On Quarter-Symmetric Metric Connection in a Lorentzian Para-Sasakian Manifold

Venkatesha*, K.T.P. Kumar and C.S. Bagewadi

Abstract

In this paper we obtain results on symmetric and concircular symmetric Lorentzian para-Sasakian (briefly LP-Sasakian) manifolds with respect to quarter-symmetric metric connection and Riemannian connection.

Key Words and Phrases: Lorentzian para-Sasakian manifold, quarter-symmetric metric connection, concircular curvature tensor.

2010 Mathematics Subject Classifications: 53C05, 53C20, 53C50.

1. Introduction

The idea of semi-symmetric linear connection on a differentiable manifold was introduced by Friedmann and Schouten [5]. Further, Hayden [7], introduced the idea of metric connection with torsion on a Riemannian manifold. In [25], Yano studied some curvature conditions for semi-symmetric connections in Riemannian manifolds. In [6], Golab defined and studied quarter-symmetric connection in a differentiable manifold with affine connection. After that various properties of quarter-symmetric metric connection have been studied by many geometers like Rastogi ([16], [17]), Mishra and Pandey [12], Yano and Imai [26], De and Sengupta [4], Pradeep Kumar, Venkatesha and Bagewadi ([14], [15]), and many others.
M. M. Tripathi [19] studied the semi-symmetric metric connection in a Kenmotsu manifolds. In [20], the semi-symmetric non-metric connection in a Kenmotsu manifold was studied by M. M. Tripathi and N. Nakkar. In [1], Amit Prakash and Dhruwa Narain studied quarter symmetric non-metric connection in Lorentzian para-Sasakian manifolds. Also in [21], M. M.Tripathi proved the existence of a new connection and showed that in particular cases, this connection reduces to semi-symmetric connections; even some of them are not introduced so far. On the other hand, there is a class of almost paracontactmetric manifolds, namely Lorentzian para-Sasakian manifolds. In 1989, K. Matsumoto [8] introduced the notion of Lorentzian para-Sasakian manifold. Then I.Mihai and R. Rosca [11] introduced the same notion independently and they obtained several results on this

[^0]manifold. Lorentzian para-Sasakian manifolds have also been studied by K. Matsumoto and I. Mihai [9], U. C. De et al.,[4], A.A. Shaikh and S. Biswas [18], M. M. Tripathi and U. C. De [22].

A linear connection $\tilde{\nabla}$ in an n-dimensional differentiable manifold is said to be a quarter-symmetric connection [6] if its torsion tensor T is of the form

$$
\begin{equation*}
T(X, Y)=\tilde{\nabla}_{X} Y-\tilde{\nabla}_{Y} X-[X, Y]=\eta(Y) \phi X-\eta(X) \phi Y, \tag{1}
\end{equation*}
$$

where η is a 1 -form and ϕ is a tensor field of type (1,1). In particular, if we replace ϕX by X and ϕY by Y, then the quarter-symmetric connection reduces to the semisymmetric connection [5]. Thus, the notion of quarter-symmetric connection generalizes the idea of semi-symmetric connection. And if quarter-symmetric linear connection $\tilde{\nabla}$ satisfies the condition $\left(\tilde{\nabla}_{X} g\right)(Y, Z)=0$ for all $X, Y, Z \in \mathcal{X}(M)$, where $\mathcal{X}(M)$ is the Lie algebra of vector fields on the manifold M, then $\tilde{\nabla}$ is said to be a quarter-symmetric metric connection.

In this paper we study the geometry of LP-Sasakian manifolds with respect to quartersymmetric metric connection. However these manifolds have been studied by many geometers like K. Matsumoto [8], K. Matsumoto and I. Mihai [9], I. Mihai and R. Rosca [11], I. Mihai, A.A. Shaikh and U.C. De [10], Venkatesha and C.S. Bagewadi [23] and they obtained several results on this manifold.

2. Preliminaries

An n-dimensional differentiable manifold M is called an LP-Sasakian manifold ([8], [11]) if it admits a (1,1) tensor field ϕ, a contravariant vector field ξ, a 1-form η and a Lorentzian metric g which satisfy

$$
\begin{align*}
\eta(\xi) & =-1 \tag{2}\\
\phi^{2} X & =X+\eta(X) \xi \tag{3}\\
g(\phi X, \phi Y) & =g(X, Y)+\eta(X) \eta(Y) \tag{4}\\
g(X, \xi) & =\eta(X) \tag{5}\\
\nabla_{X} \xi & =\phi X \tag{6}\\
\left(\nabla_{X} \phi\right) Y & =g(X, Y) \xi+\eta(Y) X+2 \eta(X) \eta(Y) \xi \tag{7}
\end{align*}
$$

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g.

It can be easily seen that in a LP-Sasakian manifold, the following relations hold:

$$
\begin{equation*}
\phi \xi=0, \quad \eta(\phi X)=0, \quad \operatorname{rank} \phi=n-1 . \tag{8}
\end{equation*}
$$

Again, if we put

$$
\begin{equation*}
\Phi(X, Y)=g(X, \phi Y), \tag{9}
\end{equation*}
$$

for any vector fields X and Y, then the tensor field $\Phi(X, Y)$ is a symmetric $(0,2)$ tensor field [8]. Also, since the 1 -form η is closed in an LP-Sasakian manifold, we have ([8], [10])

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=\Phi(X, Y), \quad \Phi(X, \xi)=0 \tag{10}
\end{equation*}
$$

for any vector fields X and Y.
Also in an LP-Sasakian manifold, the following relations hold ([9], [10]):

$$
\begin{align*}
g(R(X, Y) Z, \xi) & =\eta(R(X, Y) Z)=g(Y, Z) \eta(X)-g(X, Z) \eta(Y), \tag{11}\\
R(\xi, X) Y & =g(X, Y) \xi-\eta(Y) X \tag{12}\\
R(X, Y) \xi & =\eta(Y) X-\eta(X) Y \tag{13}\\
S(X, \xi) & =(n-1) \eta(X) \tag{14}\\
S(\phi X, \phi Y) & =S(X, Y)+(n-1) \eta(X) \eta(Y), \tag{15}
\end{align*}
$$

for any vector fields X, Y and Z, where R is the Riemannian curvature tensor and S is the Ricci tensor of M.

Definition 1. An LP-Sasakian manifold M is said to be symmetric if

$$
\begin{equation*}
\left(\nabla_{W} R\right)(X, Y) Z=0, \tag{16}
\end{equation*}
$$

for all vector fields X, Y, Z and W.
Definition 2. An LP-Sasakian manifold M is said to be ϕ-symmetric if

$$
\begin{equation*}
\phi^{2}\left(\nabla_{W} R\right)(X, Y) Z=0, \tag{17}
\end{equation*}
$$

for all vector fields X, Y, Z and W.
Definition 3. An LP-Sasakian manifold M is said to be concircular symmetric if

$$
\begin{equation*}
\left(\nabla_{W} \bar{C}\right)(X, Y) Z=0, \tag{18}
\end{equation*}
$$

for all vector fields X, Y, Z and W, where \bar{C} is the concircular curvature tensor and is given by [24]

$$
\begin{equation*}
\bar{C}(X, Y) Z=R(X, Y) Z-\frac{r}{n(n-1)}[g(Y, Z) X-g(X, Z) Y], \tag{19}
\end{equation*}
$$

for any vector fields X, Y and Z, where R and r are the Riemannian curvature tensor and scalar curvature respectively.

Definition 4. An LP-Sasakian manifold M is said to be concircular ϕ-symmetric if

$$
\begin{equation*}
\phi^{2}\left(\nabla_{W} \bar{C}\right)(X, Y) Z=0, \tag{20}
\end{equation*}
$$

for all vector fields X, Y, Z and W.

3. Expression of $\tilde{R}(X, Y) Z$ in terms of $R(X, Y) Z$

In this section we express $\tilde{R}(X, Y) Z$ the curvature tensor w.r.t quarter-symmetric metric connection in terms of $R(X, Y) Z$ the curvature tensor w.r.t Riemannian connection.

Let $\tilde{\nabla}$ be a linear connection and ∇ be a Riemannian connection of an almost contact metric manifold M such that

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+U(X, Y) \tag{21}
\end{equation*}
$$

where U is a tensor of type $(1,1)$. For $\tilde{\nabla}$ to be a quarter-symmetric metric connection in M, we have [6]

$$
\begin{equation*}
U(X, Y)=\frac{1}{2}\left[T(X, Y)+T^{\prime}(X, Y)+T^{\prime}(Y, X)\right] \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(T^{\prime}(X, Y), Z\right)=g(T(Z, X), Y) \tag{23}
\end{equation*}
$$

From (1) and (23), we get

$$
\begin{equation*}
T^{\prime}(X, Y)=\eta(X) \phi Y-g(X, \phi Y) \xi . \tag{24}
\end{equation*}
$$

Using (1) and (24) in (22), we obtain

$$
U(X, Y)=\eta(Y) \phi X-g(X, \phi Y) \xi .
$$

Thus the quarter-symmetric metric connection $\tilde{\nabla}$ in an LP-Sasakian manifold is given by

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) \phi X-g(X, \phi Y) \xi . \tag{25}
\end{equation*}
$$

Hence (25) is the relation between Riemannian connection and the quarter-symmetric metric connection on an LP-Sasakian manifold.

A relation between the curvature tensor of M with respect to the quarter-symmetric metric connection $\tilde{\nabla}$ and the Riemannian connection ∇ is given by

$$
\begin{align*}
\tilde{R}(X, Y) Z & =R(X, Y) Z+g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X \\
& +[\eta(X) g(Y, Z)-\eta(Y) g(X, Z)] \xi \tag{26}\\
& +[\eta(Y) X-\eta(X) Y] \eta(Z),
\end{align*}
$$

where \tilde{R} and R are the Riemannian curvatures of the connections $\tilde{\nabla}$ and ∇, respectively. From (26) it follows that

$$
\begin{equation*}
\tilde{S}(Y, Z)=S(Y, Z)+(n-1) \eta(Y) \eta(Z), \tag{27}
\end{equation*}
$$

where \tilde{S} and S are the Ricci tensors of the connections $\tilde{\nabla}$ and ∇, respectively.
Contracting (27), we get

$$
\begin{equation*}
\tilde{r}=r-(n-1), \tag{28}
\end{equation*}
$$

where \tilde{r} and r are the scalar curvatures of the connections $\tilde{\nabla}$ and ∇, respectively.

4. Symmetry of LP-Sasakian manifold with respect to quarter-symmetric metric connection

Analogous to the definition of symmetric LP-Sasakian manifold with respect to Riemannian connection, we define a symmetric LP-Sasakian manifold with quarter-symmetric metric connection by

$$
\begin{equation*}
\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z=0 \tag{29}
\end{equation*}
$$

for all vector fields X, Y, Z and W.
Using (25), we have

$$
\begin{align*}
\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z & =\left(\nabla_{W} \tilde{R}\right)(X, Y) Z+\eta(\tilde{R}(X, Y) Z) \phi W-g(W, \phi \tilde{R}(X, Y) Z) \xi \\
& -\eta(X) \tilde{R}(\phi W, Y) Z-\eta(Y) \tilde{R}(X, \phi W) Z-\eta(Z) \tilde{R}(X, Y) \phi W \tag{30}\\
& +g(W, \phi X) \tilde{R}(\xi, Y) Z+g(W, \phi Y) \tilde{R}(X, \xi) Z+g(W, \phi Z) \tilde{R}(X, Y) \xi .
\end{align*}
$$

Now differentiating (26) with respect to W and using (6), (7) and (10), we obtain

$$
\begin{align*}
& \left(\nabla_{W} \tilde{R}\right)(X, Y) Z \\
= & \left(\nabla_{W} R\right)(X, Y) Z-[\eta(Y) g(W, Z)+\eta(Z) g(Y, W)+2 \eta(Y) \eta(Z) \eta(W)] \phi X \\
+ & {[\eta(X) g(W, Z)+\eta(Z) g(X, W)+2 \eta(X) \eta(Z) \eta(W)] \phi Y } \\
+ & g(X, \phi Z)[g(W, Y) \xi+\eta(Y) W+2 \eta(W) \eta(Y) \xi] \\
- & g(Y, \phi Z)[g(W, X) \xi+\eta(X) W+2 \eta(W) \eta(X) \xi] \\
+ & {[g(W, \phi X) g(Y, Z)-g(W, \phi Y) g(X, Z)] \xi } \tag{31}\\
+ & {[\eta(X) g(Y, Z)-\eta(Y) g(X, Z)] \phi W } \\
+ & {[g(W, \phi Y) X-g(W, \phi X) Y] \eta(Z) } \\
+ & g(W, \phi Z)[\eta(Y) X-\eta(X) Y] .
\end{align*}
$$

Using (2), (8) and (31) in (30), we obtain

$$
\begin{equation*}
\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z=\left(\nabla_{W} R\right)(X, Y) Z \tag{32}
\end{equation*}
$$

Therefore, we can state the following:
Theorem 1. An LP-Sasakian manifold is symmetric with quarter-symmetric metric connection $\tilde{\nabla}$ if and only if it is so with respect to Riemannian connection ∇.

Corollary 1. An LP-Sasakian manifold is ϕ-symmetric with respect to quarter-symmetric metric connection $\tilde{\nabla}$ if and only if it is so with respect to Riemannian connection ∇.

5. Concircular symmetry of LP-Sasakian manifold with respect to quarter-symmetric metric connection

An LP-Sasakian manifold M is said to be a concircular symmetric with respect to quarter-symmetric metric connection if

$$
\begin{equation*}
\left(\tilde{\nabla}_{W} \tilde{\tilde{C}}\right)(X, Y) Z=0, \tag{33}
\end{equation*}
$$

for all vector fields X, Y, Z and W, where $\tilde{\bar{C}}$ is the concircular curvature tensor with respect to quarter-symmetric metric connection given by

$$
\begin{equation*}
\tilde{\bar{C}}(X, Y) Z=\tilde{R}(X, Y) Z-\frac{\tilde{r}}{n(n-1)}[g(Y, Z) X-g(X, Z) Y], \tag{34}
\end{equation*}
$$

where \tilde{R} is the Riemannian curvature tensor and \tilde{r} is the scalar curvature with quartersymmetric metric connection $\tilde{\nabla}$.
Using (25), we can write

$$
\begin{align*}
\left(\tilde{\nabla}_{W} \tilde{C}\right)(X, Y) Z & =\left(\nabla_{W} \tilde{\tilde{C}}\right)(X, Y) Z+\eta(\tilde{\tilde{C}}(X, Y) Z) \phi W-g(W, \phi \tilde{C}(X, Y) Z) \xi \\
& -\eta(X) \tilde{\bar{C}}(\phi W, Y) Z-\eta(Y) \tilde{\tilde{C}}(X, \phi W) Z-\eta(Z) \tilde{\tilde{C}}(X, Y) \phi W \tag{35}\\
& +g(W, \phi X) \tilde{\tilde{C}}(\xi, Y) Z+g(W, \phi Y) \tilde{\bar{C}}(X, \xi) Z+g(W, \phi Z) \tilde{\tilde{C}}(X, Y) \xi .
\end{align*}
$$

Now differentiating (34) with respect to W, we obtain

$$
\begin{equation*}
\left(\nabla_{W} \tilde{C}\right)(X, Y) Z=\left(\nabla_{W} \tilde{R}\right)(X, Y) Z-\frac{\nabla_{W} \tilde{r}}{n(n-1)}[g(Y, Z) X-g(X, Z) Y] . \tag{36}
\end{equation*}
$$

By making use of (28) and (31) in (36), we get

$$
\begin{align*}
& \left.\left(\nabla_{W} \tilde{\tilde{C}}\right)(X, Y) Z\right) \\
= & \left(\nabla_{W} R\right)(X, Y) Z-[\eta(Y) g(W, Z)+\eta(Z) g(Y, W)+2 \eta(Y) \eta(Z) \eta(W)] \phi X \\
+ & {[\eta(X) g(W, Z)+\eta(Z) g(X, W)+2 \eta(X) \eta(Z) \eta(W)] \phi Y } \\
+ & g(X, \phi Z)[g(W, Y) \xi+\eta(Y) W+2 \eta(W) \eta(Y) \xi] \\
- & g(Y, \phi Z)[g(W, X) \xi+\eta(X) W+2 \eta(W) \eta(X) \xi] \tag{37}\\
+ & {[g(W, \phi X) g(Y, Z)-g(W, \phi Y) g(X, Z)] \xi } \\
+ & {[\eta(X) g(Y, Z)-\eta(Y) g(X, Z)] \phi W+[g(W, \phi Y) X-g(W, \phi X) Y] \eta(Z) } \\
+ & g(W, \phi Z)[\eta(Y) X-\eta(X) Y]-\frac{\nabla_{W} r}{n(n-1)}[g(Y, Z) X-g(X, Z) Y] .
\end{align*}
$$

Taking account of (19), we rewrite (37) as

$$
\begin{aligned}
& \left(\nabla_{W} \tilde{C}\right)(X, Y) Z \\
= & \left(\nabla_{W} \bar{C}\right)(X, Y) Z-[\eta(Y) g(W, Z)+\eta(Z) g(Y, W)+2 \eta(Y) \eta(Z) \eta(W)] \phi X
\end{aligned}
$$

$$
\begin{align*}
& +[\eta(X) g(W, Z)+\eta(Z) g(X, W)+2 \eta(X) \eta(Z) \eta(W)] \phi Y \\
& +\quad g(X, \phi Z)[g(W, Y) \xi+\eta(Y) W+2 \eta(W) \eta(Y) \xi] \\
& -\quad g(Y, \phi Z)[g(W, X) \xi+\eta(X) W+2 \eta(W) \eta(X) \xi] \\
& +\quad[g(W, \phi X) g(Y, Z)-g(W, \phi Y) g(X, Z)] \xi \tag{38}\\
& +\quad[\eta(X) g(Y, Z)-\eta(Y) g(X, Z)] \phi W \\
& +\quad[g(W, \phi Y) X-g(W, \phi X) Y] \eta(Z) \\
& +\quad g(W, \phi Z)[\eta(Y) X-\eta(X) Y]
\end{align*}
$$

Using (2), (8) and (38) in (35), we get

$$
\begin{equation*}
\left(\tilde{\nabla}_{W} \tilde{\bar{C}}\right)(X, Y) Z=\left(\nabla_{W} \bar{C}\right)(X, Y) Z \tag{39}
\end{equation*}
$$

Hence we can state the following:
Theorem 2. An LP-Sasakian manifold is concircular symmetric with respect to $\tilde{\nabla}$ if and only if it is so with respect to Riemannian connection ∇.

Corollary 2. An LP-Sasakian manifold is concircular ϕ-symmetric with respect to $\tilde{\nabla}$ if and only if it is so with respect to Riemannian connection ∇.

Now taking (2), (8) and (37) in (35), we get

$$
\begin{equation*}
\left(\tilde{\nabla}_{W} \tilde{\bar{C}}\right)(X, Y) Z=\left(\nabla_{W} R\right)(X, Y) Z-\frac{\nabla_{W} r}{n(n-1)}[g(Y, Z) X-g(X, Z) Y] \tag{40}
\end{equation*}
$$

If scalar curvature r is constant then (40) reduces to

$$
\begin{equation*}
\left(\tilde{\nabla}_{W} \tilde{\bar{C}}\right)(X, Y) Z=\left(\nabla_{W} R\right)(X, Y) Z \tag{41}
\end{equation*}
$$

Hence we can state the following:
Theorem 3. An LP-Sasakian manifold is concircular symmetric with respect to quartersymmetric metric connection $\tilde{\nabla}$ if and only if it is symmetric with respect to Riemannian connection ∇, provided r is constant.

Corollary 3. An LP-Sasakian manifold is concircular ϕ-symmetric with respect to quartersymmetric metric connection $\tilde{\nabla}$ if and only if it is symmetric with respect to Riemannian connection ∇, provided r is constant.

Acknowledgement. The authors express their thanks to DST (Department of Science and Technology), Government of India, for providing financial assistance under major research project (No.SR/S4/MS:482/07).

References

[1] A. Prakash and D. Narain, On A Quarter Symmetric Non-Metric Connection In An Lorentzian Para-Sasakian Manifolds. International Electronic Journal of Geometry, 2011, 4 (1), 129-137.
[2] C. S. Bagewadi. On totally real submanifolds of a Kahlerian manifold admitting Semisymmetric metric F-connection. Indian J. Pure Appl. Math., 13(5), 528-536, 1982.
[3] D. E. Blair. Contact manifolds in Riemannian Geometry. Lecture Notes in Mathematics, 509 Springer-Verlag, Berlin, 1976.
[4] U.C. De and J. Sengupta. Quarter-symmetric metric connection on a Sasakian manifold. Commun. Fac. Sci. Univ. Ank. Series, 49:7-13, 2000.
[5] A. Friedmann and J. A. Schouten. Uber die Geometrie der halbsymmetrischen Ubertragung. Math. Zeitschr, 21:211-223, 1924.
[6] S. Golab. On semi-symmetric and quarter-symmetric linear connections. Tensor, N.S., 29:249-254, 1975.
[7] H. A. Hayden. Subspaces of a space with torsion. Proc. London Math. Soc., 34:27-50, 1932.
[8] K. Matsumoto. On Lorentzian Paracontact manifolds. Bull. Yamagata Univ. Natur. Sci., 12(2):151-156, 1989.
[9] K. Matsumoto and I Mihai. On a certain transformation in a Lorentzian paraSasakian manifold. Tensor, N. S., 47:189-197, 1988.
[10] I. Mihai, A. A. Shaikh, U.C. De. On Lorentzian para-Sasakian manifolds. Rendiconti del Seminario Matematico di Messina, Serie II, 1999.
[11] I. Mihai and R. Rosca. On Lorentzian P-Sasakian manifolds. Classical Analysis, World Scientific Publ., Singapore, 155-169, 1992.
[12] R. S. Mishra and S. N. Pandey. On quarter-symmetric metric F-connections. Tensor, N.S., 34:1-7, 1980.
[13] A. K. Mondal and U. C. De. Some properties of a quarter-symmetric metric connection on a Sasakian manifold. Bull. Math. Analysis Appl., 1(3):99-108, 2009.
[14] K. T. Pradeep Kumar, C. S. Bagewadi and Venkatesha. On Projective ϕ-symmetric K-contact manifold admitting quarter-symmetric metric connection. Differ. Geom. Dyn. Syst., 13:128-137, 2011.
[15] K. T. Pradeep Kumar, Venkatesha and C. S. Bagewadi. On ϕ-recurrent para-Sasakian manifold admitting quarter-symmetric metric connection. ISRN Geometry, vol. 2012, Article ID 317253, 10 pages, 2012.
[16] S. C. Rastogi. On quarter-symmetric metric connection. C.R. Acad. Sci. Bulgar, 31:811-814, 1978.
[17] S. C. Rastogi. On quarter-symmetric metric connection. Tensor, N. S., 44(2):133-141, 1987.
[18] A. A. Shaikh and S. Biswas. On LP-Sasakian manifolds. Bull. of the Malaysian Math. Sci.Soc. 27:17-26, 2004.
[19] M. M. Tripathi. On a semi-symmetric metric connection in a Kenmotsu manifold. J. Pure Math. 16:67-71, 1999.
[20] M. M. Tripathi and N. Nakkar. On a semi-symmetric non-metric connection in a Kenmotsu manifold. Bull. Cal. Math. Soc., 16:no.4, 323-330, 2001.
[21] M. M. Tripathi. A new connection in a Riemannian manifold. International Electronic Journal of Geometry. vol. 1:15-24, 2008.
[22] M. M. Tripathi and U. C. De. Lorentzian Almost Paracontact Manifolds and their submanifolds. Journal of the Korean Society of Mathematical Education, 2:101-125, 2001.
[23] Venkatesha and C. S. Bagewadi. On concircular ϕ-recurrent LP-Sasakian manifolds. Differ. Geom. Dyn. Syst., 10:312-319, 2008.
[24] K. Yano. Concircular geometry I, Concircular transformations. proc. Imp. Acad. Tokyo., 16:195-200, 1940.
[25] K. Yano. On semi-symmetric metric connections. Rev. Roumaine Math. Pures Appl., 15:1579-1586, 1970.
[26] K. Yano and T. Imai. Quarter-symmetric metric connections and their curvature tensors. Tensor, N. S., 38:13-18, 1982.
[27] J. West and Linster, The Evolution of Fuzzy Rules in Two-Player Games. Southern Economic Journal, 2003, 69(3), 705-717.
[28] J. Holland, Adaptation in Natural and Artificial Systems., University of Michigan Press, 1975, Ann Arbor, Michigan.
[29] H. Akaike, Information Theory and an Extension of the Maximum Likelihood Principle. Second International Symposium on Information Theory, 1973, Academiai Kiado,Budapest, 267-281.
[30] L. Bauwens and M. Lubrano, Identification Restrictions and Posterior Densities in Cointegrated Gaussian VAR Systems. Advances in Econometrics, JAI Press, 1993, 11b, Conneticut, USA.
[31] M. Chen, Estimation of Covariance Matrices Under a Quadratic Loss Function. Department of Mathematics, SUNY at Albany, 1976, Research Report, S-46.
[32] C. Thomaz, Maximum Entropy Covariance Estimate for Statistical Pattern Recognition. University of London and for the Diploma of the Imperial College (D.I.C.), 2004.

Venkatesha
Department of Mathematics, Kuvempu University, Shankaraghatta, Karnataka, India.
E-mail: vensmath@gmail.com
K.T. Pradeep Kumar

Department of Mathematics, Kuvempu University, Shankaraghatta, Karnataka, India.
E-mail: ktpradeepkumar@gmail.com
C.S. Bagewadi

Department of Mathematics, Kuvempu University, Shankaraghatta, Karnataka, India.
E-mail: prof-bagewadi@yahoo.co.in
Received 16 March 2012
Accepted 20 May 2014

[^0]: *Corresponding author.

