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On Weighted Sobolev Type Inequalities in Spaces of Dif-
ferentiable Functions

F.I.Mamedov, O.Q.Azizov

Abstract. We prove two-weighted Sobolev type inequality that estimates L2(€2) weighted norm of
differentiable function u(z) vanishing on the boundary of domain €2 through L? () weighted norm

of its first derivatives for 1 < ¢ < p < oo, some class of weights U,wfp_il € LY°¢ and Q C R™.
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1. Introduction

This paper studies weighted Sobolev inequalities

(Agucvauym)éf;<AQVucwchwdw); 1)

for some class of domains 2 C R™ and differentiable functions u (x) in € vanishing on the
boundary 02, where 1 < ¢ < p < 00, v(x) and w(x) are a.e. positive functions in some
neighborhood of 2. Our approach is similar to that of [7] used for the case co > ¢ > p > 1.

As f(x) < I ([Vf]) (z), the inequalities like (1) are usually derived from two-weighted
estimates for fractional integrals

_ f ()
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For example, it was shown in [1] that in case 1 < p < ¢, for @ = R™ and Lipshitz
continuous functions u(z) in R", these inequalities arise from the estimate for I, f stated
in [2] with a = 1 and the weight functions v(z) and w(x) satisfying the condition
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for all balls Q C R", where p’ = p%l, zg denotes the center of the ball @ and |Q)| is its
Lebesgue measure.
The condition (2) is equivalent to a simpler one

S
7

1
B,, = sup|@|%_1 </ vdm) ’ (/ wl_p/da:)p < +o0 (Apg)
Pq Pq
Q Q Q

(see [1]), if 1 < p < ¢q and v(z) satisfies the reverse doubling condition, i.e. if there exist
9, € € (0, 1) such that

/ vdx Ss/ vdz, (RD)
6Q Q

where 0Q) is a ball concentric to @) with a radius  times as large as the radius of @Q; or if
q = p and v(z) satisfies the condition A (see, [7]), i.e. if there exist positive numbers 3
and J such that

v(E) 1B\’
@35<@) (As) (Ase)

for every ball Q and every measurable subset E C Q with v(E) = [, v(z)dz.

Using the estimates for I, f obtained in [1] and the results of [2] and [3], it is proven
in [1] that in case Q@ = Qp, where Qg is some ball in R", the inequality (1) is true for
g>p>1if

% wl=p
sup (/ vda:) / D -dx < 400 (3)
QCsQo \JQ 8Qo ( > P

1
Q" +lzq — x|

and for g =p > 1 if

1 1
sup Q"+ (/ Md:n) Y </ w(l—l’%dx)pr < 400 (4)
QC8Qo Q Q

with some r > 1. Besides, in case when ¢ > p and v € (RD) or when ¢ = p and v € A
and w' P € Ay, (3) and (4) can be replaced by

1

1 1
sup |Q[+ </ de) ’ (/ wl_p/dx> " < foo.
QC8Qo Q Q

The case ¢ < p is more complicated. For example, a necessary and sufficient condition
on the measure ;1 in R" which guarantees the validity of inequality

Hafllpagauy < C I, amy
is obtained in [4] in terms of the Wolf potential.
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We finally note the works [5, 6, 8] which treat the inequality (1) for general weights.
Also note the one-dimensional result for Hardy inequality with 1 < g < p < o0

([ o

which holds if and only if

qv@wm)%gc<éwucwwwuwm)% (5)

pP—q

/oOO W7 (2) [/Ozv (z)dx </ZOO w' P (2) dfc>q_1] N dz p < +o00. (6)

In the sequel, by C, Cy, C1, etc. we will denote the positive constants with different
meanings in different parts of the text which depend only on p, ¢, dimension n, and
sometimes, on the constants § and ¢ included in condition (Aw).

Definition 1. The domain 2 C R" is said to belong to the class H if there exist € > 0
and po > 0 such that
@50\ = [ Q5| (H)

for every point x € Q, where Q7 is a ball of radius py centered at x.

As an example of such domains, we can mention any domain lying between two planes
Tn = a and x, = b, a # b. In particular, any bounded domain belongs to the class H.
The following result was proved in [7].

Theorem 1. Let 1 <p<qg< oo, Q€ H andv(x) € Ay. Ifv(x) and w (z)satisfy the
condition (Apq) withp > 1, or

1
</ vdm) < Bigessin fw(x)
Q z€Q
for every ball @ N Q # O with p =1, then the inequality (1) holds.

Now we state the main result of this paper.

Theorem 2. Let 1 <g<p<oo, Q€ H and v (r) € Ax. If

pP—q

B = ([ @075 (a:) <o (4

M (2) = sup L&) ( /zwl—p’dx>q_1

Q||
with ¢ > 1 and the supremum is taken over all balls Q% centered at a point z € €, then
the inequality (1) holds.

where
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2. Proof of main result

Let a > 0,

ea ={x €Q: |u(x)| > a}

and let v € (0, 1) be some number to be specified later. For every fixed x € ea, there
exists a ball Qz(x) such that

Q2\ea| = 7| Q] (7)

because the function F'(t) = |Q7F\eq| is continuous on (0, +00), F (t) — 0 as ¢ — 0 and
F (t) > v|Q7F] for sufficiently large values of ¢ due to the conditions imposed on 2 and the
function u ().

It is evident that all possible balls Qz( o) T € €2, form the cover of the set eo, and their

radii are uniformly bounded by the number py due to the condition (H). By the Besicovitch
covering lemma (see, e.g., [9]), one can find from the system {Qi(m)} a subcover {Q;} of

finite multiplicity for the set egq.
Let @; be one of the balls of {Q;}. There are two possibilities: either

a) [Qi Neza| <7|Qi| or b) [Q; N ezl > v |Q4l-
Let us show that in case a) we have

)
o (e2a N Q) < f—”w (Qi N ea) ®)
if
1— 5" >0, (9)

and in case b) we have

1 1 - 2101
v(QiNey) <c ———— v (Qi) / w Pdz = / w|Vul? dz
VRl i a? \ JQin(ea\eza)
(10)

B

In case a), due to the condition (A)

) ‘Qime2a’ o ) k) )
v (Qz N e2a) < B ‘Q’ v (Qz) < B’Y v (Qz) . (11)

On the other hand, again by virtue of (A ) and (7),

|Qi\ea|
Qi

< (QiNea) + B0 (Qi). (12)

)
v(@»=v<Qmea)+v(Qi\ea)gv(QmeaHﬁ( ) 0 (Q) <
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It is clear that v defined by (9) guarantees the validity of condition (9). Therefore,
from (13) we have

1
1_75,76?} (QZ N Ca) .
Using the last inequality in (11), we get the estimate (8).
Consider case b). For simplicity, we denote A = {Q;\en} X {Q; Ne2q}. Due to (7), we

have
// dxdy > ’yz ]Qi]2. (13)
A

For fixed z € Q;\en and y € @Q; N eaq we can find t1 = ¢ (z, y) and ty = to (z, y),
to > t1, such that

v(Q;) <

lu(z+t1(y—z)) =a and |u(z+ta(y — x))| = 2.
Put xp =z +t; (y — x), k =1, 2. Then from (13) we get

1<m (/ Ju ( xz—u(:ﬁ)ldwdy)q,

or

0(QiMean) < (,Y ‘Q’ v ([ o=t [ 190ttt ooy

1
As |z — y| < ¢ |Q;i]™, by the Holder inequality we have

03 (Q) Q| AN
v(QiNean) < co (W) o <I1 .IQ> , (14)

where

I = ///tt (o4t (y — ) dtdady,

I = //A /tltzw(x—l—t(y—a:)) |Vu(z+t(y — )P dtdzdy.

According to Fubini theorem,

1
I < / // A WP (2 4t (y — 2)) dedydt <
0 )

x4+t (y—x) € QiN(ea\eza)
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1
: /0 /Qi\ea / Ql N eq, wl_p (‘T +1 (y - .Z')) dy dxdt. (15)
i’ (y B :E) €Qin (ea\e2a)

Change of variables z = x + ¢ (y — x) reshapes the right-hand side as follows

1
1—p’ n B
61/0 /Q-\ea /Z € QiN(ea\e2a), * (2)dz | do | t™"dt =

4w € Qi Nexn

1
= / / WP (2) / 0, dx | dz | t7"dt. (16)
0 z€QiN(ea\e2a) B Z\eoca
zt_x +x € Q;Negq
Noting that for fixed z € Q; N (eq\e2q) the set of points x € Q;\en with £ 4+ x €
Q; N ey, is contained in the ball Qz HQi/m we change the domain of integration from the
0

set Q; N (eq\e24) to the entire ball ;. Then the right-hand side of last equality will be
majorized by

1
02/ / WP (2) / L dr | dzt™"dt < ez |Q; w' P dz. (17)
0 i lz—z[<cot|Qi| 7

Qi
Thus, succession of estimates (17), (16), (15) leads to the following inequality

L < C4|QZ’|/ w' P dz.
Qi

Performing the similar procedures for Is, we get

1
I < / / w (2) |V (2)? / Cde | detdt <
0 iN(ea\e2e) |z —2|<cot|Qq|™

s |Qil w (2) [Vu (2)|P dz.
QiN(ea\e2a)

Substituting the above inequalities for I; and I5 into (14), we finally obtain the required
estimate (10).

Now, combining the estimates (8) and (10) and summing over i we get

a(p—1)

d I Q 20 p
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X (/ w |Vul? dz)
QiN(ea\e2a)

By virtue of the Holder inequality with the exponent p/ (p — ¢), we have

d
&2
v (e2a) < 1ig751)(ea)+
1 Q) a7
S | (2 () x
e i |Qi] ™ 7 \YQin(ea\e2a)

D
X w |[VulP dz] .
[22: /Qiﬂ(ea\eza)

Choose v by (9) and integrate both sides of the last inequality over a.. Then we get
P—q
P

p=1o\ 7a
o0 . , P
/ v (eq) da? < 03/% Z Sawi (?ﬁ </ WP dz) X
0 o P i |Qi| » ? \YQilea\ez2a)
1 13
« | L / w |Vl dz (18)
ar QiN(ea\e2a)
By virtue of the Holder inequality, again with the index p/ (p — ¢q), the right-hand side
of (18) is bounded by
00 d ﬁ Eq %
cs - / = Z LAV (?,22 / w' P dz
0o @5 Qi =1 QiN(ea'\eza)
q
o d P
: / _a/ w|VulPdz p <
0 @ Jea\eaan

n—1

ca / d_ozz / WP dz
0 o i sz(ea\e2a) ‘Ql’ n
P
</w|Vu|pdz> .
Q

_P_
QN (] v
q Qin(ea\EZa)
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Let Q7 be a ball centered at a point z € Q; N (ea\ega) with a radius twice as large as
the radius of Q;, @Q; C Q7. Taking into account that p q — 1> 0 with ¢ > 1 implies

p=l, g p=l, g
, r—q , r—q
/ w' P dx < / w' P dx )
iN(ea\e2a) z
and the comparableness of balls @); and )7 implies IQU(% <c | ”(rﬂq, we come to a
i n Qf n

conclusion that the right-hand side of (19) is majorized by

v red Qs P
0 </Qw\Vu]p> /o Eazi:/m(ea\eza)wl (=) <’QZ(‘7L7LZ ) 8

p=l, 1 p

X (/?wl_p/ (z) dm) Hq_
([ ([ o]

P—q

< e (/wavuv’>’q’ </Qw1_leppq>p. (20)

Thus, the succession of inequalities (20)-(19)-(18) and the condition (flpq>lead to the

inequality
1 1
q ~ P
(/Q \u!qv> < cBpq </Qw \Vu]p> .

Note that Theorem 1 in [7] was proved for more general class of unbounded domains
satisfying the following condition:

IN

Theorem is proved. <«

there exists € € (0, 1) such that for every point z € 2 one can find the largest ball
Q“’}‘/’z(w) with

‘%(m\g( > e ‘ngﬂzm

Theorem 2 is true for such class of domains too, we have considered the domains 2 € H
only for the sake of simplicity. It follows from the proof that both theorems remain valid
for any open domains €2 if the condition liem u(z) =0 as z € oo is satisfied.

reoo
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