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Abstract. In this paper, we introduce conformal Kenmotsu manifolds which are not Kenmotsu.
Some results on such manifolds and their associated submanifolds are provided.
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1. Introduction

Let (M2n, J, g) be a Hermitian manifold of complex dimension n, where J denotes its
complex structure and g is its Hermitian metric. Then (M2n, J, g) is a locally conformal
Käehler manifold if there is an open cover {Ui}i∈I of M2n and a family {fi}i∈I of C∞

functions fi : Ui −→ R such that each local metric gi = exp(−fi)g|Ui
is Käehlerian.

Here g|Ui
= ı∗i g where ıi : Ui −→ M2n is the inclusion. Also (M2n, J, g) is globally

conformal Käehler if there is a C∞ function f : M2n −→ R such that the metric exp(f)g
is Käehlerian [5]. The first study on locally conformal Käehler manifolds was done by
Libermann in 1955 [8]. Visman [10], put down some geometrical conditions for locally
conformal Käehler manifold and in 1982 Tricerri mentioned different examples of locally
conformal Käehler manifold [9]. In 2001, Banaru [2] succeeded to classify the sixteen
classes of almost Hermitian manifolds by using the two tensors of Kirichenko, which are
called Kirichenko tensors. Abood studied the properties of these tensors [1]. The locally
conformal Käehler manifold is one of the sixteen classes of almost Hermitian manifolds.
In 1972, K. Kenmotsu introduced a class of contact metric manifolds, called Kenmotsu
manifolds, which are not Sasakian [7]. In this paper we get the idea of constructing
conformal Käehler manifolds and introduce conformal Kenmotsu manifolds which are not
Kenmotsu. There are a few differences between the geometry of invariant (anti-invariant)
submanifolds of a Kenmotsu manifold and a conformal Kenmotsu manifold. For example,
we show that any invariant submanifold Ḿ of a Kenmotsu manifold M is minimal, but
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if M is a conformal Kenmotsu manifold, then Ḿ is minimal if and only if the Lee vector
field of M is tangent to Ḿ . Moreover, it is proved in [6] that if Ḿ is an anti-invariant
submanifold of a Kenmotsu manifold, then Ḿ has the flat normal curvature tensor if and
only if Ḿ is flat, but in this paper we show that if Ḿ is an anti-invariant submanifold of a
conformal Kenmotsu manifold with flat normal curvature tensor then Ḿ is not flat. The
present paper is organized as follows:
In Section 2 we recall some definitions on almost contact metric manifolds. We introduce
conformal Kenmotsu manifolds in Section 3 and establish a relation between the curvature
tensor on a conformal Kenmotsu manifold and a Kenmotsu manifold. According to this
relation, we give the Gauss and Ricci equations between a conformal Kenmotsu manifold
and its submanifolds. In Sections 4 and 5, we study invariant submanifolds and anti-
invariant submanifolds of a conformal Kenmotsu manifold and prove some theorems about
the mean curvature vector field, the connection of the normal bundle and the curvature
tensor of the submanifolds.

2. Preliminaries

A 2n+1-dimensional differentiable manifold M is said to be an almost contact metric
manifold if it admits an almost contact metric structure (ϕ̃, ξ̃, η̃, g̃) where ϕ̃ is a tensor
field of type (1,1), ξ̃ is a vector field, η̃ is a 1-form and g̃ is the Riemannian metric on M
satisfying

ϕ̃2 = −Id+ η̃ ⊗ ξ̃, η̃(ξ̃) = 1, ϕ̃ξ̃ = 0, η̃oϕ̃ = 0,

g̃(ϕ̃X, ϕ̃Y ) = g̃(X,Y )− η̃(X)η̃(Y ), η̃(X) = g̃(X, ξ̃),

for all vector fields X,Y on M .
An almost contact metric manifold (M2n+1, ϕ̃, ξ̃, η̃, g̃) is said to be a Kenmotsu manifold
[7] if the relation

(∇̃X ϕ̃)Y = −g̃(X, ϕ̃Y )ξ̃ − η̃(Y )ϕ̃X, (1)

holds on M , where ∇̃ denotes the Riemannian connection of g̃. From the above equation,
for a Kenmotsu manifold we also have

∇̃X ξ̃ = X − η̃(X)ξ̃. (2)

Assume Ḿ is a submanifold of a Kenmotsu manifold M . Let ǵ and ∇́ be the induced
metric and Riemannian connections of Ḿ , respectively. Then the Gauss and Weingarten
formulas of Ḿ are given, respectively, by

∇̃XY = ∇́XY + h(X,Y ), ∇̃XN = −ANX + ∇́⊥XN,

for all vector fields X,Y on Ḿ , where ∇́⊥ is the normal connection and A is the shape
operator of Ḿ with respect to the unit normal vector field N. Let Ŕ is the curvature tensor
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of Ḿ , the Gauss and Ricci equations of Ḿ are given, respectively, by

g̃(R̃(X,Y )Z,W ) = ǵ(Ŕ(X,Y )Z,W )− g̃(h(X,W ), h(Y, Z))

+ g̃(h(X,W ), h(Y, Z)),

g̃(R̃(X,Y )N1, N2) = g̃(Ŕ⊥(X,Y )N1, N2)− ǵ([A1, A2]X,Y ),

for all X,Y, Z,W ∈ TḾ and N1, N2 ∈ TḾ⊥.
A submanifold Ḿm of a Kenmotsu manifold (M2n+1, ϕ̃, ξ̃, η̃, g̃) is called an invariant sub-
manifold if ϕ̃TpḾ ⊆ TpḾ for any p ∈ Ḿ .

Theorem 1. Let Ḿm be an invariant submanifold of a Kenmotsu manifold M tangent to
ξ̃. Then Ḿ is minimal.

Proof. From the Gauss formula and (1) we have

h(X, ϕ̃Y ) = ϕ̃h(X,Y )− (∇́X ϕ̃)Y − g̃(X, ϕ̃Y )ξ̃ − η̃(Y )ϕ̃X,

for all X,Y on Ḿ . Since Ḿ is invariant, taking the tangent and normal parts, we have

h(X, ϕ̃Y ) = ϕ̃h(X,Y ). (3)

Let {Eα, ϕ̃Eα, ξ, α : 1, · · · , m−12 } be an orthonormal basis on Ḿ and suppose H is the mean

curvature vector field of Ḿ . From the Gauss formula and (2) it follows that h(ξ, ξ) = 0.
Hence, using (3) we have

H =
1

m
{Σ

m−1
2

α=1 (h(Eα, Eα) + h(ϕ̃Eα, ϕ̃Eα)) + h(ξ, ξ)} = 0. J

3. Conformal Kenmotsu Manifolds

A smooth manifold M2n+1 with almost contact metric structure (ϕ, η, ξ, g) is called a
conformal Kenmotsu manifold if there is a positive smooth function f : M2n+1 → R so
that

g̃ = exp(f)g, ξ̃ = exp(−f)
1
2 ξ, η̃ = exp(f)

1
2 η, ϕ̃ = ϕ,

is a Kenmotsu structure on M .
Let M is a conformal Kenmotsu manifold. Suppose ∇̃ and ∇ denote the Riemannian
connections M with respect to metrics g̃ and g, respectively. Using the Koszul formula,
we obtain the following relation between the connections ∇̃ and ∇

∇̃XY = ∇XY +
1

2
{ω(X)Y + ω(Y )X − g(X,Y )ω]}, (4)



Invariant and Anti-Invariant Submanifolds of a Conformal Kenmotsu Manifold 57

such that ω(X) = X(f) and ω] = gradf is vector field metrically equivalent to 1-form
ω, that is, g(ω], X) = ω(X), that is called the Lee vector field of a conformal Ken-
motsu manifold M . Let R̃ and R denote the curvature tensor on (M2n+1, ϕ̃, η̃, ξ̃, g̃) and
(M2n+1, ϕ, η, ξ, g), respectively. Then the relation between R̃ and R is given by

exp(−f)g̃(R̃(X,Y )Z,W ) = g(R(X,Y )Z,W )

+
1

2
{B(X,Z)g(Y,W )−B(Y, Z)g(X,W )

+ B(Y,W )g(X,Z)−B(X,W )g(Y, Z)}

+
1

4
‖ω]‖2{g(X,Z)g(Y,W )− g(Y, Z)g(X,W )}, (5)

for all vector fields X,Y, Z,W on M , where B := ∇ω − 1
2ω ⊗ ω. Furthermore, by the

relations (1), (2) and (4) we get

(∇Xϕ)Y = (exp(f))
1
2 {−g(X,ϕY )ξ − η(Y )ϕX}

− 1

2
{ω(ϕY )X − ω(Y )ϕX + g(X,Y )ϕω] − g(X,ϕY )ω]}, (6)

∇Xξ = (exp(f))
1
2 {X − η(X)ξ} − 1

2
{ω(ξ)X − η(X)ω]}, (7)

for all vector fields X,Y on M . Assume Ḿ is a submanifold of a conformal Kenmotsu
manifold M . Let ∇́ and Ŕ are the Riemannian connection and curvature tensor on Ḿ ,
respectively, and ǵ is an induced metric on Ḿ . Also let N is an unit vector field normal
to Ḿ . We put

PX = tan(ϕX), FX = nor(ϕX),

tN = tan(ϕN), fN = nor(ϕN),

for any X ∈ TḾ and N ∈ TḾ⊥. Then by the Gauss formula and (6) we obtain the
following relations

(∇́XP )Y = AFYX + th(X,Y ) + (exp(f))
1
2 {−g(X,ϕY )ξ − η(Y )PX}

− 1

2
{ω(ϕY )X − ω(Y )PX + g(X,Y )(ϕω])> − g(X,ϕY )(ω])>}, (8)

(∇́XF )Y = fh(X,Y )− h(X,PY )− (exp(f))
1
2 η(Y )FX

+
1

2
{ω(Y )FX − g(X,Y )(ϕω])⊥ + g(X,ϕY )(ω])⊥}, (9)

(∇́Xt)N = AfNX − PANX − (exp(f))
1
2 g(X,ϕN)ξ

− 1

2
{ω(ϕN)X − ω(N)PX + g(X,ϕN)(ω])>}, (10)

(∇́Xf)N = −h(X, tN)− FANX

+
1

2
{ω(N)FX + g(X,ϕN)(ω])⊥}, (11)
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for all X,Y ∈ TḾ and N ∈ TḾ⊥ such that ξ is tangent to Ḿ .
From (5), the Gauss and Ricci equations of Ḿm ⊆ (M2n+1, ϕ, ξ, η, g) are given, respec-
tively, by

exp(−f)g̃(R̃(X,Y )Z,W ) = ǵ(Ŕ(X,Y )Z,W )− g(h(X,W ), h(Y,Z))

− g(h(Y,W ), h(X,Z)) +
1

2
(B ∧ g + g ∧B)(X,Y, Z,W )}

+
1

4
‖ω]‖2{g ∧ g(X,Y, Z,W )}, (12)

g(R(X,Y )N1, N2) = g(Ŕ⊥(X,Y )N1, N2)− ǵ([A1, A2]X,Y ), (13)

for all X,Y, Z,W ∈ TḾ and N1, N2 ∈ TḾ⊥, where the wedge product of tensor fields A
and B on Ḿ is given by

(A ∧B)(X,Y, Z,W ) = A(X,Z)B(Y,W )−A(Y,Z)B(X,W ),

for all X,Y, Z,W ∈ TḾ .

4. Invariant Submanifolds

A submanifold Ḿm of a conformal Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) is called an
invariant submanifold if ϕTpḾ ⊆ TpḾ for any p ∈ Ḿ then ϕX = PX for any X ∈ TḾ .

Lemma 1. Let Ḿm be an invariant submanifold of a conformal Kenmotsu manifold M
tangent to ξ. Then

h(X,ϕY ) = ϕh(X,Y ) +
1

2
{g(X,ϕY )(ω]⊥)− g(X,Y )(ϕω])⊥}, (14)

AϕNX = ϕANX +
1

2
{ω(ϕN)X − ω(N)ϕX}, (15)

ANϕX + ϕANX = ω(N)ϕX, (16)

for all X,Y ∈ TḾ and N ∈ TḾ⊥.
Proof. Since Ḿ is invariant, we get ϕN = fN . Then (14) and (15) follow immediately

from (9) and (10), respectively. Since h is self-adjoint, from (14) we have

h(ϕX, Y ) = ϕh(X,Y ) +
1

2
{g(Y, ϕX)ω]⊥ − g(X,Y )(ϕω])⊥}, (17)

for all X,Y ∈ TḾ . By using (17), we obtain

ǵ(ANϕX, Y ) = g(h(ϕX, Y ), N) = g(ϕh(X,Y ), N)

− 1

2
{g(X,Y )g((ϕω])⊥, N)− g(ϕX, Y )g((ω])⊥, N)}
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= −g(h(X,Y ), ϕN) +
1

2
{g(X,Y )ω(ϕN) + g(ϕX, Y )ω(N)},

hence we get

ANϕX = −AϕNX +
1

2
{ω(ϕN)X + ω(N)ϕX}, (18)

for all X ∈ TḾ and N ∈ TḾ⊥. Now (16) follows from (15) and (18).J

Theorem 2. Let Ḿm be an invariant submanifold of a conformal Kenmotsu manifold M
tangent to ξ. Then Ḿ is minimal if and only if the Lee vector field ω] of M is tangent to
Ḿ .

Proof. From the Gauss formula and (4) we have

h(X,Y ) = ∇̃XY − ∇́XY −
1

2
{ω(X)Y + ω(Y )X − g(X,Y )ω]}, (19)

for all X,Y on Ḿ . Replacing Y by ϕY in (19), we get

h(X,ϕY ) = ϕh(X,Y )− (∇́Xϕ)Y − (exp(f))
1
2 {g(X,ϕY )ξ + η(Y )PX}

− 1

2
{ω(ϕY )X − ω(Y )ϕX + g(X,Y )ϕω] − g(X,ϕY )ω]},

taking the tangent and normal parts, we have

h(X,ϕY ) = ϕh(X,Y )− 1

2
{g(X,Y )(ϕω])⊥ − g(X,ϕY )(ω])⊥},

hence

h(ϕX,ϕY ) + h(X,Y ) = {g(X,Y )− 1

2
η(X)η(Y )}(ω])⊥ − g(ϕX, Y )(ϕω])⊥. (20)

From the Gauss formula and (7), it follows that

h(ξ, ξ) =
1

2
(ω])⊥. (21)

Now, let {Eα, ϕEα, ξ, α : 1, · · · , m−12 } be an orthonormal basis on Ḿ and suppose H is the

mean curvature vector field of Ḿ . Then, using (20) and (21) we have

H =
1

m
{Σ

m−1
2

α=1 (h(Eα, Eα) + h(ϕEα, ϕEα)) + h(ξ, ξ)} =
1

2
(ω])⊥.

This completes the proof of the theorem.J



60 R. Abdi, E.Abedi

Lemma 2. Let Ḿm be an invariant submanifold of a conformal Kenmotsu manifold M
tangent to ξ. Then

[AN , AϕN ] = −2ϕT 2
N , (22)

for any N ∈ TḾ⊥, where

TN = AN −
1

2
ω(N)I, (23)

and I denotes the identity transformation.
Proof. Lemma 2 results from (18).J

Let Riz is the holomorphic bisectional curvature of a conformal Kenmotsu manifold
(M2n+1, ϕ, ξ, η, g), and σ, σ́ are two holomorphic 2-planes tangent to M at a point p ∈M .
Let u ∈ σ and v ∈ σ́ such that ‖u‖ = 1, ‖v‖ = 1. Then, by definition we have

Riz(σ, σ́) = g(R(v, ϕpv)u, ϕpu). (24)

Theorem 3. Let Ḿm be an invariant submanifold of a conformal Kenmotsu manifold M
tangent to ξ. If M has the negative holomorphic bisectional curvature, then the normal
bundle TḾ⊥ admits no parallel connection.

Proof. We prove this theorem by contradiction. Let the normal bundle TḾ⊥ admits
parallel connection. Then Ŕ⊥(X,Y )N1 = 0 for all X,Y ∈ TḾ and N1 ∈ TḾ⊥. We put
N2 = ϕN1 in the Ricci equation, hence we obtain

g(R(X,Y )N1, ϕN1) = −ǵ([AN1 , AϕN1 ]X,Y ). (25)

Substituting (22) into (25) we get g(R(X,Y )N1, ϕN1) = 2ǵ(ϕT 2
N1
X,Y ). Taking X = ϕY

in this equation, suppose σ, σ́ are holomorphic 2-planes spanned by {u, ϕxu} and {v, ϕxv},
respectively, where u = ( Y

‖Y ‖)p and v = ( N1
‖N1‖)p. From (12) it follows that TN1 is self-

adjoint. Hence from (24) we obtain

0 ≥ ‖Y ‖2‖N1‖2Riz(σ, σ́) = 2‖TN1‖2p,

that is a contradiction.J

For further use, we set B́ = ι∗B, ώ = ι∗ω and B́ = ∇́ώ − 1
2 ώ ⊗ ώ, hence

B(X,Y ) = B́(X,Y )− ω(h(X,Y )),

for all X,Y ∈ TḾ . Moreover

B(X,Y ) = g(B(X, .)], Y ),

for all X,Y ∈ TM .
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5. Anti-Invariant Submanifolds

A submanifold Ḿm of a conformal Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) is called an
anti-invariant submanifold if ϕTpḾ ⊆ TpḾ

⊥ for any p ∈ Ḿ . Then we have PX = 0 and
fN = 0 for any X ∈ TḾ and N ∈ TḾ⊥.

Lemma 3. Let Ḿm be an anti-invariant submanifold of a conformal Kenmotsu manifold
M tangent to ξ. Then

AϕYX = −ϕh(X,Y ) +
1

2
{ω(ϕY )X + g(X,Y )(ϕω])>}, (26)

ǵ([AϕZ , AϕW ]X,Y ) = g(h(X,W ), h(Y,Z))− g(h(X,Z), h(Y,W ))

− 1

2
{g(Y,Z)ω(h(X,W )) + g(X,W )ω(h(Y, Z))

− g(Y,W )ω(h(X,Z))− g(X,Z)ω(h(Y,W ))

+ ω(ϕZ)Φ(Y, h(X,W )) + ω(ϕW )Φ(X,h(Y,Z))

− ω(ϕW )Φ(Y, h(X,Z))− ω(ϕZ)Φ(X,h(Y,W ))}

− 1

4
{ω(ϕW )ω(ϕX)g(Y,Z) + ω(ϕZ)ω(ϕY )g(X,W )

− ω(ϕZ)ω(ϕX)g(Y,W )− ω(ϕW )ω(ϕY )g(X,Z)

+ ‖ω]⊥‖2(g(X,Z)g(Y,W )− g(X,W )g(Y, Z))}, (27)

for all X,Y, Z,W ∈ TḾ, where the fundamental 2-form Φ is defined by Φ(X,Y ) =
g(X,ϕY ) for all vector fields X,Y on M .

Proof. Since Ḿ is anti-invariant, (26) results from (8). Now, substituting (26) into
ǵ([AϕZ , AϕW ]X,Y ) = ǵ(AϕWX,AϕZY )− ǵ(AϕZX,AϕWY ), we get (27).J

Theorem 4. Let Ḿm be an anti-invariant submanifold of a conformal Kenmotsu manifold
M tangent to ξ. Then Ḿ has the flat normal curvature tensor if and only if

Ŕ(X,Y )Z = η(R(X,Y )Z)ξ − 1

2
{B́(X,Z)Y + B́(Y,Z)X

+ g(X,Z)B́(Y, .)] − g(Y,Z)B́(X, .)] −B(X,Z)η(Y )ξ

+ B(Y,Z)η(X)ξ +B(X, ξ)g(Y, Z)ξ −B(Y, ξ)g(X,Z)ξ}

− 1

4
‖ω]⊥‖2{g(X,Z)Y − g(Y, Z)X}+ (

1

4
‖ω]‖2 − exp(f)){g(Y,Z)X

− g(X,Z)Y + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ}, (28)

for all X,Y, Z ∈ TḾ . J
Proof. Since (∇̃X ϕ̃)Y = −g̃(X, ϕ̃Y )ξ̃ − η̃(Y )ϕ̃X, we have

R̃(X,Y )ϕ̃Z = ϕ̃R̃(X,Y )Z + g̃(Y, Z)ϕ̃X

− g̃(X,Z)ϕ̃Y + g̃(X, ϕ̃Z)Y − g̃(Y, ϕ̃Z)X, (29)
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for all vector fields X,Y, Z on a Kenmotsu manifold (M2n+1, ϕ̃, ξ̃, η̃, g̃) [7]. Substituting
(5) into (29), we obtain

R(X,Y )ϕZ = ϕR(X,Y )Z − 1

2
{B(X,ϕZ)Y −B(Y, ϕZ)X +B(Y,Z)ϕX

− B(X,Z)ϕY +B(Y, .)]g(X,ϕZ)−B(X, .)]g(Y, ϕZ)

− ϕB(Y, .)]g(X,Z) + ϕB(X, .)]g(Y, Z)}+
1

4
(‖ω]‖2 − exp(f))

{g(X,Z)ϕY − g(Y,Z)ϕX + g(Y, ϕZ)X − g(X,ϕZ)Y },

for all vector fields X,Y, Z on M . Taking the inner product of the above equation with
the vector field ϕW and using the Ricci and Gauss equations, we get

g(Ŕ⊥(X,Y )ϕZ,ϕW ) − ǵ([AϕZ , AϕW ]X,Y )

= ǵ(Ŕ(X,Y )Z,W )− η(R(X,Y )Z)η(W )

− g(h(X,W ), h(Y, Z)) + g(h(Y,W ), h(X,Z))

+
1

2
{B(X,Z)g(Y,W )−B(Y,Z)g(X,W )

+ B(Y,W )g(X,Z)−B(X,W )g(Y,Z)

− B(X,Z)η(Y )η(W ) +B(Y,Z)η(X)η(W )

+ B(X, ξ)g(Y,Z)η(W )−B(Y, ξ)g(X,Z)η(W )}

− 1

4
(‖ω]‖2 − exp(f)){g(X,W )g(Y, Z)− g(X,Z)g(Y,W )

+ g(X,Z)η(Y )η(W )− g(Y, Z)η(X)η(W )}. (30)

for all vector fields X,Y, Z,W ∈ TḾ . From (26), we have

Φ(Y, h(X,Z)) = Φ(Z, h(X,Y )) +
1

2
{ω(ϕZ)g(X,Y )− ω(ϕY )g(X,Z)}, (31)

for all vector fields X,Y, Z ∈ TḾ . Putting (27) in (30) and using (31), we obtain

−ϕŔ⊥(X,Y )ϕZ = Ŕ(X,Y )Z − η(R(X,Y )Z)ξ +
1

2
{B́(X,Z)Y

+ B́(Y, Z)X + g(X,Z)B́(Y, .)] − g(Y,Z)B́(X, .)]

− B(X,Z)η(Y )ξ +B(Y,Z)η(X)ξ +B(X, ξ)g(Y, Z)ξ

− B(Y, ξ)g(X,Z)ξ}+
1

4
‖ω]⊥‖2{g(X,Z)Y − g(Y, Z)X}

− (
1

4
‖ω]‖2 − exp(f)){g(Y,Z)X − g(X,Z)Y + g(X,Z)η(Y )ξ

− g(Y,Z)η(X)ξ},

for all X,Y, Z ∈ TḾ . Thus Ŕ⊥ = 0 if and only if (28) holds.J
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