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Abstract. This paper is concerned with the existence, uniqueness and continuous dependence
of mild solution of second order mixed Volterra-Fredholm functional integrodifferential equations.
The results are established by an application of the topological transversality theorem, Pachpatte’s
inequality and the theory of strongly continuous cosine family of operators.
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1. Introduction

In this paper, we prove the existence, uniqueness and continuous dependence of mild
solution of second order mixed Volterra-Fredholm functional integrodifferential equations
of the form:

x′′(t) = Ax(t) + f

(
t, xt, x

′(t),

∫ t

0
g(s, xs, x

′(s))ds,

∫ b

0
h(s, xs, x

′(s))ds

)
, t ∈ J, (1)

x0 = φ ∈ C, x′(0) = ξ ∈ X, (2)

where J = [0, b], A is the infinitesimal generator of a strongly continuous cosine family
{C(t) : t ∈ R} of bounded linear operators in a Banach space X with the norm ‖ · ‖, and
f : J × C × X × X × X → X, g, h : J × C × X → X are given functions. Here C =
C([−r, 0], X), 0 < r <∞, is the Banach space of all continuous functions ψ : [−r, 0]→ X
endowed with supremum norm

‖ψ‖C = sup
−r≤θ≤0

‖ψ(θ)‖.

For any x ∈ C([−r, b], X) and t ∈ J , xt denotes the element of C given by xt(θ) =
x(t+ θ) for θ ∈ [−r, 0].

∗Corresponding author.

http://www.azjm.org 29 c© 2010 AZJM All rights reserved.



30 K. D. Kucche, M. B. Dhakne

There have appeared a series of research results concerning the problem of existence
for various special forms of (1)-(2), see for example, Balachandran et al. [1, 2], Ntouyas
[14], R. Ye and G. Zhang [21], Tidke and Dhakne [17, 16] and the references cited therein.

Authors [4, 6, 13] have obtained the results pertaining to existence and qualitative
properties of mild solutions for semilinear mixed functional integrodifferential equations
of first and second order using different approaches. Further the controllability results for
second order equations [11, 12] and non-densely defined systems [10] have been established.

Using the tool of Pachpatte’s inequality given in the Lemma 3 we prove the exis-
tence, uniqueness and continuous dependence of mild solution of second order initial value
problem (1)-(2) with minimum restrictions on the functions f, g and h.

The special forms of equations (1)-(2) serve as an abstract formulation of partial dif-
ferential equations or partial integrodifferential equations which are appearing in different
physical problems, such as the transverse motion of an extensible beam, the vibration of
hinged bars, and many other physical phenomena [3, 9].

2. Preliminaries and Hypotheses

To study the system (1)-(2), we consider the space B = C([−r, b], X) ∩ C1([0, b], X)
with the norm

‖x‖B = max{‖x‖1, ‖x‖2}, x ∈ B,

where ‖x‖1 = sup{‖x(t)‖ : −r ≤ t ≤ b} and ‖x‖2 = sup{‖x′(t)‖ : 0 ≤ t ≤ b}.
Here we introduce some definitions and preliminaries from [8, 18, 19] and hypotheses

that will be used in our subsequent discussion.

Definition 1. A one parameter family {C(t) : t ∈ R} of bounded linear operators mapping
the Banach space X into itself is called strongly continuous cosine family if

(a) C(0) = I (I is the identity operator);

(b) C(t)x is strongly continuous in t on R for each fixed x ∈ X;

(c) C(t+ s) + C(t− s) = 2C(t)C(s) for all t, s ∈ R.

The associated strongly continuous sine family {S(t) : t ∈ R} is defined by

S(t)x =

∫ t

0
C(s)xds, x ∈ X, t ∈ R.

The infinitesimal generator of a strongly continuous cosine family {C(t) : t ∈ R} is the
operator A : X → X defined by

Ax =
d2

dt2
C(t)x

∣∣
t=0

, x ∈ D(A),

where
D(A) = {x ∈ X : C(t)x is twice continuously differentiable in t}.
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Throughout this paper, we assume that A is a linear infinitesimal generator of a
strongly continuous cosine family {C(t) : t ∈ R} of bounded linear operators in a Ba-
nach space X, and the adjoint operator A∗ is densely defined, that is, D(A∗) = X∗.

Lemma 1 ([19]). Let C(t), (resp. S(t)), t ∈ R be a strongly continuous cosine (resp.
sine) family on X. Then:

(i) there exist constants N ≥ 1 and ω ≥ 0 such that

‖C(t)‖ ≤ Neω|t|, for t ∈ R,

‖S(t1)− S(t2)‖ ≤ N
∣∣∣∣∫ t2

t1

eω|s|ds

∣∣∣∣ , for t1, t2 ∈ R.

(ii) d
dtC(t)x = AC(t)x for x ∈ E = {y ∈ X : C(t)y is once continuously differentiable in t}.

Definition 2. A mild solution of second-order abstract Cauchy problem (see[18, 19])

x′′(t) = Ax(t) + w(t), σ ≤ t ≤ µ (3)

x(σ) = z1, x
′(σ) = z2, (4)

where w : [σ, µ]→ X is an integrable function, is the function x(.) given by

x(t) = C(t− σ)z1 + S(t− σ)z2 +

∫ t

σ
S(t− s)w(s)ds, σ ≤ t ≤ µ.

Comparing with the abstract Cauchy problem (3)-(4), we have the following definition
of mild solution for the initial value problem (1)-(2).

Definition 3. Let f ∈ L1(0, b;X). Then we say that x ∈ B = C([−r, b], X)∩C1([0, b], X)
is a mild solution of the problem (1)-(2) if x0 = φ and the integral equation

x(t) = C(t)φ(0) + S(t)ξ

+

∫ t

0
S(t− s)f

(
s, xs, x

′(s),

∫ s

0
g(τ, xτ , x

′(τ))dτ,

∫ b

0
h(τ, xτ , x

′(τ))dτ

)
ds, t ∈ J,

is satisfied.

To establish our main results, we will use the following Lemmas.

Lemma 2 ([7], p. 61). Let S be a convex subset of a normed linear space E and assume
0 ∈ S. Let F : S → S be a completely continuous operator, and let

ε(F ) = {x ∈ S : x = λFx for some 0 < λ < 1}.

Then either ε(F ) is unbounded or F has a fixed point.
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Lemma 3 ([15], p-47). Let z(t), u(t), v(t), w(t) ∈ C([α, β], R+), k ≥ 0 be a real constant
and

z(t) ≤ k +

∫ t

α
u(s)

[
z(s) +

∫ s

α
v(σ)z(σ)dσ +

∫ β

α
w(σ)z(σ)dσ

]
ds, for t ∈ [α, β].

If

r∗ =

∫ β

α
w(σ) exp

(∫ σ

α
[u(τ) + v(τ)]dτ

)
dσ < 1,

then

z(t) ≤ k

1− r∗
exp

(∫ t

α
[u(s) + v(s)]ds

)
, for t ∈ [α, β].

We list the following hypotheses.

(H1) There exist continuous functions k, l, m : J → R+ such that

(i) ‖f(t, ψ, x, y, z)‖ ≤ k(t)(‖ψ‖C + ‖x‖+ ‖y‖+ ‖z‖);

(ii) ‖g(t, ψ, x)‖ ≤ l(t)(‖ψ‖C + ‖x‖);

(iii) ‖h(t, ψ, x)‖ ≤ m(t)(‖ψ‖C + ‖x‖);

for every t ∈ J, ψ ∈ C and x, y, z ∈ X.

(H2) For each t ∈ J the function f(t, ·, ·, ·, ·) : C × X × X × X → X is continuous and
for each (ψ, x, y, z) ∈ C × X × X × X the function f(·, ψ, x, y, z) : J → X is
strongly measurable.

(H3) For each t ∈ J the functions g(t, ·, ·), h(t, ·, ·) : C ×X → X are continuous and for
each (ψ, x) ∈ C ×X the functions g(., ψ, x), h(., ψ, x) : C ×X → X are strongly
measurable.

(H4) For each positive integer m > 0, there exists αm ∈ L1(J,R+) such that

‖f(t, ψ, x, y, z)‖ ≤ αm(t), for all ‖ψ‖C ≤ m, ‖x‖ ≤ m, ‖y‖ ≤ m, ‖z‖ ≤ m

and for almost all t ∈ J .

(H5) C(t), t > 0 is compact.



On Second Order Mixed Functional Integrodifferential Equations 33

3. Existence Results

Theorem 1. If the hypotheses (H1)-(H5) are satisfied, then the system (1)-(2) has at
least one mild solution on [−r, b], provided

r =

∫ b

0
m(σ) exp

(∫ σ

0
[M(1 + b)k(τ) + l(τ)]dτ

)
dσ < 1, (5)

where M = sup{‖C(t)‖ : t ∈ J}.

Proof. In view of Lemma 2, firstly we obtain the priori bounds for the mild solution
of the equation

x(t) = λFx(t), 0 < λ < 1, (6)

where the operator F : B → B is defined by

(Fx)(t) =


φ(t), t ∈ [−r, 0],

C(t)φ(0) + S(t)ξ +
∫ t
0 S(t− s)×

f
(
s, xs, x

′(s),
∫ s
0 g(τ, xτ , x

′(τ))dτ,
∫ b
0 h(τ, xτ , x

′(τ))dτ
)
ds, t ∈ J.

(7)

Using the hypothesis (H1), from the equation (6), for each t ∈ J , we have

‖x(t)‖ ≤‖C(t)‖‖φ(0)‖+ ‖S(t)‖‖ξ‖+

∫ t

0
‖S(t− s)‖×∥∥∥∥f (s, xs, x′(s),∫ s

0
g(τ, xτ , x

′(τ))dτ,

∫ b

0
h(τ, xτ , x

′(τ))dτ

)∥∥∥∥ ds
≤M‖φ‖C +Mb‖ξ‖+

∫ t

0
Mbk(s)×[

‖xs‖C + ‖x′(s)‖+

∫ s

0
l(τ)(‖xτ‖C + ‖x′(τ)‖)dτ +

∫ b

0
m(τ)(‖xτ‖C + ‖x′(τ)‖)dτ

]
ds.

Consider the function µ1 given by

µ1(t) = sup{‖x(s)‖ : −r ≤ s ≤ t}, t ∈ J.

Let t∗ ∈ [−r, t] be such that µ1(t) = ‖x(t∗)‖. If t∗ ∈ [0, t], by the previous inequality we
have

µ1(t) ≤M‖φ‖C +Mb‖ξ‖+

∫ t

0
Mbk(s)×[

µ1(s) + ‖x′(s)‖+

∫ s

0
l(τ)(µ1(τ) + ‖x′(τ)‖)dτ +

∫ b

0
m(τ)(µ1(τ) + ‖x′(τ)‖)dτ

]
ds

≤M‖φ‖C +Mb‖ξ‖+

∫ t

0
Mbk(s)×
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µ1(s) + µ2(s) +

∫ s

0
l(τ)(µ1(τ) + µ2(τ))dτ +

∫ b

0
m(τ)(µ1(τ) + µ2(τ))dτ

]
ds, (8)

where µ2(t) = sup{‖x′(s)‖ : 0 ≤ s ≤ t}, t ∈ J. If t∗ ∈ [−r, 0] then µ1(t) ≤ ‖φ‖C and the
previous inequality obviously holds since M ≥ 1. But for t ∈ J , using the equation (6)
and (7) we have

x′(t) = AS(t)φ(0) + C(t)ξ +

∫ t

0
C(t− s)×

f

(
s, xs, x

′(s),

∫ s

0
g(τ, xτ , x

′(τ))dτ,

∫ b

0
h(τ, xτ , x

′(τ))dτ

)
ds,

and using hypothesis (H1), we obtain

‖x′(t)‖ ≤ ‖AS(t)‖‖φ(0)‖+ ‖C(t)‖‖ξ‖+

∫ t

0
‖C(t− s)‖k(s)×[

‖xs‖C + ‖x′(s)‖+

∫ s

0
l(τ)(‖xτ‖C + ‖x′(τ)‖)dτ +

∫ b

0
m(τ)(‖xτ‖C + ‖x′(τ)‖)dτ

]
ds.

Let t∗∗ ∈ [0, t] be such that µ2(t) = ‖x(t∗∗)‖, and let L = sup{‖AS(t)‖ : t ∈ J}. Then we
have

µ2(t) ≤ L‖φ‖C +M‖ξ‖+

∫ t

0
Mk(s)×[

µ1(s) + µ2(s) +

∫ s

0
l(τ)(µ1(τ) + µ2(τ))dτ +

∫ b

0
m(τ)(µ1(τ) + µ2(τ))dτ

]
ds. (9)

From (8) and (9), we obtain

µ1(t) + µ2(t)

≤ (L+M)‖φ‖C +M(1 + b)‖ξ‖+M(1 + b)

∫ t

0
k(s)×[

µ1(s) + µ2(s) +

∫ s

0
l(τ)(µ1(τ) + µ2(τ))dτ +

∫ b

0
m(τ)(µ1(τ) + µ2(τ))dτ

]
ds. (10)

By applying Pachpatte’s inequality given in Lemma 3 with z(t) = µ1(t) +µ2(t) and using
condition (5), we obtain

µ1(t) + µ2(t) ≤
(L+M)‖φ‖C +M(1 + b)‖ξ‖

1− r
exp

(∫ t

0
[M(1 + b)k(s) + l(s)]ds

)
≤ (L+M)‖φ‖C +M(1 + b)‖ξ‖

1− r
exp

(∫ b

0
[M(1 + b)k(s) + l(s)]ds

)
:= K.

Therefore ‖x(t)‖1 ≤ µ1(t) ≤ K and ‖x′(t)‖2 ≤ µ2(t) ≤ K, t ∈ J, and hence ‖x‖B ≤ K.
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Now we prove that the operator F defined in (7) is completely continuous. Let Bk =
{x ∈ B : ‖x‖B ≤ k, t ∈ J} for k ≥ 1. Firstly we show that F maps Bk into an
equicontinuous family. Let x ∈ Bk, t1, t2 ∈ J . Then if 0 < t1 < t2 ≤ b, from (7), using
the hypothesis (H1), we get

‖(Fx)(t1)− (Fx)(t2)‖
≤ ‖[C(t1)− C(t2)]φ(0)‖+ ‖[S(t1)− S(t2)]ξ‖

+

∥∥∥∥∫ t1

0
[S(t1 − s)− S(t2 − s)]

× f

(
s, xs, x

′(s),

∫ s

0
g(τ, xτ , x

′(τ))dτ,

∫ b

0
h(τ, xτ , x

′(τ))dτ

)
ds

∥∥∥∥
+

∥∥∥∥∫ t2

t1

S(t2 − s)f
(
s, xs, x

′(s),

∫ s

0
g(τ, xτ , x

′(τ))dτ,

∫ b

0
h(τ, xτ , x

′(τ))dτ

)
ds

∥∥∥∥
≤ ‖[C(t1)− C(t2)‖‖φ‖C + ‖S(t1)− S(t2)‖‖ξ‖

+

∫ t1

0
‖S(t1 − s)− S(t2 − s)‖αm0(s)ds+

∫ t2

t1

‖S(t2 − s)‖αm0(s)ds

and

‖(Fx)′(t1)− (Fx)′(t2)‖
≤ ‖A[S(t1)− S(t2)]φ(0)‖+ ‖[C(t1)− C(t2)]ξ‖

+

∥∥∥∥∫ t1

0
[C(t1 − s)− C(t2 − s)]

× f

(
s, xs, x

′(s),

∫ s

0
g(τ, xτ , x

′(τ))dτ,

∫ b

0
h(τ, xτ , x

′(τ))dτ

)
ds

∥∥∥∥
+

∥∥∥∥∫ t2

t1

C(t2 − s)f
(
s, xs, x

′(s),

∫ s

0
g(τ, xτ , x

′(τ))dτ,

∫ b

0
h(τ, xτ , x

′(τ))dτ

)
ds

∥∥∥∥
≤ ‖A[S(t1)− S(t2)]‖‖φ‖C + ‖C(t1)− C(t2)‖‖ξ‖

+

∫ t1

0
‖C(t1 − s)− C(t2 − s)‖αm0(s)ds+

∫ t2

t1

‖C(t2 − s)‖αm0(s)ds,

where
m0 = 2kmax{1 + l(t) +m(t) : t ∈ J}.

We know C(t), S(t) are uniformly continuous for t ∈ J and the compactness of C(t), S(t)
for t > 0 implies the continuity in the uniform operator topology. The compactness of S(t)
follows from that of C(t), Lemma 2.1 and Lemma 2.5 of [20]. Further the right hand sides
of the above inequalities are independent of x ∈ Bk. Therefore ‖(Fx)(t1)− (Fx)(t2)‖ → 0
and ‖(Fx)′(t1)− (Fx)′(t2)‖ → 0 as (t2− t1)→ 0. Thus F maps Bk into an equicontinuous
family of functions. The equicontinuity for the cases t1 ≤ t2 ≤ 0 and t1 ≤ 0 ≤ t2 follows
from the uniform continuity of φ on [−r, 0] and from the relation

‖(Fy)(t1)− (Fy)(t2)‖ ≤ ‖φ(t1)− φ(0)‖+ ‖(Fy)(0)− (Fy)(t2)‖,
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respectively.

It is easy to verify that FBk is uniformly bounded and hence the details are omitted.
Since we have proved that FBk is an equicontinuous family, to prove FBk is compact, in
view of the Arzela-Ascoli theorem, it suffices to show that the set V (t) = {(Fx)(t) : x ∈
Bk} is precompact in X for each t ∈ [−r, b]. This is trivial for t ∈ [−r, 0], since in this case
V (t) = {φ(t)} is singleton set. So let 0 < t ≤ b be fixed and ε be a real number satisfying
0 < ε < t. For x ∈ Bk, we define

(Fεx)(t) = C(t)φ(0) + S(t)ξ

+

∫ t−ε

0
S(t− s)f

(
s, xs, x

′(s),

∫ s

0
g(τ, xτ , x

′(τ))dτ,

∫ b

0
h(τ, xτ , x

′(τ))dτ

)
ds, t ∈ J.

Since C(t) and S(t) are compact operators, the set V ε(t) = {(Fεx)(t) : x ∈ Bk} is relatively
compact in X for every ε, 0 < ε < t. Moreover, by making use of hypothesis (H4), for
every x ∈ Bk we have

‖(Fx)(t)− (Fεx)(t)‖

=

∫ t

t−ε

∥∥∥∥S(t− s)f
(
s, xs, x

′(s),

∫ s

0
g(τ, xτ , x

′(τ))dτ,

∫ b

0
h(τ, xτ , x

′(τ))dτ

)∥∥∥∥ ds
≤
∫ t

t−ε
‖S(t− s)‖αm0(s)ds

and

‖(Fx)′(t)− (Fεx)′(t)‖

=

∫ t

t−ε

∥∥∥∥C(t− s)f
(
s, xs, x

′(s),

∫ s

0
g(τ, xτ , x

′(τ))dτ,

∫ b

0
h(τ, xτ , x

′(τ))dτ

)∥∥∥∥ ds
≤
∫ t

t−ε
‖C(t− s)‖αm0(s)ds.

Therefore there are precompact sets arbitrarily close to the set V (t); hence the set V (t)
is also precompact in X. Finally we prove that F : B → B is continuous. Let {xn} ⊆ B
with xn → x in B. By using hypotheses (H2) and (H3), we have

f

(
t, xnt , x

′
n(t),

∫ t

0
g(s, xns x

′
n(s))ds,

∫ b

0
h(s, xns x

′
n(s))ds

)
→ f

(
t, xt, x

′(t),

∫ t

0
g(s, xs, x

′(s))ds,

∫ b

0
h(s, xs, x

′(s))ds

)
as n→∞,

for each t ∈ J and since∥∥∥∥f (t, xnt , x′n(t),

∫ t

0
g(s, xns x

′
n(s))ds,

∫ b

0
h(s, xns x

′
n(s))ds

)



On Second Order Mixed Functional Integrodifferential Equations 37

− f
(
t, xt, x

′(t),

∫ t

0
g(s, xs, x

′(s))ds,

∫ b

0
h(s, xs, x

′(s))ds

)∥∥∥∥ ≤ 2αm0(s),

where m0 = 2kmax{1 + l(t) +m(t) : t ∈ J}, we have by dominated convergence theorem,

‖(Fxn)(t)− (Fx)(t)‖

≤
∫ b

0
‖S(t− s)‖

∥∥∥∥f (s, xns , x′n(s),

∫ s

0
g(τ, xnτ , x

′
n(τ))dτ,

∫ b

0
h(τ, xnτ , x

′
n(τ))dτ

)
− f

(
s, xs, x

′(s),

∫ s

0
g(τ, xτ , x

′(τ))dτ,

∫ b

0
h(τ, xτ , x

′(τ))dτ

)∥∥∥∥ ds
→ 0 as n→∞,

and

‖(Fxn)′(t)− (Fx)′(t)‖

≤
∫ b

0
‖C(t− s)‖

∥∥∥∥f (s, xns , x′n(s),

∫ s

0
g(τ, xnτ , x

′
n(τ))dτ,

∫ b

0
h(τ, xnτ , x

′
n(τ))dτ

)
− f

(
s, xs, x

′(s),

∫ s

0
g(τ, xτ , x

′(τ))dτ,

∫ b

0
h(τ, xτ , x

′(τ))dτ

)∥∥∥∥ ds
→ 0 as n→∞.

Therefore, ‖Fxn −Fx‖B → 0 as n→∞ and hence F is continuous. This completes the
proof that F is completely continuous operator.

Moreover, the set ε(F ) = {y ∈ B : x = λFx, 0 < λ < 1} is bounded, as we proved
in the first part. Consequently, by Lemma 2, the operator F has a fixed point x̃ in B.
This means that the initial value problem peoblem (1)-(2) has a mild solution on [−r, b],
completing the proof of the theorem. J

4. Continuous Dependence and Uniqueness

Theorem 2. Suppose that the functions f, g and h in (1) satisfy the following conditions:

(i) ‖f(t, ψ, x, y, z)− f(t, ϕ, u, v, w)‖ ≤ p(t)(‖ψ − ϕ‖C + ‖x− u‖+ ‖y − v‖+ ‖z − w‖);

(ii) ‖g(t, ψ, x)− g(t, ϕ, u)‖ ≤ q(t)(‖ψ − ϕ‖C + ‖x− u‖);

(iii) ‖h(t, ψ, x)− h(t, ϕ, u)‖ ≤ r(t)(‖ψ − ϕ‖C + ‖x− u‖),

where ψ,ϕ ∈ C, x, y, z, u, v, z ∈ X and p, q, r : J → [0,∞) are continuous functions. Let
x and y be the mild solutions of (1) corresponding to initial conditions x0 = φx, x

′(0) = ξx
and y0 = φy, y

′(0) = ξy, respectively, where (φx, ξx), (φy, ξy) ∈ C ×X. Then

‖x− y‖B ≤ Q [(L+M)‖φx − φy‖C +M(1 + b)‖ξx − ξy‖] , (11)
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where

Q =
exp

(∫ b
0 [M(1 + b)p(s) + q(s)]ds

)
1− ζ

,

ζ =

∫ b

0
r(σ) exp

(∫ σ

0
[M(1 + b)p(τ) + q(τ)]dτ

)
dσ < 1, (12)

M = sup{‖C(t)‖ : t ∈ J} and L = sup{‖AS(t)‖ : t ∈ J}.

Proof. Using the conditions (i)-(iii), for t ∈ J we get

‖x(t)− y(t)‖ ≤‖C(t)‖‖φx(0)− φy(0)‖+ ‖S(t)‖‖ξx − ξy‖+

∫ t

0
‖S(t− s)‖×(∥∥∥∥f (s, xs, x′(s),∫ s

0
g(τ, xτ , x

′(τ))dτ,

∫ b

0
h(τ, xτ , x

′(τ))dτ

)∥∥∥∥
−
∥∥∥∥f (s, ys, y′(s),∫ s

0
g(τ, yτ , y

′(τ))dτ,

∫ b

0
h(τ, yτ , y

′(τ))dτ

)∥∥∥∥) ds
≤M‖φx − φy‖C +Mb‖ξx − ξy‖

+

∫ t

0
Mbp(s)

[
‖xs − ys‖C + ‖x′(t)− y′(t)‖

+

∫ s

0
q(τ)(‖xτ − yτ‖C + ‖x′(τ)− y′(τ)‖)dτ

+

∫ b

0
r(τ)(‖xτ − yτ‖C + ‖x′(τ)− y′(τ)‖)dτ

]
ds.

Define ϑ1(t) = sup{‖(x − y)(s)‖ : −r ≤ s ≤ t}, t ∈ J and let σ ∈ [−r, t] be such that
ϑ1(t) = ‖(x− y)(σ)‖. If σ ∈ [0, t], by the previous inequality we have

ϑ1(t) ≤M‖φx − φy‖C +Mb‖ξx − ξy‖

+

∫ t

0
Mbp(s)

[
ϑ1(s) + ‖(x− y)′(t)‖

+

∫ s

0
q(τ)(ϑ1(τ) + ‖(x− y)′(τ)‖)dτ

+

∫ b

0
r(τ)(ϑ1(τ) + ‖(x− y)′(τ)‖)dτ

]
ds

≤M‖φx − φy‖C +Mb‖ξx − ξy‖+

∫ t

0
Mbp(s)×[

ϑ1(s) +

∫ s

0
q(τ)(ϑ1(τ) + ϑ2(τ))dτ +

∫ b

0
r(τ)(ϑ1(τ) + ϑ2(τ))dτ

]
ds, (13)

where ϑ2(t) = sup{‖(x−y)′(s)‖ : 0 ≤ s ≤ t}, t ∈ J. If σ ∈ [−r, 0], then ϑ1(t) ≤ ‖φx−φy‖C
and the previous inequality obviously holds since M ≥ 1.
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But we see that for t ∈ J we have

‖(x− y)′(t)‖ ≤ ‖AS(t)‖‖φx(0)− φy(0)‖+ ‖C(t)‖‖ξx − ξy‖+

∫ t

0
‖C(t− s)‖×(∥∥∥∥f (s, xs, x′(s),∫ s

0
g(τ, xτ , x

′(τ))dτ,

∫ b

0
h(τ, xτ , x

′(τ))dτ

)∥∥∥∥
−
∥∥∥∥f (s, ys, y′(s),∫ s

0
g(τ, yτ , y

′(τ))dτ,

∫ b

0
h(τ, yτ , y

′(τ))dτ

)∥∥∥∥) ds
≤ L‖φx − φy‖C +M‖ξx − ξy‖+

∫ t

0
M p(s)

[
‖xs − ys‖C + ‖x′(t)− y′(t)‖

+

∫ s

0
q(τ)(‖xτ − yτ‖C + ‖x′(τ)− y′(τ)‖)dτ

+

∫ b

0
r(τ)(‖xτ − yτ‖C + ‖x′(τ)− y′(τ)‖)dτ

]
ds.

If σ∗ ∈ [0, t] is such that ϑ2(t) = ‖x(σ∗)‖, then we get

ϑ2(t) ≤ L‖φx − φy‖C +M‖ξx − ξy‖+

∫ t

0
M p(s)×[

ϑ1(s) + ϑ2(s) +

∫ s

0
q(τ)(ϑ1(τ) + ϑ2(τ))dτ +

∫ b

0
r(τ)(ϑ1(τ) + ϑ2(τ))dτ

]
ds.

(14)

From equations (13) and (14), we get

ϑ1(t) + ϑ2(t)

≤ (L+M)‖φx − φy‖C +M(1 + b)‖ξx − ξy‖+M(1 + b)

∫ t

0
p(s)×[

ϑ1(s) + ϑ2(s) +

∫ s

0
q(τ)(ϑ1(τ)‖+ ϑ2(τ))dτ +

∫ b

0
r(τ)(ϑ1(τ)‖+ ϑ2(τ))dτ

]
ds. (15)

An application of Pachpatte’s inequality given in Lemma 3 to (15) with z(t) = ϑ1(t)+ϑ2(t)
and condition (12) yields

ϑ1(t) + ϑ2(t) ≤
(L+M)‖φx − φy‖C +M(1 + b)‖ξx − ξy‖

1− ζ
exp

(∫ t

0
[M(1 + b)p(s) + q(s)]ds

)
≤ Q [(L+M)‖φx − φy‖C +M(1 + b)‖ξx − ξy‖] .

This implies

‖(x− y)(t)‖1 ≤ ϑ1(t) ≤ Q [(L+M)‖φx − φy‖C +M(1 + b)‖ξx − ξy‖]

and

‖(x− y)′(t)‖2 ≤ ϑ2(t) ≤ Q [(L+M)‖φx − φy‖C +M(1 + b)‖ξx − ξy‖] ,

and hence inequality (11) holds.J
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Remark 1. Note that the Theorem 2 not only gives the continuous dependence of mild
solutions of initial value problem (1)-(2) on initial data, but also gives the uniqueness of
mild solutions, as (φx, ξx) = (φy, ξy) ∈ C ×X in (11) gives ‖x− y‖B = 0.

5. Example

Consider the following nonlinear mixed partial integrodifferential equation:

∂2

∂t2
z(y, t) =

∂2

∂y2
z(y, t) + F

(
t, z(y, t− r), ∂

∂t
z(y, t),

∫ t

0

G

(
s, z(y, s− r), ∂

∂s
z(y, s)

)
ds,∫ b

0

H

(
s, z(y, s− r), ∂

∂s
z(y, s)

))
ds, t ∈ [0, b], y ∈ (0, π), (16)

z(0, t) = z(π, t) = 0, t ∈ J, (17)

z(y, t) = φ(y, t), y ∈ (0, π), t ∈ [−r, 0], (18)

∂

∂t
(y, 0) = z0(y), y ∈ (0, π), (19)

where φ : [−r, 0]×(0, π)→ (0, π) is continuous, and the functions F,G and H are specified
below.

Consider the space X = L2[0, π] with usual norm | · |L2 and the operator A : X → X
defined by Aw = w

′′
, where w ∈ D(A) = {w ∈ X : w, w

′
are absolutely continuous, w

′′ ∈
X and w(0) = w(π) = 0}. It is well known that Aw =

∑∞
n=1−n2(w,wn)wn, w ∈ D(A),

where wn(s) = (
√

2/π)sinns, n = 1, 2, 3, ... is the orthogonal set of eigenvectors of A.
Then A is the infinitesimal generator of a strongly continuous cosine family C(t), t ∈ R,
in X which is given by (see[18])

C(t)w =
∞∑
n=1

cosnt(w,wn)wn, w ∈ X,

and the associated sine family is given by S(t)w =
∑∞

n=1
1
n sinnt(w,wn)wn, w ∈ X.

To formulate the above partial differential equations (16)-(19) as an abstract form
(1)-(2), we define the function f : J × C ×X ×X ×X → X by

f(t, ψ, µ, x, y)(v) = F (t, ψ(−r)(v), µ(v), x(v), y(v)), v ∈ (0, π),

where F : [0, b] × (0, π) × (0, π) × (0, π) × (0, π) → (0, π) is continuous and strongly
measurable.

Further we define g, h : J × C ×X → X, by

g(t, ψ, µ)(v) = G(t, ψ(−r)(v), µ(v)),

h(t, ψ, µ)(v) = H(t, ψ(−r)(v), µ(v)),

where G,H : [0, b]× (0, π)× (0, π)→ (0, π) are continuous and strongly measurable.
We assume that the functions F : [0, b] × (0, π) × (0, π) × (0, π) × (0, π) → (0, π) and

G,H : [0, b]× (0, π)× (0, π)→ (0, π) satisfy the following assumptions:
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(A1) There exist continuous functions k1, l1, m1 : [0, b]→ (0, π) such that

(i) |F (t, σ, x, y, z)| ≤ k1(t)(|σ|+ |x|+ |y|+ |z|);
(ii) ‖G(t, x, y)‖ ≤ l1(t)(|x|+ |y|);

(iii) ‖H(t, x, y)‖ ≤ m1(t)(|x|+ |y|);

for every t ∈ [0, b] and σ, x, y, z ∈ (0, π).

(A2) For each positive integer m1 > 0, there exists αm1 ∈ L1(0, b) such that

|F (t, σ, x, y, z)| ≤ αm1(t), for all |σ| ≤ m1, |x| ≤ m1, |y| ≤ m1, |z| ≤ m1

and for almost all t ∈ [0, b].

With the functions f, g, h and the operator A chosen above, the problem (1)-(2) is
an abstract formulation of a(16)-(19). Note that all the assumptions of Theorem 3.1 are
satisfied and hence (16)-(19) has a solution on [−r, b].
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