)$ as

$$
x_{n}=\left\{\begin{array}{c}
x_{n}, \quad n \leq n_{0}, n_{0} \in \mathbb{N} \text { fixed } \\
a, \quad n>n_{0}
\end{array}\right.
$$

such that $x_{n} \leq a$ for all $n \in\left\{1,2,3, \ldots, n_{0}\right\}$, then

$$
\inf x_{n} \leq \inf _{A} x_{n} \leq \sup _{A} x_{n}=\sup x_{n} .
$$

c) If we consider the sequence $x=\left(x_{n}\right)$ as

$$
x_{n}=\left\{\begin{array}{c}
x_{n}, \quad n \leq n_{0}, n_{0} \in \mathbb{N} \text { fixed } \\
a, \quad n>n_{0}
\end{array}\right.
$$

such that $x_{n} \geq a$ for all $n \in\left\{1,2,3, \ldots, n_{0}\right\}$, then

$$
\inf x_{n}=\inf _{A} x_{n} \leq \sup _{A} x_{n} \leq \sup x_{n} .
$$

Theorem 4. Let $x=\left(x_{n}\right)$ be a real valued sequence and $A=\left(a_{n k}\right)$ be a regular matrix. Then,

$$
\delta_{A}\left(\left\{k: x_{k} \notin\left[\inf _{A} x_{n}, \sup _{A} x_{n}\right]\right\}\right)=0
$$

and

$$
\delta_{A}\left(\left\{k: x_{k} \in\left[\inf _{A} x_{n}, \sup _{A} x_{n}\right]\right\}\right)=1
$$

hold.
Proof. Let us assume for simplicity $\inf _{A} x_{n}=l$ and $\sup _{A} x_{n}=m$. That is $l=$ $\sup L_{A}(x)$ and $m=\inf U_{A}(x)$. From the definition of infimum and supremum we have $l-\varepsilon \in L_{A}(x), m+\varepsilon \in U_{A}(x)$ and

$$
\begin{equation*}
[l, m] \subset[l-\varepsilon, m+\varepsilon] \tag{4}
\end{equation*}
$$

It is clear from (4) that we have

$$
\begin{align*}
\delta_{A}\left(\left\{k: x_{k} \notin[l, m]\right\}\right) & \leq \delta_{A}\left(\left\{k: x_{k} \notin[l-\varepsilon, m+\varepsilon]\right\}\right)= \\
& =\delta_{A}\left(\left\{k: x_{k}<l-\varepsilon\right\}\right)+\delta_{A}\left(\left\{k: x_{k}>m+\varepsilon\right\}\right) \tag{5}
\end{align*}
$$

Since $\delta_{A}\left(\left\{k: x_{k}<l-\varepsilon\right\}\right)=0$ and $\delta_{A}\left(\left\{k: x_{k}>m+\varepsilon\right\}\right)=0$, then from (5) we have

$$
\delta_{A}\left(\left\{k: x_{k} \notin\left[\inf _{A} x_{n}, \sup _{A} x_{n}\right]\right\}\right)=0 .
$$

It is clear that the following equality

$$
\left\{k: x_{k} \in\left[\inf _{A} x_{n}, \sup _{A} x_{n}\right]\right\}=\mathbb{N}-\left\{k: x_{k} \notin\left[\inf _{A} x_{n}, \sup _{A} x_{n}\right]\right\}
$$

hold and we have

$$
\delta_{A}\left(\left\{k: x_{k} \in\left[\inf _{A} x_{n}, \sup _{A} x_{n}\right]\right\}\right)=\delta_{A}(\mathbb{N})-\delta_{A}\left(\left\{k: x_{k} \notin\left[\inf _{A} x_{n}, \sup _{A} x_{n}\right]\right\}\right) .
$$

This gives the desired result.

Theorem 5. If $\lim _{n \rightarrow \infty} x_{n}=l$, then $\sup _{A} x_{n}=\inf _{A} x_{n}=l$.
Proof. Assume $\lim _{n \rightarrow \infty} x_{n}=l$, i.e,
For every $\varepsilon>0$, there exist $n_{0}=n_{0}(\varepsilon) \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|x_{n}-l\right|<\varepsilon \tag{6}
\end{equation*}
$$

hold for all $n \geq n_{0}$. Therefore, the following inclusion deduced from (6)

$$
\begin{align*}
& \mathbb{N}-\left\{1,2,3, \ldots, n_{0}\right\} \subset\left\{k: x_{k} \geq l-\varepsilon\right\} \tag{7}\\
& \mathbb{N}-\left\{1,2,3, \ldots, n_{0}\right\} \subset\left\{k: x_{k} \leq l+\varepsilon\right\} \tag{8}
\end{align*}
$$

By using (7) and (8) we obtain

$$
\delta_{A}\left(\left\{k: x_{k} \geq l-\varepsilon\right\}\right)=1
$$

and

$$
\delta_{A}\left(\left\{k: x_{k} \leq l+\varepsilon\right\}\right)=1
$$

This discussion gives

$$
l-\varepsilon \in L_{A}(x), \quad l+\varepsilon \in U_{A}(x)
$$

for all $\varepsilon>0$ such that

$$
L_{A}(x)=(-\infty, l) \text { and } U_{A}(x)=(l, \infty)
$$

Therefore,

$$
\inf _{A} x_{n}=\sup (-\infty, l)=l=\inf (l, \infty)=\sup _{A} x_{n}
$$

is obtained.

Remark 5. Theorem 5 stays true when $l=\mp \infty$.
Proof. We shall give the proof only for $l=+\infty$. Lets take arbitrary $M \in \mathbb{R}$. From the assumption, $\exists n_{0} \equiv n_{0}(M) \in \mathbb{N}$ such that $x_{n}>M$ for all $n>n_{0}$. So,

$$
\delta_{A}\left(\left\{k: x_{k} \geq M\right\}\right) \geq \delta_{A}\left(\mathbb{N}-\left\{1,2, \ldots, n_{0}\right\}\right)=1
$$

and

$$
\delta_{A}\left(\left\{k: x_{k} \leq M\right\}\right) \leq \delta_{A}\left(\left\{1,2, \ldots, n_{0}\right\}\right)=0
$$

Therefore, $M \in L_{A}(x), M \notin U_{A}(x)$, i.e. $L_{A}(x)=(-\infty,+\infty)$ and $U_{A}(x)=\varnothing$.
Hence, $\inf _{A} x=\sup L_{A}(x)=\infty, \sup _{A} x=\inf U_{A}(x)=\inf _{A} \varnothing=\infty$.
The following Corollary is a simple consequence of Theorem 5. So, the proof is omitted here.

Corollary 3. Let $x=\left(x_{n}\right)$ be a real valued sequence. The following statements are true.
I) If the sequence $x=\left(x_{n}\right)$ is monotone increasing, then $\inf _{A} x_{n}=\sup x_{n}$.
II) If the sequence $x=\left(x_{n}\right)$ is monotone decreasing, then $\sup _{A} x_{n}=\inf x_{n}$.

Remark 6. Let $A=\left(a_{n k}\right)$ be a non-negative regular matrix.
a) If $x=\left(x_{n}\right)$ is monotone increasing, then

$$
\inf x_{n} \leq \inf _{A} x_{n}=\sup _{A} x_{n}=\sup x_{n} .
$$

b) If $x=\left(x_{n}\right)$ is monotone decreasing, then

$$
\inf x_{n}=\inf _{A} x_{n}=\sup _{A} x_{n} \leq \sup x_{n} .
$$

Remark 7. The inverse of Theorem 5 is not true.
For to see this let us consider the sequence $x=\left(x_{n}\right)$ as

$$
x_{n}= \begin{cases}1, & n=k^{2}, k=1,2, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

and the matrix $a=\left(a_{n k}\right)$ as

$$
a_{n k}=\left\{\begin{array}{cc}
\frac{2 k}{n^{2}}, & 1 \leq k \leq n, \\
0, & k>n .
\end{array}\right.
$$

It is clear that $\sup _{A} x_{n}=\inf _{A} x_{n}=0$ but the sequence is not convergent to 0 .
Theorem 6. $\lim _{n \rightarrow \infty} x_{n}=l(A-s t)$ if and only if $\sup _{A} x_{n}=\inf _{A} x_{n}=l$.
Proof. " $\Rightarrow "$ Assume that $\lim _{n \rightarrow \infty} x_{n}=l(A-s t)$. We have for every $\varepsilon>0$,

$$
\begin{equation*}
\delta_{A}\left(\left\{k: k \leq n,\left|x_{k}-l\right| \geq \varepsilon\right\}\right)=0 \tag{9}
\end{equation*}
$$

hold. Since,

$$
\left\{k: k \leq n,\left|x_{k}-l\right| \geq \varepsilon\right\}=\left\{k: k \leq n, x_{k} \geq l+\varepsilon\right\} \cup\left\{k: k \leq n, x_{k} \leq l-\varepsilon\right\}
$$

and from (9) we have

$$
\begin{equation*}
\delta_{A}\left(\left\{k: x_{k} \geq l+\varepsilon\right\}\right)=0 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{A}\left(\left\{k: x_{k} \leq l-\varepsilon\right\}\right)=0 . \tag{11}
\end{equation*}
$$

Also, from (9) we have

$$
\begin{equation*}
\delta_{A}\left(\left\{k: k \leq n,\left|x_{k}-l\right|<\varepsilon\right\}\right)=1 \tag{12}
\end{equation*}
$$

and (12) gives

$$
\begin{equation*}
\delta_{A}\left(\left\{k: x_{k}<l+\varepsilon\right\}\right)=1 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{A}\left(\left\{k: x_{k}>l-\varepsilon\right\}\right)=1 . \tag{14}
\end{equation*}
$$

The equation (10) and (13) gives $l+\varepsilon$ is an A-statistical upper bound and (11) and (14) gives $l-\varepsilon$ is an A-statistical lower bound for the sequence.

So,

$$
L_{A}(x)=(-\infty, l) \text { and } U_{A}(x)=(l, \infty)
$$

Therefore, we have

$$
\sup L_{A}(x)=l, \quad \inf U_{A}(x)=l
$$

$" \Leftarrow "$ Assume that

$$
\sup _{A} x_{n}=\inf _{A} x_{n}=l
$$

That is

$$
l=\sup L_{A}(x)=\inf U_{A}(x)
$$

From the definition of supremum and infimum, there exists at least one element $l^{\prime} \in L_{A}(x)$ and $l^{\prime \prime} \in U_{A}(x)$ for all $\varepsilon>0$ such that the inequality

$$
l-\varepsilon<l^{\prime} \text { and } l^{\prime \prime}<l+\varepsilon
$$

hold. Since l^{\prime} is an A-statistical lower bound then we have following inclusion

$$
\left\{k: x_{k} \geq l+\varepsilon\right\} \subset\left\{k: x_{k} \geq l^{\prime}\right\}
$$

So,

$$
\begin{equation*}
\delta_{A}\left(\left\{k: x_{k} \geq l+\varepsilon\right\}\right)=0 \tag{15}
\end{equation*}
$$

Since $l^{\prime \prime}$ is an A-statistical upper bound then we have following inclusion

$$
\left\{k: x_{k} \leq l-\varepsilon\right\} \subset\left\{k: x_{k} \leq l^{\prime \prime}\right\}
$$

So,

$$
\begin{equation*}
\delta_{A}\left(\left\{k: x_{k} \leq l-\varepsilon\right\}\right)=0 \tag{16}
\end{equation*}
$$

From the equations (15), (16) and

$$
\left\{k:\left|x_{k}-l\right| \geq \varepsilon\right\}=\left\{k: x_{k} \geq l+\varepsilon\right\} \cup\left\{k: x_{k} \leq l-\varepsilon\right\}
$$

we have

$$
\delta_{A}\left(\left\{k:\left|x_{k}-l\right| \geq \varepsilon\right\}\right)=0
$$

Therefore, the sequence $x=\left(x_{n}\right)$ is A-statistical convergent to $l \in \mathbb{R}$.
Definition 5. The real valued sequences $x=\left(x_{n}\right)$ and $y=\left(y_{n}\right)$ are called A-statistical equivalent if the A-density of the set $H=\left\{k: x_{k} \neq y_{k}\right\}$ is zero. It is denoted by $x \asymp y$.

Theorem 7. If the sequence $x=\left(x_{n}\right)$ and $y=\left(y_{n}\right)$ are equivalent, then

$$
\inf _{A} x_{n}=\inf _{A} y_{n} \text { and } \sup _{A} x_{n}=\sup _{A} y_{n}
$$

Proof. Since the sequence $x=\left(x_{n}\right)$ and $y=\left(y_{n}\right)$ are equivalent, then the set $H=$ $\left\{k: x_{k} \neq y_{k}\right\}$ has zero A-density. Let us consider an arbitrary element $l \in L_{A}(x)$. The element $l \in \mathbb{R}$ is an A-statistical lower bound of the sequence $x=\left(x_{n}\right)$, then we have

$$
\delta_{A}\left(\left\{k: x_{k}<l\right\}\right)=0 \text { and } \delta_{A}\left(\left\{k: x_{k} \geq l\right\}\right)=1
$$

From the following inclusion

$$
\left\{k: y_{k}<l\right\}=\left\{k: x_{k} \neq y_{k}<l\right\} \cup\left\{k: x_{k}=y_{k}<l\right\} \subset H \cup\left\{k: x_{k}=y_{k}<l\right\}
$$

we have

$$
\begin{align*}
0 \leq \delta_{A}\left(\left\{k: y_{k}<l\right\}\right) & =\delta_{A}\left(\left\{k: x_{k} \neq y_{k}<l\right\}\right)+\delta_{A}\left(\left\{k: x_{k}=y_{k}<l\right\}\right) \\
& \leq \delta_{A}(H)+\delta_{A}\left(\left\{k: x_{k}=y_{k}<l\right\}\right)=0+0=0 \tag{17}
\end{align*}
$$

Since the inclusion

$$
\begin{aligned}
\left\{k: y_{k} \geq l\right\} & =\left\{k: x_{k} \neq y_{k} \geq l\right\} \cup\left\{k: x_{k}=y_{k} \geq l\right\} \\
& \supset\left\{k: x_{k}=y_{k}<l\right\}
\end{aligned}
$$

then we have

$$
\begin{equation*}
1=\delta_{A}\left(\left\{k: y_{k} \geq l\right\}\right) \geq \delta_{A}\left(\left\{k: x_{k}=y_{k} \geq l\right\}\right)=1 \tag{18}
\end{equation*}
$$

From (17) and (18), the element $l \in \mathbb{R}$ is an A-statistical lower bound of the sequence $y=\left(y_{n}\right)$. That is, $L_{A}(x) \subset L_{A}(y)$.

If we consider an arbitrary element $l \in L_{A}(y)$, it can be easily obtained that $l \in L_{A}(x)$. Then $L_{A}(y) \subset L_{A}(x)$. Therefore,

$$
L_{A}(y)=L_{A}(x)
$$

hold. Since $\sup L_{A}(y)=\sup L_{A}(x)$, then $\inf _{A} x=\inf _{A} y$ is obtained.
By using the same argument as above it can be obtained $\sup _{A} x=\sup _{A} y$.
Definition 6. (Upper or Lower Peak Point) [11] The point x_{k} is called upper(or lower) peak point of the sequence $x=\left(x_{n}\right)$ if the inequality $x_{k} \geq x_{l}$ (or $x_{k} \leq x_{l}$) holds for all $l \geq k$.
Theorem 8. Let $x=\left(x_{n}\right)$ be a real valued sequence. If the element $x_{n_{0}}$ is an upper(or lower) peak point of $\left(x_{n}\right)$, then the element $x_{n_{0}}$ is an A-statistical upper (or A-statistical lower) bound.

Proof. Assume the point $x_{n_{0}}$ is an upper peak point of the sequence $x=\left(x_{n}\right)$ that $x_{k} \leq x_{n_{0}}$ holds for all $k \geq n_{0}$. So, the following inclusion

$$
\left\{k: x_{k} \leq x_{n_{0}}\right\} \supset \mathbb{N}-\left\{1,2, \ldots, n_{0}\right\}
$$

holds. From this inclusion and the properties of asymptotic density we have

$$
1 \leq \delta_{A}\left(\left\{k: x_{k} \leq x_{n_{0}}\right\}\right)=1
$$

This give us the point $x_{n_{0}}$ is an A-statistical upper bound of the sequence $x=\left(x_{n}\right)$.

Theorem 9. Let $x=\left(x_{n}\right)$ be a real valued sequence and $A=\left(a_{n k}\right), B=\left(b_{n k}\right)$ be regular matrix. If the condition

$$
\limsup _{n \rightarrow \infty} \sum_{k=1}^{\infty}\left|a_{n k}-b_{n k}\right|=0
$$

hold. Then

$$
\inf _{A} x_{n}=\inf _{B} x_{n} \text { and } \sup _{A} x_{n}=\sup _{B} x_{n} .
$$

Proof. Let $K_{1}=\left\{k: x_{k}<m\right\}, K_{2}=\left\{k: x_{k} \geq m\right\}$ be subsets of natural numbers \mathbb{N} for all $m \in \mathbb{R}$. For $K=K_{1}$ (or K_{2})

$$
\begin{aligned}
\left|\delta_{A}(K)-\delta_{B}(K)\right| & =\left|\lim _{n \rightarrow \infty} \sum_{k \in K} a_{n k}-\sum_{k \in K} b_{n k}\right| \\
& \leq \lim _{n \rightarrow \infty} \sum_{k \in K}\left|a_{n k}-b_{n k}\right| \\
& \leq \sum_{k=1}^{\infty}\left|a_{n k}-b_{n k}\right|
\end{aligned}
$$

hold. Namely $\delta_{A}(K)=\delta_{B}(K)$. So $\inf _{A} x_{n}=\inf _{B} x_{n}$.
Remark 8. The inverse of Theorem 9 is not true.
For to see this let us consider the sequence $x=\left(x_{n}\right)$ where

$$
x_{n}= \begin{cases}1, & n=k^{2}, k=1,2, \ldots \\ 0, & \text { otherwise },\end{cases}
$$

and the matrices $A=\left(a_{n, k}\right)$ and $B=\left(b_{n, k}\right)$ as

$$
a_{n k}=\left\{\begin{array}{cc}
\frac{n}{3(n+1)}, & k=n^{2} \\
1-\frac{n}{3(n+1)}, & k=n^{2}+1, \\
0, & \text { otherwise }
\end{array}\right.
$$

and

$$
b_{n k}=\left\{\begin{array}{cc}
\frac{n}{5(n+1)}, & k=n^{2} \\
1-\frac{n}{5(n+1)}, & k=n^{2}+1 \\
0, & \text { otherwise }
\end{array}\right.
$$

The matrices A, B are non-negative and regular. This sequence and matrices A and B has been considered in [4]. It is clear that $L_{A}(x)=(-\infty, 0], L_{B}(x)=(-\infty, 0], U_{A}(x)=(0, \infty)$ and $U_{B}(x)=(0, \infty)$. Therefore,

$$
\sup L_{A}(x)=\sup L_{B}(x)=0
$$

and

$$
\inf U_{A}(x)=\inf U_{B}(x)=0 .
$$

That is, $\sup _{A} x=\sup _{B} x, \inf _{A} x=\inf _{B} x$ hold. Unfortunately, the condition given theorem doesn't hold for the matrices A and B. The other case is obtained by similar way.

References

[1] O I Agratini. A-statistical convergence of a class of integral operators. Appl. Math. Inf. Sci., 6(2): 325-328, 2012.
[2] M Altınok and M Küçükaslan. A-statistical convergence and A-statistical monotonicity. Applied Mathematics E-Notes, 13: 249-260, 2013.
[3] R C Buck. The measure theoretic approch to density. Amer. J. Math., 68:560-580, 1946.
[4] K Demirci. On A-statistical cluster points. Glasnic Matematicki, 37:293-301, 2001.
[5] O Duman. A-statistical convergence of sequences of convolution operators. Taiwanese Journal of Mathematics, 12(2):523-536, 2008.
[6] O Duman and M K Khan. A-statistical convergence of approximating operators. Mathematical Inequalities and applications, 6(4):689-699, 2003.
[7] H Fast. Sur la convergece statistique. Colloq. Math., 2:241-244, 1951.
[8] J Fridy and H I Miller. A matrix characterization of statistical convergence. Analysis,11:59-66, 1991.
[9] J Fridy and C Orhan. Lacunary statistical summability. J. Math. Anal. Appl., 173:497504, 1993.
[10] M Küçükaslan and M Yılmaztürk. Deferred statistical convergence. Kyunpook Mathematical Journal, 2013, (Submitted).
[11] E Kaya, M Küçükaslan and R Wagner. On Statistical Convergence and Statistical Monotonicity. Annales Univ. Sci. Budapest. Sect. Comp., 39:257-270, 2013.
[12] M Mursaleen. λ-statistical convergence. Mathematica Slovaca, 50(1):111-115, 2000.
[13] G M Peterson. Regular matrix transformation. McGraw-hill Pub. Company limited London, 1966.
[14] H Steinhaus. Sur la convergence ordinaire et la convergence asymtotique. Colloq. Math., 2:73-74, 1951.

Maya Altınok
Mersin University, Faculty of Sciences and Arts, Department of Mathematics, Mersin, Turkey
E-mail: mayaaltinok@mersin.edu.tr
Mehmet Küçükaslan
Mersin University, Faculty of Sciences and Arts, Department of Mathematics, Mersin, Turkey
E-mail: mkucukaslan@mersin.edu.tr, mkkaslan@gmail.com
Received 08 September 2013
Accepted 28 November 2013

