
Azerbaijan Journal of Mathematics

V. 4, No 2, 2014, July
ISSN 2218-6816

On Weighted Sobolev Type Inequalities in Spaces of Dif-

ferentiable Functions
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Abstract. We prove two-weighted Sobolev type inequality that estimates Lq
v(Ω) weighted norm of

differentiable function u(x) vanishing on the boundary of domain Ω through Lp
ω(Ω) weighted norm

of its first derivatives for 1 < q < p < ∞, some class of weights v, ω−

1

p−1 ∈ L1,loc and Ω ⊂ Rn.
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1. Introduction

This paper studies weighted Sobolev inequalities

(∫

Ω
|u (x)|q v(x)dx

)
1
q

≤

(∫

Ω
|∇u (x)|p ω (x) dx

)
1
p

(1)

for some class of domains Ω ⊂ Rn and differentiable functions u (x) in Ω vanishing on the
boundary ∂Ω, where 1 ≤ q < p < ∞, v(x) and ω(x) are a.e. positive functions in some
neighborhood of Ω. Our approach is similar to that of [7] used for the case ∞ > q ≥ p ≥ 1.

As f(x) ≤ I1 (|∇f |) (x), the inequalities like (1) are usually derived from two-weighted
estimates for fractional integrals

Iαf (x) =

∫

Rn

f (y)

|x− y|n−αdy.

For example, it was shown in [1] that in case 1 < p < q, for Ω = Rn and Lipshitz
continuous functions u(x) in Rn, these inequalities arise from the estimate for Iαf stated
in [2] with α = 1 and the weight functions v(x) and ω(x) satisfying the condition

(
∫

Q

vdx

) 1
q







∫

Rn

ω1−p′

(

|Q|
1
n + |xQ − x|

)(n−1)p′
dx







1
p′

≤ C (2)
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for all balls Q ⊂ Rn, where p′ = p
p−1 , xQ denotes the center of the ball Q and |Q| is its

Lebesgue measure.

The condition (2) is equivalent to a simpler one

Bpq = sup
Q

|Q|
1
n
−1

(∫

Q

vdx

)
1
q
(∫

Q

ω1−p′dx

)
1
p′

< +∞ (Apq)

(see [1]), if 1 < p < q and v(x) satisfies the reverse doubling condition, i.e. if there exist
δ, ε ∈ (0, 1) such that

∫

δQ

vdx ≤ ε

∫

Q

vdx, (RD)

where δQ is a ball concentric to Q with a radius δ times as large as the radius of Q; or if
q = p and v(x) satisfies the condition A∞ (see, [7]), i.e. if there exist positive numbers β
and δ such that

v(E)

v(Q)
≤ β

(

|E|

|Q|

)δ

(A∞) (A∞)

for every ball Q and every measurable subset E ⊂ Q with v(E) =
∫

E
v(x)dx.

Using the estimates for Iαf obtained in [1] and the results of [2] and [3], it is proven
in [1] that in case Ω = Q0, where Q0 is some ball in Rn, the inequality (1) is true for
q > p > 1 if

sup
Q⊂8Q0

(
∫

Q

vdx

) 1
q







∫

8Q0

ω1−p′

(

|Q|
1
n + |xQ − x|

)(n−1)p′
dx







1
p′

< +∞ (3)

and for q = p > 1 if

sup
Q⊂8Q0

|Q|
1
n
− 1

r

(∫

Q

vrdx

)
1
pr
(∫

Q

ω(1−p′)rdx

)
1

p′r

< +∞ (4)

with some r > 1. Besides, in case when q > p and v ∈ (RD) or when q = p and v ∈ A∞

and ω1−p′ ∈ A∞, (3) and (4) can be replaced by

sup
Q⊂8Q0

|Q|
1
n
−1

(
∫

Q

vdx

) 1
p
(
∫

Q

ω1−p′dx

) 1
p′

< +∞.

The case q < p is more complicated. For example, a necessary and sufficient condition
on the measure µ in Rn which guarantees the validity of inequality

‖Iαf‖Lq(dµ) ≤ C ‖f‖Lp(Rn)

is obtained in [4] in terms of the Wolf potential.
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We finally note the works [5, 6, 8] which treat the inequality (1) for general weights.
Also note the one-dimensional result for Hardy inequality with 1 ≤ q < p ≤ ∞

(
∫ ∞

0

∣

∣

∣

∣

∫ ∞

x

f (t) dt

∣

∣

∣

∣

q

v (x) dx

)
1
q

≤ c

(
∫ ∞

0
|f (x)|p ω (x) dx

) 1
p

(5)

which holds if and only if





∫ ∞

0
ω1−p′ (z)

[

∫ z

0
v (x) dx

(∫ ∞

z

ω1−p′ (x) dx

)q−1
]

p
p−q

dz





p−q
p

< +∞. (6)

In the sequel, by C, C0, C1, etc. we will denote the positive constants with different
meanings in different parts of the text which depend only on p, q, dimension n, and
sometimes, on the constants β and δ included in condition (A∞).

Definition 1. The domain Ω ⊂ Rn is said to belong to the class H if there exist ε > 0
and ρ0 > 0 such that

∣

∣Qx
ρ0
\Ω
∣

∣ ≥ ε
∣

∣Qx
ρ0

∣

∣ (H)

for every point x ∈ Ω, where Qx
ρ0

is a ball of radius ρ0 centered at x.

As an example of such domains, we can mention any domain lying between two planes
xn = a and xn = b, a 6= b. In particular, any bounded domain belongs to the class H.

The following result was proved in [7].

Theorem 1. Let 1 ≤ p ≤ q < ∞, Ω ∈ H and v (x) ∈ A∞. If v (x) and ω (x)satisfy the

condition (Apq) with p > 1, or

(
∫

Q

vdx

) 1
q

≤ B1q es sin f
x∈Q

ω (x)

for every ball Q ∩ Ω 6= ∅ with p = 1, then the inequality (1) holds.

Now we state the main result of this paper.

Theorem 2. Let 1 ≤ q < p < ∞, Ω ∈ H and v (x) ∈ A∞. If

B̃pq =

(
∫

Ω
ω1−p′ (z)M

p
p−q (z) dz

)
p−q
pq

< +∞,
(

A˜pq
)

where

M (z) = sup
Qz

v (Qz)

|Qz|
n−1
n

q

(
∫

Qz

ω1−p′dx

)q−1

with q ≥ 1 and the supremum is taken over all balls Qz centered at a point z ∈ Ω, then
the inequality (1) holds.
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2. Proof of main result

Let α > 0,

eα = {x ∈ Ω : |u (x)| > α}

and let γ ∈ (0, 1) be some number to be specified later. For every fixed x ∈ e2α there
exists a ball Qx

ρ(x) such that

∣

∣

∣
Qx

ρ(x)\eα

∣

∣

∣
= γ

∣

∣

∣
Qx

ρ(x)

∣

∣

∣
, (7)

because the function F (t) = |Qx
t \eα| is continuous on (0, +∞), F (t) → 0 as t → 0 and

F (t) ≥ γ |Qx
t | for sufficiently large values of t due to the conditions imposed on Ω and the

function u (x).
It is evident that all possible balls Qx

ρ(x), x ∈ e2α, form the cover of the set e2α and their

radii are uniformly bounded by the number ρ0 due to the condition (H). By the Besicovitch

covering lemma (see, e.g., [9]), one can find from the system
{

Qx
ρ(x)

}

a subcover {Qi} of

finite multiplicity for the set e2α.
Let Qi be one of the balls of {Qi}. There are two possibilities: either

a) |Qi ∩ e2α| < γ |Qi| or b) |Qi ∩ e2α| ≥ γ |Qi|.
Let us show that in case a) we have

v (e2α ∩Qi) ≤
βγδ

1− βγδ
v (Qi ∩ eα) (8)

if

1− βγδ > 0, (9)

and in case b) we have

v (Qi ∩ e2α) ≤ c

[

1

γ2 |Qi|
1− 1

n

v
1
q (Qi)

(
∫

Qi

ω1−p′dz

) 1
p′

]q

·
1

αq

(

∫

Qi∩(eα\e2α)
ω |∇u|p dz

)
q
p

.

(10)
In case a), due to the condition (A∞)

v (Qi ∩ e2α) ≤ β

(

|Qi ∩ e2α|

|Qi|

)δ

v (Qi) ≤ βγδv (Qi) . (11)

On the other hand, again by virtue of (A∞) and (7),

v (Qi) = v (Qi ∩ eα) + v (Qi\eα) ≤ v (Qi ∩ eα) + β

(

|Qi\eα|

|Qi|

)δ

v (Qi) ≤

≤ v (Qi ∩ eα) + βγδv (Qi) . (12)
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It is clear that γ defined by (9) guarantees the validity of condition (9). Therefore,
from (13) we have

v (Qi) ≤
1

1− βγδ
v (Qi ∩ eα) .

Using the last inequality in (11), we get the estimate (8).

Consider case b). For simplicity, we denote A = {Qi\eα}×{Qi ∩ e2α}. Due to (7), we
have

∫∫

A

dxdy ≥ γ2 |Qi|
2 . (13)

For fixed x ∈ Qi\eα and y ∈ Qi ∩ e2α we can find t1 = t1 (x, y) and t2 = t2 (x, y),
t2 ≥ t1, such that

|u (x+ t1 (y − x))| = α and |u (x+ t2 (y − x))| = 2α.

Put xk = x+ tk (y − x), k = 1, 2. Then from (13) we get

1 ≤
1

(

γ2 |Qi|
2
)q

1

αq

(∫∫

A

|u (x2)− u (x1)| dxdy

)q

,

or

v (Qi ∩ e2α) ≤
v (Qi)

(

γ2 |Qi|
2
)q

1

αq

(∫∫

A

|x− y|

∫ t2

t1

|∇u (x+ t (y − x))| dtdxdy

)q

.

As |x− y| ≤ c0 |Qi|
1
n , by the Hölder inequality we have

v (Qi ∩ e2α) ≤ c0

(

v
1
q (Qi) |Qi|

1
n

γ2 |Qi|
2

)q

1

αq

(

I
1
p′

1 · I
1
p

2

)q

, (14)

where

I1 =

∫∫

A

∫ t2

t1

ω1−p′ (x+ t (y − x)) dtdxdy,

I2 =

∫∫

A

∫ t2

t1

ω (x+ t (y − x)) |∇u (x+ t (y − x))|p dtdxdy.

According to Fubini theorem,

I1 ≤

∫ 1

0

∫∫

A,

x+ t (y − x) ∈ Qi ∩ (eα\e2α)

ω1−p′ (x+ t (y − x)) dxdydt ≤
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≤

∫ 1

0

∫

Qi\eα









∫

Qi ∩ eα,

x+ t (y − x) ∈ Qi ∩ (eα\e2α)

ω1−p′ (x+ t (y − x)) dy









dxdt. (15)

Change of variables z = x+ t (y − x) reshapes the right-hand side as follows

c1

∫ 1

0









∫

Qi\eα









∫

z ∈ Qi ∩ (eα\e2α),
z−x
t

+ x ∈ Qi ∩ e2α

ω1−p′ (z) dz









dx









t−ndt =

= c1

∫ 1

0









∫

z∈Qi∩(eα\e2α)
ω1−p′ (z)









∫

Qi\eα,
z−x
t

+ x ∈ Qi ∩ e2α

dx









dz









t−ndt. (16)

Noting that for fixed z ∈ Qi ∩ (eα\e2α) the set of points x ∈ Qi\eα with z−x
t

+ x ∈
Qi ∩ e2α is contained in the ball Qz

c0t|Q
i|1/n

, we change the domain of integration from the

set Qi ∩ (eα\e2α) to the entire ball Qi. Then the right-hand side of last equality will be
majorized by

c2

∫ 1

0

∫

Qi

ω1−p′ (z)

(

∫

|x−z|≤c0t|Qi|
1
n

dx

)

dzt−ndt ≤ c3 |Qi|

∫

Qi

ω1−p′dz. (17)

Thus, succession of estimates (17), (16), (15) leads to the following inequality

I1 ≤ c4 |Qi|

∫

Qi

ω1−p′dz.

Performing the similar procedures for I2, we get

I2 ≤

∫ 1

0

∫

Qi∩(eα\e2α)
ω (z) |∇u (z)|p

(

∫

|x−z|≤c0t|Qi|
1
n

dx

)

dzt−ndt ≤

c5 |Qi|

∫

Qi∩(eα\e2α)
ω (z) |∇u (z)|p dz.

Substituting the above inequalities for I1 and I2 into (14), we finally obtain the required
estimate (10).

Now, combining the estimates (8) and (10) and summing over i we get

v (e2α) ≤
c2βγ

δ

1− βγδ
v (eα) +

c1

γ2q
1

αq

∑

i





v (Qi ∩ e2α)

|Qi|
n−1
n

q

(

∫

Qi∩(eα\e2α)
ω1−p′dz

)
q(p−1)

p

×
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×

(

∫

Qi∩(eα\e2α)
ω |∇u|p dz

)
q
p



 .

By virtue of the Hölder inequality with the exponent p/ (p− q), we have

v (e2α) ≤
c2βγ

δ

1− βγδ
v (eα)+

+
c1

γ2q
1

αq







∑

i





v (Qi)

|Qi|
n−1
n

q

(

∫

Qi∩(eα\e2α)
ω1−p′dz

)
p−1
p

q




p
p−q







p−q
p

×

×

[

∑

i

∫

Qi∩(eα\e2α)
ω |∇u|p dz

]
p
q

.

Choose γ by (9) and integrate both sides of the last inequality over α. Then we get

∫ ∞

0
v (eα) dα

q ≤ c3

∫

dα

α
p−q
p







∑

i





v (Qi)

|Qi|
n−1
n

q

(

∫

Qi(eα\e2α)
ω1−p′dz

)
p−1
p

q




p
p−q







p−q
p

×

×





1

α
q
p

(

∫

Qi∩(eα\e2α)
ω |∇u|p dz

)
q
p



 . (18)

By virtue of the Hölder inequality, again with the index p/ (p− q), the right-hand side
of (18) is bounded by

c3 ·







∫ ∞

0

dα

α

∑

i





(

v (Qi)

|Qi|
n−1
n

q

)
p

p−q
(

∫

Qi∩(eα\e2α)
ω1−p′dz

)
p−1
p−q

q










p−q
q

·

·

{

∫ ∞

0

dα

α

∫

eα\e2α

ω |∇u|p dz

}
q
p

≤

c4·







∫ ∞

0

dα

α

∑

i





∫

Qi∩(eα\e2α)
ω1−p′dz

(

v (Qi)

|Qi|
n−1
n

q

)
p

p−q
(

∫

Qi∩(eα\e2α)
ω1−p′dx

)
p−1
p−q

q−1










p−q
p

(∫

Ω
ω |∇u|p dz

)
q
p

. (19)
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Let Qz
i be a ball centered at a point z ∈ Qi ∩ (eα\e2α) with a radius twice as large as

the radius of Qi, Qi ⊂ Qz
i . Taking into account that p−1

p−q
q − 1 ≥ 0 with q ≥ 1 implies

(

∫

Qi∩(eα\e2α)
ω1−p′dx

)
p−1
p−q

q−1

≤

(

∫

Qz
i

ω1−p′dx

)
p−1
p−q

q−1

,

and the comparableness of balls Qi and Qz
i implies v(Qi)

|Qi|
n−1
n q

≤ c5
v(Qz

i )

|Qz
i |

n−1
n q

, we come to a

conclusion that the right-hand side of (19) is majorized by

c6

(∫

Ω
ω |∇u|p

)
q
p







∫ ∞

0

dα

α

∑

i

∫

Qi∩(eα\e2α)
ω1−p′ (z)

(

v (Qz
i )

|Qz
i |

n−1
n

q

)
p

p−q

×

×

(

∫

Qz
i

ω1−p′ (x) dx

)
p−1
p−q

q−1






p−q
p

≤

c7

(
∫

Ω
ω |∇u|p

)
q
p

{

∫ ∞

0

dα

α

∫

eα\e2α

ω1−p′ (z)M
p

p−q (z) dz

}
p−q
p

≤

≤ c8

(∫

Ω
ω |∇u|p

)
q
p
(∫

Ω
ω1−p′M

p
p−q

)
p−q
p

. (20)

Thus, the succession of inequalities (20)-(19)-(18) and the condition
(

Ãpq

)

lead to the

inequality

(
∫

Ω
|u|q v

) 1
q

≤ cB̃pq

(
∫

Ω
ω |∇u|p

) 1
p

.

Theorem is proved. ◭

Note that Theorem 1 in [7] was proved for more general class of unbounded domains
satisfying the following condition:

there exists ε ∈ (0, 1) such that for every point x ∈ Ω one can find the largest ball
Qx

R(x) with
∣

∣

∣
Qx

Q(x)\Ω
∣

∣

∣
≥ ε

∣

∣

∣
Qx

R(x)

∣

∣

∣
.

Theorem 2 is true for such class of domains too, we have considered the domains Ω ∈ H

only for the sake of simplicity. It follows from the proof that both theorems remain valid
for any open domains Ω if the condition lim

x∈∞
u(x) = 0 as x ∈ ∞ is satisfied.
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