Azerbaijan Journal of Mathematics V. 4, No 2, 2014, July ISSN 2218-6816

On the Convergence of Composite Implicit Iteration Process with Errors for Asymptotically Nonexpansive Mappings in the Intermediate Sense

S. Banerjee^{*}, B. S.Choudhury

Abstract. In this paper we establish a necessary and sufficient condition for the strong convergence of the composite iteration process with errors to a common fixed point of the finite family of asymptotically nonexpansive mappings in the intermediate sense in a arbitrary real Banach space. We also prove several strong and weak convergence results of this implicit iterative scheme in a uniformly convex Banach space. Further we also prove that in a uniformly convex Banach space with the dual having Kadec-Klee property, the composite implicit iteration process converges weakly to a common fixed point of a finite family of asymptotically nonexpansive mappings in the intermediate sense. Our results extend several existing results.

Key Words and Phrases: composite implicit iteration process with errors; asymptotically nonexpansive mapping in the intermediate sense; Opial's condition; Kadec-Klee property; uniformly convex Banach space; common fixed point; condition(\overline{B}); weak and strong convergence.

2010 Mathematics Subject Classifications: 47H10

1. Introduction

Let X be a normed space, C be a nonempty subset of X and let $T: C \to C$ be a given mapping. Then T is said to be asymptotically nonexpansive if there exists a sequence $\{k_n\}$ in $[0, \infty)$ with $\lim_{n\to\infty} k_n = 0$ such that

$$||T^n x - T^n y|| \le (1 + k_n) ||x - y||$$
, for all $x, y \in C$ and each $n \ge 1$.

If $k_n \equiv 1$ then T is known as a nonexpansive mapping. The weaker definition [10] requires that

$$\limsup_{n \to \infty} \sup_{x, y \in C} (\|T^n x - T^n y\| - \|x - y\|) \le 0$$

for every $x \in C$ and that T^N be continuous for some $N \ge 1$. Bruck et al.[1] gave a definition which is somewhere between these two : T is called

http://www.azjm.org

© 2010 AZJM All rights reserved.

 $^{^{*}}$ Corresponding author.

asymptotically nonexpansive mapping in the intermediate sense [1] provided T is uniformly continuous and

$$\limsup_{n \to \infty} \sup_{x, y \in C} (\|T^n x - T^n y\| - \|x - y\|) \le 0.$$

T is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such that

$$||T^n x - T^n y|| \le L ||x - y||$$
, for all $x, y \in C$ and each $n \ge 1$.

The above definitions make it clear that asymptotically nonexpansive mapping must be asymptotically nonexpansive mapping in the intermediate sense and uniformly L-Lipschitzian mapping, but the converse need not be true:

Example [9]: Let $X = R, C = \left[-\frac{1}{\pi}, \frac{1}{\pi}\right]$ and |k| < 1. For each $x \in C$, define

$$T(x) = \begin{cases} kx \sin \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Then T is asymptotically nonexpansive mapping in the intermediate sense, but it is not asymptotically nonexpansive mapping.

In 2001, Xu and Ori[20] introduced the following implicit iteration process for a finite family of N nonexpansive self mappings $\{T_i : i \in I\}$ of C (here $I = \{1, 2, ..., N\}$) with $\{t_n\}$ a real sequence in (0, 1) and an initial point $x_0 \in C$ which is defined as follows:

$$\begin{array}{l} x_1 = t_1 x_0 + (1 - t_1) T_1 x_1 \\ x_2 = t_2 x_1 + (1 - t_2) T_2 x_2 \\ \cdot \\ \cdot \\ x_N = t_N x_{N-1} + (1 - t_N) T_N x_N \\ x_{N+1} = t_{N+1} x_N + (1 - t_{N+1}) T_1 x_{N+1} \\ \cdot \\ \cdot \\ x_{2N} = t_{2N} x_{2N-1} + (1 - t_{2N}) T_N x_{2N} \\ x_{2N+1} = t_{2N+1} x_{2N} + (1 - t_{2N+1}) T_1 x_{2N+1} \\ \cdot \\ \cdot \\ \cdot \end{array}$$

The above process can be written in the compact form as:

$$x_n = t_n x_{n-1} + (1 - t_n) T_n x_n, n \ge 1,$$
(1)

where $T_n = T_n \mod N$. Xu and Ori they[20] proved the weak convergence of the process (1) to a common fixed point in the setting of a Hilbert space. Zhou and Chang [21] studied the modified implicit iteration with errors for a finite family of asymptotically nonexpansive mappings which in compact form can be written as

$$x_n = \alpha_n x_{n-1} + \beta_n T_{n(\mod N)}^n x_n + \gamma_n u_n, \qquad n \ge 1,$$
(2)

where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ are real sequences in [0, 1] satisfying $\alpha_n + \beta_n + \gamma_n = 1$ and $\{u_n\}$ is a bounded sequence in C. Chang et al.[3] defined an implicit iteration process with error by

$$\begin{aligned}
x_1 &= \alpha_1 x_0 + (1 - \alpha_1) T_1 x_1 + v_1, \\
x_2 &= \alpha_2 x_1 + (1 - \alpha_2) T_2 x_2 + v_2, \\
\vdots \\
x_N &= \alpha_N x_{N-1} + (1 - \alpha_N) T_N x_N + v_N, \\
x_{N+1} &= \alpha_{N+1} x_N + (1 - \alpha_{N+1}) T_1^2 x_{N+1} + v_{N+1}, \\
\vdots \\
x_{2N} &= \alpha_{2N} x_{2N-1} + (1 - \alpha_{2N}) T_N^2 x_{2N} + v_{2N}, \\
x_{2N+1} &= \alpha_{2N+1} x_{2N} + (1 - \alpha_{2N+1}) T_1^3 x_{2N+1} + v_{2N+1}, \\
\vdots \end{aligned}$$
(3)

For each $n \ge 1$ we have n = (k-1)N + i, where $i = i(n) \in \{1, 2, ..., N\}, k = k(n) \ge 1$ is a positive integer and $k(n) \to \infty$ as $n \to \infty$. Then (3) can be written in the following compact form:

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_{i(n)}^{k(n)} x_n + v_n, \qquad n \ge 1,$$
(4)

where $\{\alpha_n\}$ is a real sequence in [0, 1] and $\{v_n\}$ is a bounded sequence in C where C is a nonempty closed convex subset of E satisfying $C + C \subset C$. Very recently Su and Li [15] introduced composite implicit iteration process for a finite family of strictly pseudocontractive maps which is defined as follows:

$$\begin{cases} x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n y_n \\ y_n = \beta_n x_{n-1} + (1 - \beta_n) T_n x_n, \end{cases}$$
(5)

where $T_n = T_{n(\mod N)}$ and $\{\alpha_n\}, \{\beta_n\}$ are real sequences in [0, 1]. Also Thakur [18] introduced the following composite implicit iteration process for a finite family of asymptotically nonexpansive mappings:

$$\begin{cases} x_1 = x \in C \\ x_n = (1 - \alpha_n) x_{n-1} + \alpha_n T_{i(n)}^{k(n)} y_n \\ y_n = (1 - \beta_n) x_{n-1} + \beta_n T_{i(n)}^{k(n)} x_n, \quad n \ge 1, \end{cases}$$
(6)

where $\{\alpha_n\}, \{\beta_n\}$ are sequences in [0, 1].

Recently Cianciaruso et al. [5] introduced the following implicit iteration process with errors for a finite family of N self asymptotically nonexpansive mappings which is defined as follows:

$$\begin{cases} x_n = (1 - \alpha_n - \gamma_n) x_{n-1} + \alpha_n T_{i(n)}^{k(n)} y_n + \gamma_n u_n \\ y_n = (1 - \beta_n - \delta_n) x_n + \beta_n T_{i(n)}^{k(n)} x_n + \delta_n v_n, \quad n \ge 1, \end{cases}$$
(7)

where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\delta_n\}$ are sequences in [0, 1] with $\alpha_n + \gamma_n \leq 1, \beta_n + \delta_n \leq 1$ and $\{u_n\}, \{v_n\}$ are bounded sequences in C. It is called composite implicit iteration process with errors. For $\gamma_n = \delta_n = 0$, (7) reduces to (6).

To proceed we shall need the following well known definitions and lemmas: A Banach space X is said to satisfy Opial's condition[11] if $x_n \rightharpoonup x$ (i.e. $x_n \rightarrow x$ weakly) and $x \neq y$ imply

$$\limsup_{n \to \infty} \|x_n - x\| < \limsup_{n \to \infty} \|x_n - y\|.$$

A Banach space X is said to satisfy τ -Opial condition[1] if for every bounded $\{x_n\} \in X$ that τ -converges to $x \in X$ it holds

$$\limsup_{n \to \infty} \|x_n - x\| < \limsup_{n \to \infty} \|x_n - y\|$$

for every $x \neq y$, where τ is a Hausdorff linear topology on X.

A Banach space X has the uniform τ -Opial property[1] if for each c > 0 there exists r > 0 with the property that for each $x \in X$ and each sequence $\{x_n\}$ such that $\{x_n\}$ is τ -convergent to 0 and

$$1 \le \limsup_{n \to \infty} \|x_n\| < \infty, \|x\| \ge c$$

it holds $\limsup_{n\to\infty} ||x_n - x|| \ge 1 + r$. Clearly uniform τ -Opial condition implies τ -Opial condition. Note that a uniformly convex space which has the τ -Opial property necessarily has the uniform τ -Opial property, where τ is a Hausdorff linear topology on X.

Let T be a self-mapping of a nonempty subset C of a Banach space X. A sequence $\{x_n\}$ in C is called an almost orbit[6] of T if $\lim_{n\to\infty} [\sup_{m>0} ||x_{n+m} - T^m x_n||] = 0$

A Banach space X is said to satisfy Kadec-Klee property, if for every sequence $\{x_n\} \in X, x_n \to x$ and $||x_n|| \to ||x||$ together imply that $x_n \to x$ as $n \to \infty$. There are uniformly convex Banach spaces which neither have a Frèchet differentiable norm nor satisfy Opial's property but their duals do have the Kadec-Klee property (see [6],[8]).

Also we recall that a mapping $T: C \to C$ is called semi-compact[16] if for any sequence $\{x_n\}$ in C such that $||x_n - Tx_n|| \to 0$ (as $n \to \infty$), there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \to x^* \in C$.

Lemma 1.1. ([17], Lemma 1) Let $\{a_n\}, \{b_n\}$ and $\{\delta_n\}$ be sequences of nonnegative real numbers satisfying the inequality

$$a_{n+1} \le (1+\delta_n)a_n + b_n, \forall n \ge 1.$$

If $\sum_{n=1}^{\infty} \delta_n < \infty$ and $\sum_{n=1}^{\infty} b_n < \infty$, then

- (i) $\lim_{n\to\infty} a_n$ exists,
- (*ii*) $\lim_{n\to\infty} a_n = 0$ whenever $\liminf_{n\to\infty} a_n = 0$.

Lemma 1.2. ([1]) Suppose a Banach space X has the uniform τ -Opial property, C is a norm bounded, sequentially τ -compact subset of X and $T : C \to C$ is asymptotically nonexpansive in the weak sense. If $\{y_n\}$ is a sequence in C such that $\lim_{n\to\infty} ||y_n - z||$ exists for each fixed point z of T and if $\{y_n - T^k y_n\}$ is τ -convergent to 0 for each $k \in N$, then $\{y_n\}$ is τ -convergent to a fixed point of T.

Lemma 1.3. ([13]) Suppose that X is a uniformly convex Banach space and $0 < a \le t_n \le b < 1$ for all positive integers n. Also suppose that $\{x_n\}$ and $\{y_n\}$ are two sequences in X such that $\limsup_{n\to\infty} ||x_n|| \le r$, $\limsup_{n\to\infty} ||y_n|| \le r$ and $\lim_{n\to\infty} ||t_nx_n + (1-t_n)y_n|| = r$ hold for some $r \ge 0$. Then $\lim_{n\to\infty} ||x_n - y_n|| = 0$.

Lemma 1.4. ([6], Theorem 5.3) Let X be a uniformly convex Banach space such that X^* has the Kadec-Klee property and let C be a nonempty bounded closed convex subset of X. Suppose $T: C \to C$ is asymptotically nonexpansive mapping in the intermediate sense and $\{x_n\}$ is an almost orbit of T. Then $\{x_n\}$ is weakly convergent to a fixed point of T if and only if $w - \lim_{n\to\infty} (x_n - x_{n+1}) = 0$.

Now we recall some well-known definitions:

A mapping $T: K \to K$ with nonempty fixed point set F(T) in K satisfies **Condition** (I) [14] if there is a nondecreasing function $f: [0, \infty) \to [0, \infty)$ with f(0) = 0 and f(r) > 0for all $r \in (0, \infty)$ such that

$$f(d(x, F(T))) \le ||x - Tx|| \text{ for all } x \in K.$$

A finite family of mappings $T_i : K \to K$, for all i = 1, 2, 3, ..., N with nonempty fixed point set $F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$ satisfies

Condition(\overline{A})[4] if there is a nondecreasing function $f : [0, \infty) \to [0, \infty)$ with f(0) = 0and f(r) > 0 for all $r \in (0, \infty)$ such that

$$f(d(x,F)) \le \frac{1}{N} (\sum_{i=1}^{N} ||x - T_i x||)$$
 for all $x \in K$,

Condition(\overline{B})[4] if there is a nondecreasing function $f : [0, \infty) \to [0, \infty)$ with f(0) = 0and f(r) > 0 for all $r \in (0, \infty)$ such that

$$f(d(x,F)) \le \max_{1 \le i \le N} \{ \|x - T_i x\| \} \text{ for all } x \in K,$$

Condition $(\overline{C})[4]$ if there is a nondecreasing function $f : [0, \infty) \to [0, \infty)$ with f(0) = 0and f(r) > 0 for all $r \in (0, \infty)$ such that at least one of the T_i 's satisfies condition $(I)(i.e. \ f(d(x, F(T))) \le ||x - T_ix||$ for at least one $T_i, i = 1, 2, ..., N$).

Clearly, if $T_i = T$, for all i = 1, 2, ..., N, then Condition(A) reduces to Condition(I). Also Condition(\overline{B}) reduces to Condition(I) if all but one of T_i 's are identities. Also it contains Condition(\overline{A}). Furthermore, Condition(\overline{C}) and Condition(\overline{B}) are equivalent (see [4]). It is well known that every continuous and demicompact mapping must satisfy

Condition(I)[14]. Since every completely continuous mapping is continuous and demicompact so it must satisfy Condition(I). Therefore to study the strong convergence of the iterative sequence $\{x_n\}$ defined by (7) we use Condition(\overline{B}) instead of the complete continuity of the mappings $\{T_1, T_2, ..., T_N\}$.

Recently convergence problems of an nonimplicit iteration process to a common fixed point for a finite family of asymptotically nonexpansive mappings in the intermediate sense in uniformly convex Banach spaces have been considered by several authors (see [1], [9], [12], [2]). The purpose of this paper is to study the weak and strong convergence of the composite implicit iterative sequence $\{x_n\}$ defined by (7) to a common fixed point for a finite family of asymptotically nonexpansive mappings in the intermediate sense in Banach spaces.

2. Main Results

We begin this section with the following lemmas. Throughout this section we denote $\{1, 2, ..., N\}$ by I.

Lemma 2.1. Let X be a Banach space, C be a nonempty closed convex subset of X. Let $\{T_i : i \in I\}$ be a finite family of N asymptotically nonexpansive self-mappings of C in the intermediate sense. Set

$$d_n = \max\{\max_{1 \le i \le N} \sup_{x, y \in C} (\|T_i^n x - T_i^n y\| - \|x - y\|), 0\} \forall n \ge 1,$$

where $\sum_{n=1}^{\infty} d_n < \infty$. Let $\{x_n\}$ be the sequence as defined in (7) with $\limsup_{n\to\infty} \alpha_n < 1$ and $\sum_{n=1}^{\infty} \gamma_n < \infty$, $\sum_{n=1}^{\infty} \delta_n < \infty$ for all $n \ge 1$. If $F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$ then $\lim_{n\to\infty} \|x_n - p\|$ exists for all $p \in F$.

Proof: Let $p \in F$. Since $\{u_n\}, \{v_n\}$ are bounded sequences in C, let $M = \sup_{n \ge 1} ||u_n - p|| \lor \sup_{n \ge 1} ||v_n - p||$. Obviously $M < \infty$. Now

$$\|y_{n} - p\| = \|(1 - \beta_{n} - \delta_{n})x_{n} + \beta_{n}T_{i(n)}^{k(n)}x_{n} + \delta_{n}v_{n} - p\|$$

$$\leq (1 - \beta_{n} - \delta_{n})\|x_{n} - p\| + \beta_{n}\|T_{i(n)}^{k(n)}x_{n} - p\| + \delta_{n}\|v_{n} - p\|$$

$$\leq (1 - \beta_{n} - \delta_{n})\|x_{n} - p\| + \beta_{n}\|x_{n} - p\| + \beta_{n}d_{k(n)} + \delta_{n}M$$

$$\leq \|x_{n} - p\| + d_{k(n)} + \delta_{n}M, \qquad (8)$$

$$\begin{aligned} \|x_n - p\| &= \|(1 - \alpha_n - \gamma_n)x_{n-1} + \alpha_n T_{i(n)}^{k(n)} y_n + \gamma_n u_n - p\| \\ &\leq (1 - \alpha_n - \gamma_n) \|x_{n-1} - p\| + \alpha_n \|T_{i(n)}^{k(n)} y_n - p\| + \gamma_n \|u_n - p\| \\ &\leq (1 - \alpha_n) \|x_{n-1} - p\| + \alpha_n \|y_n - p\| + \alpha_n d_{k(n)} + \gamma_n M \\ &\leq (1 - \alpha_n) \|x_{n-1} - p\| + \alpha_n [\|x_n - p\| + d_{k(n)} + \delta_n M] + \\ &\quad \alpha_n d_{k(n)} + \gamma_n M \\ &= (1 - \alpha_n) \|x_{n-1} - p\| + \alpha_n \|x_n - p\| + 2\alpha_n d_{k(n)} + \end{aligned}$$

On the Convergence of Composite Implicit Iteration Process

$$(\delta_n + \gamma_n)M,$$

which implies that

$$||x_n - p|| \leq ||x_{n-1} - p|| + \frac{2\alpha_n}{1 - \alpha_n} d_{k(n)} + \frac{M}{1 - \alpha_n} (\delta_n + \gamma_n).$$

Since $\limsup_{n\to\infty} \alpha_n < 1$, there exists $\beta < 1$ such that $\alpha_n < \beta$ for big n. So from above it follows that

$$||x_n - p|| \leq ||x_{n-1} - p|| + \frac{2\beta}{1 - \beta} d_{k(n)} + \frac{M}{1 - \beta} (\delta_n + \gamma_n) = ||x_{n-1} - p|| + \sigma_n,$$
(9)

where $\sigma_n = \frac{2\beta}{1-\beta} d_{k(n)} + \frac{M}{1-\beta} (\delta_n + \gamma_n)$. Now $\sum_{n=1}^{\infty} \sigma_n < \infty$. Hence by Lemma 1.1 we have $\lim_{n\to\infty} \|x_n - p\|$ exists for all $p \in F$.

Theorem 2.1. Let X be a Banach space, C be a nonempty closed convex subset of X. Let $\{T_i : i \in I\}$ be a finite family of N asymptotically nonexpansive self-mappings of C in the intermediate sense. Set

$$d_n = \max\{\max_{1 \le i \le N} \sup_{x, y \in C} (\|T_i^n x - T_i^n y\| - \|x - y\|), 0\} \forall n \ge 1,$$

where $\sum_{n=1}^{\infty} d_n < \infty$. Let $\{x_n\}$ be the sequence as defined in (7) with $\limsup_{n\to\infty} \alpha_n < 1$ and $\sum_{n=1}^{\infty} \gamma_n < \infty$, $\sum_{n=1}^{\infty} \delta_n < \infty$ for all $n \ge 1$. If $F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$, then $\{x_n\}$ converges strongly to a common fixed point of $\{T_i : i \in I\}$ if and only if $\liminf_{n\to\infty} d(x_n, F) = 0$.

Proof: The necessary part is trivial. We only prove sufficient part. From (9) we have

$$||x_n - p|| \le ||x_{n-1} - p|| + \sigma_n.$$

Taking infimum over all $p \in F$, we have

$$d(x_n, F) \le d(x_{n-1}, F) + \sigma_n.$$

Hence by Lemma 1.1 we have $\lim_{n\to\infty} d(x_n, F)$ exists. Since $\liminf_{n\to\infty} d(x_n, F) = 0$, we get $\lim_{n\to\infty} d(x_n, F) = 0$. Now

$$\|x_{n+m} - p\| \leq \|x_{n+m-1} - p\| + \sigma_{n+m} \\ \leq \|x_{n+m-2} - p\| + \sigma_{n+m-1} + \sigma_{n+m} \\ \dots \\ \leq \|x_n - p\| + \sum_{k=n+1}^{n+m} \sigma_k.$$

Since $\sum_{n=1}^{\infty} \sigma_n < \infty$ and $\lim_{n\to\infty} d(x_n, F) = 0$, there exists $N_1 \in N$ such that for all $n \geq N_1$ we have $d(x_n, F) < \frac{\epsilon}{3}$ and $\sum_{n=N_1}^{\infty} \sigma_n < \frac{\epsilon}{6}$. Therefore there exists $q \in F$ such that $d(x_{N_1}, q) < \frac{\epsilon}{3}$. From above we get

$$||x_{n+m} - x_n|| \leq ||x_{n+m} - q|| + ||x_n - q||$$

S. Banerjee, B. S.Choudhury

$$< ||x_{N_1} - q|| + \sum_{k=N_1+1}^{n+m} \sigma_k + ||x_{N_1} - q|| + \sum_{k=N_1+1}^n \sigma_k$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{6} + \frac{\epsilon}{3} + \frac{\epsilon}{6} = \epsilon.$$

Hence $\{x_n\}$ is a Cauchy sequence. Let $\lim_{n\to\infty} x_n = x^*$. Since C is closed, so $x^* \in C$. Since T_i 's are uniformly continuous, so $F(T_i)$'s are closed for all $i \in I$ which in turn implies that F is closed. Now note that

$$|d(x^{\star}, F) - d(x_n, F)| \leq ||x^{\star} - x_n|| \to 0 \text{ for all } n.$$

$$(10)$$

Since $\lim_{n\to\infty} x_n = x^*$ and $\lim_{n\to\infty} d(x_n, F) = 0$, it follows from above that $d(x^*, F) = 0$, that is $x^* \in F$. Thus $\{x_n\}$ converges strongly to a common fixed point of $T_1, T_2, ..., T_N$.

Lemma 2.2. Let X be a uniformly convex Banach space, C be a nonempty closed convex subset of X. Let $\{T_i : i \in I\}$ be a finite family of N asymptotically nonexpansive self-mappings of C in the intermediate sense. Put

$$d_n = \max\{\max_{1 \le i \le N} \sup_{x, y \in C} (\|T_i^n x - T_i^n y\| - \|x - y\|), 0\} \forall n \ge 1,$$

where $\sum_{n=1}^{\infty} d_n < \infty$. Suppose that $F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$. Let $\{x_n\}$ be the sequence as defined in (7) with $0 < \liminf_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n < 1$, $\limsup_{n \to \infty} \beta_n < 1$ and $\sum_{n=1}^{\infty} \gamma_n < \infty$, $\sum_{n=1}^{\infty} \delta_n < \infty$ for all $n \geq 1$. Then $\lim_{n \to \infty} \|x_n - T_l x_n\| = 0$ for all $l \in I$.

Proof: Let $p \in F$. Then by Lemma 2.1, $\lim_{n\to\infty} ||x_n - p||$ exists for all $p \in F$. Let $\lim_{n\to\infty} ||x_n - p|| = d$, for some $d \ge 0$. So $\{x_n\}$ is bounded. Since $\{u_n\}, \{v_n\}$ are bounded so $\{u_n - x_{n-1}\}, \{v_n - x_{n-1}\}$ are also bounded. Now

$$\begin{aligned} \|x_n - p\| &= \|(1 - \alpha_n - \gamma_n)x_{n-1} + \alpha_n T_{i(n)}^{k(n)} y_n + \gamma_n u_n - p\| \\ &= \|(1 - \alpha_n)(x_{n-1} - p + \gamma_n(u_n - x_{n-1})) + \alpha_n(T_{i(n)}^{k(n)} y_n - p + \gamma_n(u_n - x_{n-1}))\| \end{aligned}$$

and

$$||x_{n-1} - p + \gamma_n (u_n - x_{n-1})|| \le ||x_{n-1} - p|| + \gamma_n ||u_n - x_{n-1}||.$$
(11)

Taking limsup on the both sides of (11) we get

 $\limsup_{n \to \infty} \|x_{n-1} - p + \gamma_n (u_n - x_{n-1})\| \le \limsup_{n \to \infty} \|x_{n-1} - p\| + \limsup_{n \to \infty} \gamma_n \|u_n - x_{n-1}\| = d.$ (12)

Again

$$\|T_{i(n)}^{k(n)}y_n - p + \gamma_n(u_n - x_{n-1})\| \le \|T_{i(n)}^{k(n)}y_n - p\| + \gamma_n\|u_n - x_{n-1}\| \le \|y_n - p\| + d_{k(n)} + \gamma_n\|u_n - x_{n-1}\|.$$
(13)

Now from (8) we get

$$||y_n - p|| \le ||x_n - p|| + d_{k(n)} + \delta_n M.$$
(14)

Taking limsup on the both sides of (14) we get

$$\limsup_{n \to \infty} \|y_n - p\| \le d. \tag{15}$$

Thus from (13) and (15) we get

$$\limsup_{n \to \infty} \|T_{i(n)}^{k(n)} y_n - p + \gamma_n (u_n - x_{n-1})\| \le d.$$
(16)

Now

$$d = \lim_{n \to \infty} \|x_n - p\|$$

=
$$\lim_{n \to \infty} \|(1 - \alpha_n)(x_{n-1} - p + \gamma_n(u_n - x_{n-1})) + \alpha_n(T_{i(n)}^{k(n)}y_n - p + \gamma_n(u_n - x_{n-1}))\|.$$
 (17)

As $0 < \liminf_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n < 1$, there exist $a, b \in (0, 1)$ such that $0 < a \leq \alpha_n \leq b < 1$ for big n. Therefore by using Lemma 1.3 and (12), (16) and (17) we get

$$\lim_{n \to \infty} \|T_{i(n)}^{k(n)} y_n - x_{n-1}\| = 0.$$
(18)

Again from (7) and (18) it follows that

$$\begin{aligned} \|x_n - x_{n-1}\| &= \|(1 - \alpha_n - \gamma_n)x_{n-1} + \alpha_n T_{i(n)}^{k(n)} y_n + \gamma_n u_n - x_{n-1}\| \\ &\leq \alpha_n \|T_{i(n)}^{k(n)} y_n - x_{n-1}\| + \gamma_n \|u_n - x_{n-1}\| \to 0 \text{ as } n \to \infty. \end{aligned}$$
(19)

So we have

$$\lim_{n \to \infty} \|x_n - x_{n+l}\| = 0 \text{ for all } l \in I.$$

$$\tag{20}$$

Since

$$||x_n - T_{i(n)}^{k(n)}y_n|| \le ||x_n - x_{n-1}|| + ||x_{n-1} - T_{i(n)}^{k(n)}y_n||,$$

by (18) and (19) we have

$$\lim_{n \to \infty} \|x_n - T_{i(n)}^{k(n)} y_n\| = 0.$$
(21)

Now

$$\|y_n - x_n\| = \|(1 - \beta_n - \delta_n)x_n + \beta_n T_{i(n)}^{k(n)}x_n + \delta_n v_n - x_n\|$$

S. Banerjee, B. S.Choudhury

$$\leq \beta_{n} \|T_{i(n)}^{k(n)} x_{n} - x_{n}\| + \delta_{n} \|v_{n} - x_{n}\|$$

$$\leq \beta_{n} (\|T_{i(n)}^{k(n)} x_{n} - T_{i(n)}^{k(n)} y_{n}\| + \|T_{i(n)}^{k(n)} y_{n} - x_{n-1}\| + \|x_{n-1} - x_{n}\|)$$

$$+ \delta_{n} \|v_{n} - x_{n}\|$$

$$\leq \beta_{n} (\|x_{n} - y_{n}\| + d_{k(n)} + \|T_{i(n)}^{k(n)} y_{n} - x_{n-1}\| + \|x_{n-1} - x_{n}\|)$$

$$+ \delta_{n} \|v_{n} - x_{n}\|,$$

which implies that

$$\|y_{n} - x_{n}\| \leq \frac{\beta_{n}}{1 - \beta_{n}} \|x_{n} - x_{n-1}\| + \frac{\beta_{n}}{1 - \beta_{n}} d_{k(n)} + \frac{\beta_{n}}{1 - \beta_{n}} \|T_{i(n)}^{k(n)}y_{n} - x_{n-1}\| + \frac{\delta_{n}}{1 - \beta_{n}} \|v_{n} - x_{n-1}\|.$$

$$(22)$$

As $\limsup_{n\to\infty} \beta_n < 1$, there exists $\beta < 1$ such that $\beta_n < \beta$ for big *n*. So from (22) and by using (19), (18) we get

$$\|y_n - x_n\| \le \frac{\beta}{1-\beta} \|x_n - x_{n-1}\| + \frac{\beta}{1-\beta} d_{k(n)} + \frac{\beta}{1-\beta} \|T_{i(n)}^{k(n)} y_n - x_{n-1}\| + \frac{\delta_n}{1-\beta} \|v_n - x_{n-1}\| \to 0 \text{ as } n \to \infty.$$
(23)

Now

$$\|x_{n-1} - T_n x_n\| \le \|x_{n-1} - T_{i(n)}^{k(n)} y_n\| + \|T_{i(n)}^{k(n)} y_n - T_n x_n\| = \sigma_n + \|T_{i(n)}^{k(n)} y_n - T_n x_n\|,$$
(24)

where $\sigma_n = \|x_{n-1} - T_{i(n)}^{k(n)}y_n\|$. From (18) we have $\sigma_n \to 0$ as $n \to \infty$. Since for each $n > N, n = (n - N) \pmod{N}$ and $n = (k(n) - 1)N + i(n), i(n) \in \{1, 2..., N\}$, we have k(n - N) = k(n) - 1 and i(n - N) = i(n). Then

$$\begin{aligned} \|T_{i(n)}^{k(n)-1}y_{n} - x_{n-1}\| &\leq \|T_{i(n)}^{k(n)-1}y_{n} - T_{i(n-N)}^{k(n)-1}x_{n-N}\| + \|T_{i(n-N)}^{k(n)-1}x_{n-N} - T_{i(n-N)}^{k(n)-1}y_{n-N}\| \\ &+ \|T_{i(n-N)}^{k(n)-1}y_{n-N} - x_{(n-N)-1}\| + \|x_{(n-N)-1} - x_{n-1}\| \\ &\leq \|T_{i(n-N)}^{k(n-N)}y_{n} - T_{i(n-N)}^{k(n-N)}x_{n-N}\| + \|T_{i(n-N)}^{k(n-N)}x_{n-N} - T_{i(n-N)}^{k(n-N)}y_{n-N}\| \\ &+ \|T_{i(n-N)}^{k(n-N)}y_{n-N} - x_{(n-N)-1}\| + \|x_{(n-N)-1} - x_{n-1}\| \\ &\leq \|y_{n} - x_{n-N}\| + d_{k(n-N)} + \|x_{n-N} - y_{n-N}\| + d_{k(n-N)} + \sigma_{n-N} \\ &+ \|x_{(n-N)-1} - x_{n-1}\| \\ &\leq \|y_{n} - x_{n}\| + \|x_{n} - x_{n-N}\| + \|x_{n-N} - y_{n-N}\| + 2d_{k(n-N)} + \sigma_{n-N} \\ &+ \|x_{(n-N)-1} - x_{n}\| + \|x_{n} - x_{n-1}\| \to 0 \text{ as } n \to \infty. \end{aligned}$$

Since every T_i is uniformly continuous, it follows from (25) that

$$\lim_{n \to \infty} \|T_{i(n)}^{k(n)} y_n - T_n x_{n-1}\| = 0.$$
(26)

Again by uniform continuity of the mappings and by (19) and (26) it follows that

$$\|T_{i(n)}^{k(n)}y_n - T_nx_n\| \le \|T_{i(n)}^{k(n)}y_n - T_nx_{n-1}\| + \|T_nx_{n-1} - T_nx_n\| \to 0 \text{ as } n \to \infty.$$
(27)

From (24) and (27) it follows that

$$\lim_{n \to \infty} \|x_{n-1} - T_n x_n\| = 0.$$
(28)

From (19) and (28) we get

$$||x_n - T_n x_n|| \le ||x_n - x_{n-1}|| + ||x_{n-1} - T_n x_n|| \to 0 \text{ as } n \to \infty.$$
 (29)

Now for all $l \in I$

$$\|x_n - T_{n+l}x_n\| \le \|x_n - x_{n+l}\| + \|x_{n+l} - T_{n+l}x_{n+l}\| + \|T_{n+l}x_{n+l} - T_{n+l}x_n\|.$$
(30)

So by (30), (29) and (20) and uniform continuity of the mappings, it follows that $\lim_{n\to\infty} ||x_n - T_{n+l}x_n|| = 0$, for all $l \in I$. Consequently we have

$$\lim_{n \to \infty} \|x_n - T_l x_n\| = 0, \text{ for } l \in I.$$
(31)

This completes the proof of the Lemma.

Theorem 2.2. Let X be a uniformly convex Banach space, C be a nonempty closed convex subset of X. Let $\{T_i : i \in I\}$ be a finite family of N asymptotically nonexpansive self-mappings of C in the intermediate sense. Set

$$d_n = \max\{\max_{1 \le i \le N} \sup_{x,y \in C} (\|T_i^n x - T_i^n y\| - \|x - y\|), 0\} \forall n \ge 1,$$

where $\sum_{n=1}^{\infty} d_n < \infty$. Suppose that $F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$. Let $\{x_n\}$ be defined by (7) with $0 < \liminf_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n < 1$, $\limsup_{n \to \infty} \beta_n < 1$ and $\sum_{n=1}^{\infty} \gamma_n < \infty$, $\sum_{n=1}^{\infty} \delta_n < \infty$ for all $n \geq 1$. If $\{T_i : i \in I\}$ satisfies $Condition(\overline{B})$, then $\{x_n\}$ converges strongly to a common fixed point of $T_1, T_2, ..., T_N$.

Proof: By Lemma 2.1, $\lim_{n\to\infty} ||x_n-p||$ exists for all $p \in F$. Let $\lim_{n\to\infty} ||x_n-p|| = d$, for some $d \ge 0$. If d = 0 then there is nothing to prove. Let d > 0. Now by Lemma 2.2 we get $\lim_{n\to\infty} ||x_n - T_l x_n|| = 0$, for all $l \in I$. As in the proof of Theorem2.1, we have that $\lim_{n\to\infty} d(x_n, F)$ exists. Again as $\{T_i : i \in I\}$ satisfies Condition (\overline{B}) , we have that $\lim_{n\to\infty} f(d(x_n, F)) = 0$. Since $f : [0, \infty) \to [0, \infty)$ is a nondecreasing function with f(0) = 0 and $\lim_{n\to\infty} d(x_n, F)$ exists, we have $\lim_{n\to\infty} d(x_n, F) = 0$. Then the theorem follows from Theorem 2.1.

Theorem 2.3. Let X be a uniformly convex Banach space, C be a nonempty closed convex subset of X. Let $\{T_i : i \in I\}$ be a finite family of N asymptotically nonexpansive self-mappings of C in the intermediate sense. Set

$$d_n = \max\{\max_{1 \le i \le N} \sup_{x, y \in C} (\|T_i^n x - T_i^n y\| - \|x - y\|), 0\} \forall n \ge 1,$$

where $\sum_{n=1}^{\infty} d_n < \infty$. Suppose that $F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$. Let $\{x_n\}$ be defined by (7) with $0 < \liminf_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n < 1$, $\limsup_{n \to \infty} \beta_n < 1$ and $\sum_{n=1}^{\infty} \gamma_n < \infty$, $\sum_{n=1}^{\infty} \delta_n < \infty$ for all $n \geq 1$. If any one of the mappings $\{T_1, T_2, ..., T_N\}$ is semicompact, then $\{x_n\}$ converges strongly to a common fixed point of $T_1, T_2, ..., T_N$.

Proof: By hypothesis, there exists one mapping, say T_1 , of $\{T_1, T_2, ..., T_N\}$ which is semicompact. Now by Lemma 2.2 we have $\lim_{n\to\infty} ||x_n - T_l x_n|| = 0$, for all $l \in I$. Therefore $\lim_{n\to\infty} ||x_n - T_1 x_n|| = 0$, and since T_1 is semicompact, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \to x^* \in C$. From (31) we get

$$\|x^{\star} - T_l x^{\star}\| = \lim_{n_j \to \infty} \|x_{n_j} - T_l x_{n_j}\| = 0, \text{ for all } l \in \{1, 2, ..., N\}.$$
(32)

From (32) it follows that $x^* \in F$. By Lemma 2.1 $\lim_{n\to\infty} ||x_n - p||$ exists for all $p \in F$. Since $x^* \in F$, so $\lim_{n\to\infty} ||x_n - x^*||$ exists. Again since $\{x_{n_j}\}$ is a subsequence of $\{x_n\}$ such that $x_{n_j} \to x^*$, so it follows that $x_n \to x^*$ as $n \to \infty$. Thus $\{x_n\}$ converges strongly to a common fixed point of $T_1, T_2, ..., T_N$.

Theorem 2.4. Let X be a uniformly convex Banach space satisfying Opial's condition, C be a nonempty closed convex subset of X. Let $\{T_i : i \in I\}$ be a finite family of N asymptotically nonexpansive self-mappings of C in the intermediate sense. Set

$$d_n = \max\{\max_{1 \le i \le N} \sup_{x, y \in C} (\|T_i^n x - T_i^n y\| - \|x - y\|), 0\} \forall n \ge 1,$$

where $\sum_{n=1}^{\infty} d_n < \infty$. Suppose that $F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$. Let $\{x_n\}$ be defined by (7) with $0 < \liminf_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n < 1$, $\limsup_{n \to \infty} \beta_n < 1$ and $\sum_{n=1}^{\infty} \gamma_n < \infty$, $\sum_{n=1}^{\infty} \delta_n < \infty$ for all $n \geq 1$. Then $\{x_n\}$ converges weakly to a common fixed point of $T_1, T_2, ..., T_N$.

Proof: By Lemma 2.2 we get $\lim_{n\to\infty} ||x_n - T_l x_n|| = 0$, for all $l \in I$. So by the uniform continuity of T_1 we get $\lim_{n\to\infty} ||x_n - T_1^m x_n|| = 0$ for all $m \in N$. Then by applying Lemma 1.2 with the τ -topology taken as a weak topology we get the following conclusion: By Lemma 1.2 there exists $z_1 \in F(T_1)$ such that $x_n \to z_1(x_n \to z_1 \text{ weakly})$ as $n \to \infty$. Similarly by Lemma 1.2 there exists $z_2 \in F(T_2)$ such that $x_n \to z_2$ as $n \to \infty$ and $z_3 \in F(T_3)$ such that $x_n \to z_3$ as $n \to \infty$ and $z_N \in F(T_N)$ such that $x_n \to z_N \in \bigcap_{i=1}^N F(T_i) = F$. Thus $\{x_n\}$ converges weakly to a common fixed point of $T_1, T_2, ..., T_N$. This completes the proof.

Theorem 2.5. Let X be a uniformly convex Banach space such that X^* has the Kadec-Klee property and C be a nonempty closed convex subset of X. Let $\{T_i : i \in I\}$ be a finite family of N asymptotically nonexpansive self-mappings of C in the intermediate sense. Set

$$d_n = \max\{\max_{1 \le i \le N} \sup_{x, y \in C} (\|T_i^n x - T_i^n y\| - \|x - y\|), 0\} \forall n \ge 1,$$

where $\sum_{n=1}^{\infty} d_n < \infty$. Suppose that $F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$. Let $\{x_n\}$ be defined by (7) with $0 < \liminf_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n < 1$, $\limsup_{n \to \infty} \beta_n < 1$ and $\sum_{n=1}^{\infty} \gamma_n < \infty$, $\sum_{n=1}^{\infty} \delta_n < \infty$ for all $n \geq 1$. If $\{T_1, T_2, ..., T_N\}$ satisfy Condition (\overline{B}) , then $\{x_n\}$ converges weakly to some common fixed point of $\{T_1, T_2, ..., T_N\}$.

Proof: By Lemma 2.2 we get $\lim_{n\to\infty} ||x_n - T_i x_n|| = 0$, for all $i \in I$. So by the uniform continuity of T_i we get

$$\lim_{n \to \infty} \|x_n - T_i^m x_n\| = 0 \text{ for any } m \ge 1.$$
(33)

Since $\{T_1, T_2, ..., T_N\}$ satisfy Condition (\overline{B}) , so as in the proof of Theorem 2.2 it follows that $\lim_{n\to\infty} d(x_n, F) = 0$. Then, as shown in the proof of Theorem 2.1, it follows that $\{x_n\}$ is a Cauchy sequence. So for any $m \in N$ we have

$$\|x_{n+m} - x_n\| \to 0 \text{ as } n \to \infty.$$
(34)

From (33) and (34) we get

$$||x_{n+m} - T_i^m x_n|| \to 0 \text{ as } n \to \infty,$$

which in other words implies that

$$\lim_{n \to \infty} [\sup_{m \ge 0} \|x_{n+m} - T_i^m x_n\|] = 0.$$
(35)

So from (35) it follows that $\{x_n\}$ is almost orbit of T_i for all $i \in I$. Also from (19) we have that $||x_{n+1} - x_n|| \to 0$ as $n \to \infty$. So $\{x_{n+1} - x_n\}$ is strongly convergent to 0. Therefore $\{x_{n+1} - x_n\}$ is weakly convergent to 0. Thus by Lemma 1.4 we conclude that $\{x_n\}$ is weakly convergent to a fixed point of T_i . Since weak limit is unique so we must have that $\{x_n\}$ converges weakly to a common fixed point of $\{T_1, T_2, ..., T_N\}$. This completes the proof.

Remark 2.1. Our results generalize results of [5], Theorem 3.4 of [16].

References

- [1] R.E.Bruck, T.Kuczumow and S.Reich; Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with uniform Opial property, Colloq. Math. 65(1993), 169-179.
- [2] S.Banerjee, B.S.Choudhury, Weak and Strong convergence criteria of modified Noor iterations for asymptotically nonexpansive mappings in the intermediate sense, Bull. Korean Math. Soc. 44(2007), No.3, pp. 493-506.
- [3] S.S.Chang, K.K.Tan, H.W.J.Lee, Chi Kin Chan, On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 313(2006)273-283.

- [4] C.E.Chidume, B.Ali, Weak and strong convergence theorems for finite families of asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 330(2007)377-387.
- [5] F.Cianciaruso, G.Marino, X.Wang, Weak and strong convergence of the Ishikawa iterative process for finite family of asymptotically nonexpansive mappings, Appl. Math. Comput. 216(2010)3558-3567.
- [6] J.G.Falset, W.Kaczor, T.Kuczumow, S.Reich, Weak convrgence theorems for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 43(2001)377-401.
- [7] K.Goebel and W.A.Kirk; A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35(1972), 171-174.
- [8] W.Kaczor, Weak convergence of almost orbits of asymptotically nonexpansive mappings, J.Math.Anal.Appl. 272(2002)565-574.
- [9] G.E.Kim, T.H.Kim; Mann and Ishikawa iterations with errors for non-Lipschitzian mappings in Banach spaces, Comput. Math. Appl. 42(2001)1565-1570.
- [10] W.A.Kirk; Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17(1974), 339-346.
- [11] Z.Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bull. Amer. Math. soc. 73(1967)591-597.
- [12] S.Plubtieng, R.Wangkeeree; Strong convergences theorems for multi-step Noor iterations with errors in Banach spaces, J. Math. Anal. Appl. 321(2006)10-23.
- [13] J.Schu, Weak and strong convergence of fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43(1991)153-159.
- [14] H.F.Senter, W.G.Dotson, Jr., Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44,375-380,(1974).
- [15] Y.Su, S.Li, Composite implicit iteration process for common fixed points of afinite family of strictly pseudocontractive maps, J. Math. Anal. Appl. 320(2006)882-891.
- [16] Z.H.Sun, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 286(2003)351-358.
- [17] K.K.Tan, H.K.Hu, Approximating fixed points of nonexpansive mapping by the Ishikawa iteration process, J. Math. Anal. Appl. 178(1993)301-308.
- [18] B.S.Thakur, Weak and strong convergence of composite implicit iteration process, Appl. Math. Comp. 190(2007)965-973.
- [19] Y.Xu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl. 224, 91-101(1998).

- [20] H.K.Xu, R.G.Ori, An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal. Optim. 22(2001)767-773.
- [21] Y.Zhou, S.S.Chang, Convergence of implicit iteration process for a finite family of asymptotically nonexpansive mappings in Banach space, Numer. Funct. Anal. Optim. 23(2002)911-921.

Shrabani Banerjee,

Department of Mathematics Bengal Engineering and Science University, Shibpur, Howrah-711103, India. E-mail: banerjee.shrabani@yahoo.com

Binayak S.Choudhury Department of Mathematics Bengal Engineering and Science University, Shibpur, Howrah-711103, India. E-mail: binayak12@yahoo.co.in

Received 13 August 2011 Accepted 27 December 2013