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A Characterization of S-Essential Spectrum by Means of
Measure of Non-Strict-Singularity and Application
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Abstract. In the present paper, we investigate the S-essential spectrum of a closed densely defined
linear operator.Our approach consists principally in considering the notion of measure of non-strict-
singularity. Furthermore, we apply the results to study the S-essential spectrum of 2 × 2 matrix
operator acting on a Banach space.
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1. Introduction

Let X and Y be two infinite-dimensional Banach spaces. By an operator A from X to
Y we mean a linear operator with domain D(A) ⊂ X and range R(A) ⊂ Y. We denote by
C(X,Y ) (resp. L(X,Y ) ) the set of all closed, densely defined linear operators (resp. the
Banach algebra of all bounded linear operators) from X into Y and we denote by K(X,Y )
the subspace of all compact operators from X into Y. We denote by σ(A) and ρ(A),
respectively, the spectrum and the resolvent set of A. The nullity, α(A), of A is defined
as the dimension of N(A) and the deficiency, β(A), of A is defined as the codimension of
R(A) in Y.

Let A and S be two operators on X such that S is nonzero and bounded and A is
closed. We define the S-resolvent set by:

ρS(A) :=
{
λ ∈ C such that λS −A has a bounded inverse

}
.

The S-spectrum of an operator A acting on a Banach space X is usually defined as

σS(A) := C\ ρS(A).

Subsequently, the operator S should be taken as non invertible. Because otherwise
the S-resolvent coincides with usual resolvent of the operator S−1A, and this analysis
is meaningless. If ρS(A) is not empty, then A is closed. Indeed, let xn ∈ D(A) be
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such that xn −→ x and Axn −→ y. Since ρS(A) 6= ∅, then there exists λ0 ∈ ρS(A)
such that (A − λ0S)−1 ∈ L(X). As S ∈ L(X), then (A − λ0S)xn −→ y − λ0Sx, thus
xn −→ (A− λ0S)−1(y − λ0Sx) = x. We deduce that Ax = y and x ∈ D(A).

Now, we introduce the following important operator classes: The set of upper semi-
Fredholm operators is defined by

Φ+(X,Y ) = {A ∈ C(X,Y ) such that α(A) <∞ and R(A) is closed in Y },

and the set of lower semi-Fredholm operators is defined by

Φ−(X,Y ) = {A ∈ C(X,Y ) such that β(A) <∞ and R(A) is closed in Y }.

The set of Fredholm operators from X into Y is defined by

Φ(X,Y ) = Φ+(X,Y ) ∩ Φ−(X,Y ).

The set of bounded upper (resp. lower ) semi-Fredholm operators from X into Y is defined
by

Φb
+(X,Y ) = Φ+(X,Y ) ∩ L(X,Y ) (resp. Φ−(X,Y ) ∩ L(X,Y )).

We denote by Φb(X,Y ) = Φ(X,Y )∩L(X,Y ) the set of bounded Fredholm operators from
X into Y. If A is a semi-Fredholm operator (either upper or lower), the index of A is
defined by i(A) = α(A) − β(A). It is clear that if A ∈ Φ(X,Y ), then i(A) < ∞. If A ∈
Φ+(X,Y ) \ Φ(X,Y ), then i(A) = −∞ and if A ∈ Φ−(X,Y ) \ Φ(X,Y ), then i(A) = +∞.
A complex number λ is in Φ+A,S , Φ−A,S or ΦA,S if λS −A is in Φ+(X,Y ), Φ−(X,Y ) or
Φ(X,Y ), respectively. If X = Y , then L(X,Y ), C(X,Y ), K(X,Y ), Φ(X,Y ), Φ+(X,Y )
and Φ−(X,Y ) are replaced by L(X), C(X), K(X), Φ(X), Φ+(X) and Φ−(X), respec-
tively.

Lemma 1. (i) ([21, Lemma 3.1]) Let L and M be densely defined operators on X. If M
and LM are Fredholm operators, then the same is true of L.
(ii) ([25, Theorem 3.8]) Let X, Y, Z be Banach spaces and suppose B ∈ Φb(Y, Z). Assume
that A is a closed, densely defined linear operator from X to Y such that BA ∈ Φ(X,Z).
Then A ∈ Φ(X,Y ).
(iii) ([25, Theorem 3.1]) If A ∈ Φ(X,Y ) and B ∈ Φ(Y,Z), then BA ∈ Φ(X,Z) and
i(AB) = i(A) + i(B).
(iv) ([25, Theorem 2.3]) If A is a one-to-one closed linear operator from X to Y , then
R(A) is closed in Y if and only if A−1 is bounded linear operator from Y to X.

There are several and in general non-equivalent definitions of the essential spectrum
of a bounded linear operator on a Banach space. For a self-adjoint operator in a Hilbert
space, there seems to be only one reasonable way to define the essential spectrum: The set
of all points of the spectrum that are not isolated eigenvalues of finite algebraic multiplicity.
Numerous mathematical and physical problems lead to operator pencils, λS−A (operator-
valued functions of a complex argument) (see, for example, [15, 26]). Since recently, the
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spectral theory of operator pencils attracts an attention of many mathematicians. If X is
a Banach space and A ∈ C(X), S ∈ L(X), various notions of essential spectrum appear
in application of spectral theory.

In this work, we are concerned with the following essential spectrum.

Definition 1. [1] Let A ∈ C(X), S ∈ L(X). We define the S-essential spectrum of A by

σe,S(A) :=
⋂

K∈K(X)

σS(A+K).

Note that, if S = I, we recover the usual definition of the essential spectra of a
bounded linear operator A. The subset σe,I(A) is the Schechter essential spectrum (see
[9, 10, 21, 22, 23]). We mention that the modern name of the Schechter essential spectrum
is the Weyl essential spectrum (see [2, 3]).

Lemma 2. [8, Lemma 2.1 (i)] Let A ∈ C(X) and S ∈ L(X). If ΦA,S is connected and
ρS(A) is not empty, then

σe,S(A) =
{
λ ∈ C such that A− λS 6∈ Φ(X)

}
= C \ ΦA,S .

Definition 2. [5] Let X and Y be two Banach spaces and let F ∈ L(X,Y ).
F is called strictly singular, if for every infinite-dimensional closed subspace M of X, the
restriction of F to M is not an homeomorphism.

Let S(X,Y ) denote the set of strictly singular operators from X into Y. If X = Y , the
set of strictly singular operators on X will be denoted by S(X).

The concept of strictly singular operators was introduced in the pioneering paper by T.
Kato [11] as a generalization of the notion of compact operators. For a detailed study of
the properties of strictly singular operators, we refer to [6, 11]. Note that S(X) is a closed
two-sided ideal of L(X) containing K(X). If X is a Hilbert space, then S(X) = K(X).

Definition 3. [18] Let X be a Banach space. For a bounded subset Ω of X we consider

q(Ω) := inf
{
r > 0, Ω can be covered by a finite set of open balls of radius r

}
.

The Hausdorff measure of noncompactness of A ∈ L(X,Y ) is defined by

q(A) = q[A(BX)],

where BX denotes the closed unit ball in X.

Definition 4. [13] For A ∈ L(X,Y ), set

gM (A) = inf
N⊂M

q(A|N ) and g(A) = sup
M⊂X

gM (A),

where M, N represent infinite dimensional closed subspaces of X and A|N denotes the
restriction of A to the subspace N.
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The semi-norm g is a measure of non-strict-singularity, it was introduced by Schechter
in [20]. We recall the following result established in [17].

Proposition 1. [17] For A ∈ L(X,Y ),

(i) A ∈ S(X,Y ) if and only if g(A) = 0.

(ii) A ∈ S(X,Y ) if and only if g(A+B) = g(B) for all B ∈ L(X,Y ).

(iii) if Z is a Banach space and B ∈ L(Y, Z), then g(BA) ≤ g(B)g(A).

Proposition 2. [16, Proposition 2.3] Let A ∈ L(X). If g(An) < 1 for some integer n ≥ 1,
then I −A ∈ Φb(X) with i(I −A) = 0.

Definition 5. [21] Let A and B be densely defined operators in a Banach space X with
D(A) ⊆ D(B).
(i) The operator B is called A-bounded if

‖Bx‖ ≤ c
(
‖x‖+ ‖Ax‖

)
for all x ∈ D(A). (1)

(ii) The operator B is called A-compact if for any sequence xn ∈ D(A) satisfying

‖xn‖+ ‖Axn‖ ≤ c, (2)

the sequence Bxn has a convergent subsequence.

Clearly, a compact operator is always A-compact, and an A-compact operator is always
A-bounded. If A and B are closed, then B is A-bounded.

Definition 6. [21, Definition 2.2 ] The operator B will be called A-pseudo-compact if

‖xn‖+ ‖Axn‖+ ‖Bxn‖ ≤ c (3)

for all xn ∈ D(A) implies that Bxn has a convergent subsequence.

Definition 7. [21, Definition 2.1] The operator B will be called A-closed if xn → x, Axn →
y, Bxn → z for xn ∈ D(A) implies that x ∈ D(B) and Bx = z. It will be called A-closable
if xn → 0, Axn → 0, Bxn → z implies z = 0.

One of the central questions in the study of the S-essential spectra of closed densely
defined linear operators consists in showing when different notions of essential spectrum
coincide and we study the invariance by some class of perturbations. The purpose of this
work is to generalize the notion of essential spectra and to extend many known results in
the literature.

In the first part of this work we extend the analysis of [21] to closed linear operator
g(Kn) < 1, where g(.) is a measure of non-strict-singularity. More precisely, assume that
λ ∈ ρS(A) ∩ ρS(A + B). If ‖xn‖ + ‖Axn‖ + ‖Bxn‖ ≤ c, c ≥ 0, for all xn ∈ D(A)
implies that (A− λS)−1Bxn has a convergent subsequence, then σe,S(A + B) = σe,S(A).
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In the second part of this article we give a new characterization of the Schechter essential
spectrum of closed densely defined linear operators. In fact, let A ∈ C(X), S ∈ L(X).
Then σe,S(A) = σ1(A) (resp. σe,S(A) = σ2(A)), where

σ1(A) =
⋂

K∈S1A,S(X)

σS(A+K),

S1A,S(X) =

=
{
K ∈ L(X) : g

(
[(λS−A−K)−1K]n

)
< 1 for some n ∈ N and for all λ ∈ ρS(A+K)

}
and

σ2(A) =
⋂

K∈S2A,S(X)

σS(A+K),

S2A,S(X) =

=
{
K ∈ L(X) : g

(
[K(λS−A−K)−1]n

)
< 1 for some n ∈ N and for all λ ∈ ρS(A+K)

}
.

Finally, we generalize the results of N. Moalla in [16] where S-essential spectra of some
2× 2 operator matrices on X ×X are discussed with M = I.

We organize the paper in the following way: In the second section we study the sta-
bility of S-essential spectra of closed linear operators. Section 3 is dedicated to a new
characterization of the S-essential spectrum of closed densely defined linear operators.
Finally, in Section 4 we apply the obtained results to give a generalization of many known
results on the S-essential spectrum of a 2× 2 matrix operators by means of the measure
of non-strict-singularity.

2. Invariance of the S-essential spectrum

The following result gives a characterization of the S-essential spectrum by means of
Fredholm operators.

Proposition 3. Let S ∈ L(X) and A ∈ C(X). Then

λ 6∈ σe,S(A) if and only if A− λS ∈ Φ(X) and i(A− λS) = 0.

Proof. Let λ 6∈ σe,S(A). Then, there exists a compact operator K on X such that
λ ∈ ρS(A+K). Then

A+K − λS ∈ Φ(X) and i(A+K − λS) = 0.

Now, the operator A− λS can be written in the form

A− λS = A+K − λS −K.
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By [25, Theorem 3.1] we have

A− λS ∈ Φ(X) and i(A− λS) = 0.

Conversely, we suppose that (A− λS) ∈ Φ(X) and i(A− λS) = 0.
Let n = α(A− λS) = β(A− λS),

{
x1, ..., xn

}
be a basis for N((A− λS)) and

{
y
′
1, ..., y

′
n

}
be a basis for annihilator R(A−λS)⊥. By [25, Theorems 1.2.5, 1.2.6] there are functionals
x
′
1, ..., x

′
n in X

′
(the adjoint space of X) and elements y1, ..., yn such that

x
′
j(xk) = δjk and y′j(yk) = δjk, 1 ≤ j, k ≤ n,

where δjk = 0 if j 6= k and δjk = 1 if j = k. The operator K is defined by

K : X 3 x −→ Kx :=

n∑
i=1

x′i(x)yi ∈ X.

Clearly K is a linear operator defined everywhere on X. It is bounded, since

‖Kx‖ ≤
( n∑

k=1

‖x′k‖‖yk‖
)
‖x‖.

Moreover the range of K is contained in a finite dimensional subspace of X. Then K is
a finite rank operator in X (see [25, Lemma 1.3]). By [25, Lemma 2.7], K is a compact
operator in X.
We prove that

N(A− λS) ∩N(K) = {0} and R(A− λS) ∩R(K) = {0}. (4)

Let x ∈ N(A− λS). Then

x =
n∑

k=1

αkxk,

therefore x′j(x) = αj , 1 ≤ j ≤ n. On the other hand, if x ∈ N(K), then x
′
j(x) = 0, 1 ≤

j ≤ n. This proves the first relation in Eq. (4). The proof of the second inclusion is
similar.
In fact, if y ∈ R(K), then

y =
n∑

k=1

αkyk,

and hence,
y
′
j(y) = αj , 1 ≤ j ≤ n.

But, if y ∈ R(A− λS), then,
y
′
j(y) = 0, 1 ≤ j ≤ n.

This gives the second relation in Eq. (4). On the other hand, K is a compact operator.
We deduce from [25, Theorem 3.1] that λS − A ∈ Φ(X) and i(A − λS + K) = 0. If
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x ∈ N(A − λS + K), then (A − λS)x is in R(A − λS) ∩ R(K). This implies that x ∈
N(A − λS) ∩ N(K), hence x = 0. Thus α(A − λS + K) = 0. In the same way, one
proves that R(A − λS + K) = X. Using Lemma 1 (iv), we get λ ∈ ρS(A + K). Also,
λ 6∈

⋂
K∈ K(X) σS(A+K). So, λ 6∈ σe,S(A).J

Remark 1. The Proposition 3 generalizes the [1, Corollary 2.1 (i)] with S ∈ L(X) and
A ∈ L(X).

Theorem 1. Let S ∈ L(X) and λ ∈ ρS(A) ∩ ρS(A+B). If

‖xn‖+ ‖Axn‖+ ‖Bxn‖ ≤ c,

for all xn ∈⊂ D(A) implies that (A− λS)−1Bxn has a convergent subsequence, then

σe,S(A+B) = σe,S(A). (5)

Proof. We use the identities

(A+B − µS)− (A− µS)(A− λS)−1(A+B − λS) = (µ− λ)S(A− λS)−1B. (6)

Since ρS(A) and ρS(A+B) are not empty, then A and A+B are closed, hence A+B is
A-bounded. This shows that the hypotheses imply that (A − λS)−1B is A-compact and
hence (A+B)-compact. Let µ 6∈ σe,S(A+B). Then from Proposition 3 we get

A+B − µS ∈ Φ(X) and i(A+B − µS) = 0.

By Eq. (6) we have

(A− µS)(A− λS)−1(A+B − λS) ∈ Φ(X)

and
i
(

(A− µS)(A− λS)−1(A+B − λS)
)

= 0.

Since λ ∈ ρS(A+B), then by Proposition 3 we have

A+B − λS ∈ Φ(X) and i(A+B − λS) = 0.

Using Lemma 1 (i), we get

(A− µS)(A− λS)−1 ∈ Φ(X) and i
(

(A− µS)(A− λS)−1
)

= 0.

From this and the identity (A− µS) = (A− µS)(A− λS)−1(A− λS), we obtain

A− µS ∈ Φ(X) and i(A− µS) = 0.

Thus, µ 6∈ σe,S(A). Hence,
σe,S(A) ⊂ σe,S(A+B).
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Conversely, if µ 6∈ σe,S(A), then

A− µS ∈ Φ(X) and i(A− µS) = 0.

Since λ ∈ ρS(A+B), then by Proposition 3 we have

A+B − λS ∈ Φ(X) and i(A+B − λS) = 0.

Thus

(A− µS)(A− λS)−1(A+B − λS) ∈ Φ(X)

and

i
(

(A− µS)(A− λS)−1(A+B − λS)
)

= 0.

By Eq. (6) we have

A+B − µS ∈ Φ(X) and i(A+B − µS) = 0.

Then, µ 6∈ σe,S(A+B). Hence

σe,S(A+B) ⊂ σe,S(A). J

Remark 2. If A and B are bounded operators, Theorem 1 remains true if we replace
(A−λS)−1B by B(A−λS)−1. Indeed, it suffices to replace, Eq. (6) and Lemma 1. (i) by

(A+B − µS)− (A+B − λS)(A− λS)−1(A− µS) = (µ− λ)B(A− λS)−1S.

and Lemma 1 (ii), respectively.

3. A Characterisation of the S-Essential Spectrum

In this section we will give a fine description of the S-essential spectrum of a closed
densely defined linear operator by means of the measure of non-strict-singularity.

Remark 3. Let A ∈ C(X) and S, K ∈ L(X).

(i) If (λS − A)−1K ∈ S(X) (resp. K(λS − A)−1 ∈ S(X) ) for some λ ∈ ρS(A), then
(λS − A)−1K ∈ S(X) (resp. K(λS − A)−1 ∈ S(X) ) for all λ ∈ ρS(A) we have (λS −
A)−1K ∈ S(X). Indeed, for all λ, µ ∈ ρS(A) we have

(λS −A)−1K − (µS −A)−1K = (µ− λ)(µS −A)−1S(λS −A)−1K(
resp. K(λS −A)−1 −K(µS −A)−1 = (µ− λ)K(µS −A)−1S(λS −A)−1

)
.

(ii) Now, if we consider the sets



A Characterization of S-Essential Spectrum by Means of Measure 81

HA,S(X) =
{
K ∈ L(X) : (λS −A)−1K ∈ S(X) for some (hence for all) λ ∈ ρS(A)

}
,

and

FA,S(X) =
{
K ∈ L(X) : K(λS −A)−1 ∈ S(X) for some (hence for all) λ ∈ ρS(A)

}
,

then
HA,S(X) ⊂ S1A,S(X) and FA,S(X) ⊂ S2A,S(X).

Indeed, let K ∈ HA,S(X). Then there exists λ ∈ ρS(A) such that (λS − A)−1K is strictly
singular. For µ ∈ ρS(A+K), we have

(µS −A−K)−1K =
[
I + (µS −A−K)−1((λ− µ)S +K)

][
(λS −A)−1K

]
.

By the ideal propriety of S(X), we deduce that (µS − A − K)−1K is strictly singular.
Then, g(µS −A−K)−1K) = 0. Therefore K ∈ S1A,S(X). So, HA,S(X) ⊂ S1A,S(X).

A similar reasoning allows us to deduce that FA,S(X) ⊂ S2A,S(X).

We begin with the following theorem which gives a refinement of the definition of
S-Schechter essential spectrum.

Theorem 2. Let A ∈ C(X), S ∈ L(X). Then

σe,S(A) = σ1(A).

Proof. We first claim that σe,S(A) ⊂ σ1(A). Indeed, if λ 6∈ σ1(A), then there exists
K ∈ S1A,S(X) such that λ 6∈ σS(A+K). So, g([(λS −A−K)−1K]n) < 1 for some n ∈ N.
Hence, by Proposition 2, we get

I + (λS −A−K)−1K ∈ Φb(X) and i
(
I + (λS −A−K)−1K

)
= 0.

Writing

λS −A =
(
λS −A−K

)[
I + (λS −A−K)−1K

]
,

we can deduce that
λS −A ∈ Φ(X) and i(λS −A) = 0.

This shows that λ 6∈ σe,S(A). Conversely, since K(X) ⊂ S1A,S(X), then

σ1(A) ⊂ σe,S(A).

Hence,

σe,S(A) = σ1(A). J
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Theorem 3. Let A ∈ C(X), S ∈ L(X). Then

σe,S(A) = σ2(A).

Proof. Since K(X) ⊂ S2A,S(X), then σ2(A) ⊂ σe,S(A). Now we prove that σe,S(A) ⊂
σ2(A). Indeed, if λ 6∈ σ2(A), then there exists K ∈ S2A,S(X) such that λ 6∈ σS(A+K). So,

g([K(λS −A−K)−1]n) < 1 for some n ∈ N. Hence, by applying Proposition 2, we get

I +K(λS −A−K)−1 ∈ Φb(X) and i(I +K(λS −A−K)−1) = 0.

Writing

λS −A = [I +K(λS −A−K)−1](λS −A−K)

we can deduce that

λS −A ∈ Φ(X) and i(λS −A) = 0.

This shows that λ 6∈ σe,S(A). Then

σe,S(A) ⊂ σ2(A).

Hence,

σe,S(A) = σ2(A). J

Corollary 1. Let A ∈ C(X) andM(X) be any subset of L(X) satisfying K(X) ⊂M(X) ⊂
S1A,S(X) or K(X) ⊂M(X) ⊂ S2A,S(X). Then

σe,S(A) =
⋂

K∈M(X)

σS(A+K).

4. The S-essential spectra of 2× 2 matrix operator

During the last years, e.g. the papers [4, 12, 14, 19] were dedicated to the study of the
I- essential spectra of operators defined by a 2× 2 block operator matrix

L0 =

(
A B
C D

)
, (7)

which act on the product X×Y of Banach spaces, where I is the identity operator defined
on the product space X × Y by

I =

(
I 0
0 I

)
.

An account of the research and a wide panorama of methods to investigate the spectrum
of block operator matrices are presented by C. Tretter in [27]. In general, the operators
occurring in L0 are unbounded and L0 need not be a closed nor a closable operator, even
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if its entries are closed. However, under some conditions L0 is closable and its closure L
can be determined. The aim of this section is to generalize the previous results.

Let M is a bounded operator formally defined on the product space X × Y by

M =

(
M1 M2

M3 M4

)
,

where operator M1 acts on X everywhere defined and the intertwining operator M2 (resp.
M3) acts on the Banach space Y (resp. on X) everywhere defined and is strictly singular.
The operator M4 acts on Y everywhere defined and L0 is given by Eq. (7), where the
operator A acts on X and has the domain D(A), D is defined on D(D) and acts on the
Banach space Y and the intertwining operator B (resp. C) is defined on the domain D(B)
(resp. D(C)) and acts on Y −→ X (resp. Y −→ Y ). The purpose of this section is to
discuss the M-essential spectra of the 2× 2 matrix operator L0.

In what follows, we will assume that the following conditions, introduced by M. Faierman,
R. Mennicken and M. Mller in [7], hold:

(H1) A is a closed, densely defined linear operator on X with non empty M1-resolvent set
ρM1(A).

(H2) B is a densely defined linear operator on X and for some (hence for all) µ ∈ ρM1(A),
the operator (A− µM1)

−1B is closable.

(H3) The operator C satisfies D(A) ⊂ D(C), and for some (hence for all) µ ∈ ρM1(A), the
operator C(A−µM1)

−1 is bounded (in particular, if C is closable, then C(A−µM1)
−1 is

bounded).

(H4) The lineal D(B) ∩ D(D) is dense in Y, and for some (hence for all) µ ∈ ρM1(A),
the operator D − C(A− µM1)

−1B is closable. We will denote by S(µ) the closure of the
operator D − (C − µM3)(A− µM1)

−1(B − µM2).

Remark 4. (i) It follows from the closed graph theorem that the operator

G(µ) = (A− µM1)−1(B − µM2)

is bounded on Y.

(ii) We emphasize that neither the domain of S(µ) nor the property of being closable
depend on µ. Indeed, consider λ, µ ∈ ρM1(A). Then we have:

S(λ)− S(µ) = (λ− µ)
[
M3G(µ) + F (λ)M2 + F (λ)M1G(µ)

]
,

where F (λ) = (C − λM3)(A − λM1)
−1. Since the operators F (λ) and G(µ) are bounded

(see the condition (H3) and the remark (i), respectively), then the difference S(λ)−S(µ) is
bounded. Therefore neither the domain of S(µ) nor the property of being closable depend
on µ.
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We recall the following result which describes the closure of the operator L0.

Theorem 4. [7] Let the conditions (H1)− (H3) be satisfied and the lineal D(B)∩D(D) be
dense in Y. Then the operator L0 is closable if and only if the operator D−C(A−µM1)

−1B
is closable in Y, for some µ ∈ ρM1(A). Moreover, the closure L of L0 is given by

L = µM+

(
I 0

F (µ) I

)(
A− µM1 0

0 S(µ)− µM4

)(
I G(µ)
0 I

)
. (8)

Lemma 3. [16] For all bounded operators T =

(
T1 T2
T3 T4

)
on X × Y , we consider

g(T ) = max
{
g(T1) + g(T2), g(T3) + g(T4)

}
.

Then g defines a measure of non-strict-singularity on the space L(XY ).

For n ∈ N, let

In =
{
K ∈ L(X) satisfing g

(
(KB)n

)
< 1 for all B ∈ L(X)

}
.

We have the following inclusion:

S(X) ⊂ In(X).

Theorem 5. Let A ∈ Φ(X). Then for all K ∈ In(X) we have A + K ∈ Φ(X) and
i(A+K) = i(A).

Proof. Let A ∈ Φ(X). Then by [24, Theorem 1.1, p. 162] there exist F ∈ K(X) and
A0 ∈ L(X) such that

AA0 = I − F on X.

Thus,

(A+K)A0 = I − F +KA0.

Since K ∈ In(X), then g(KA0)
n < 1. By applying Proposition 2 we get I +KA0 ∈ Φ(X)

and i(I + KA0) = 0. Since F is a compact operator, then (A + K)A0 ∈ Φ(X) and
i((A+K)A0) = 0. Using the fact that A ∈ Φ(X) and i(A0) = −i(A), we can deduce that
A+K ∈ Φ(X) and i(A+K) = i(A).J

Remark 5. (i) If K ∈ In(X) and A ∈ L(X), then KA ∈ In(X).

(ii) If K ∈ In(X) and S ∈ S(X), then K + S ∈ In(X). Indeed, for all B ∈ L(X), ((K +
S)B)n = (KB)n + T, where T is a strictly singular operator.

So, g
(
((K + S)B)n

)
= g((KB)n) < 1.
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In all that follows, we will make the following assumption:

(A) :


g
(
M1G(µ)HM1G(µ)K

)
< 1

4 , g
(
F (µ)M1HF (µ)M1K

)
< 1

4

g
(
M1G(µ)HF (µ)M1K

)
< 1

4 , g
(
F (µ)M1HM1G(µ)K

)
< 1

4

for some µ ∈ ρM1(A) and for all bounded operators H and K.

Remark 6. (i) Note that if G(µ) and F (µ) are strictly singular operators, then hypothesis
(A) is satisfied.

(ii) If g
(
F (µ)M1HM1G(µ)K

)
< 1

4 for all bounded operators H and K, then F (µ)M1G(µ)

is strictly singular.

Indeed, since g
(
F (µ)M1HM1G(µ)K

)
< 1

4 for all bounded operators K and H, we can

consider K = n2IX and HM1 = IY (where n ∈ N∗, IX and IY denote the identity
operator). We obtain

g
(
F (µ)M1G(µ)

)
<

1

4n2
.

So, g
(
F (µ)M1G(µ)

)
= 0, hence F (µ)M1G(µ) is strictly singular.

Theorem 6. Let the matrix operator L0 satisfy the conditions (H1)- (H4) and assume
that hypothesis (A) is satisfied. Then

σe,M(L) ⊆ σe,M1(A) ∪ σe,M4(S(µ)).

Moreover, if ΦA,M1 is connected, then

σe,M(L) = σe,M1(A) ∪ σe,M4(S(µ)).

Proof. Let µ ∈ ρM1(A) be such that hypothesis (A) is satisfied and let λ be a complex
number. It follows from Eq. (8) that

λM−L = UV (λ)W − (λ− µ)

(
0 M1G(µ)−M2

F (µ)M1 −M3 F (µ)M1G(µ)

)
,

where

U =

(
I 0

F (µ) I

)
, W =

(
I G(µ)
0 I

)
and

V (λ) =

(
λM1 −A 0

0 λM4 − S(µ)

)
.

Let K =

(
K1 K2

K3 K4

)
be a bounded operator on X × Y. Then
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0 M1G(µ)

F (µ)M1 0

)
K
]2

=(
(M1G(µ)K3)

2 +M1G(µ)K4F (µ)M1K1 M1G(µ)K3M1G(µ)K4 +M1G(µ)K4F (µ)M1K2

F (µ)M1K1M1G(µ)K3 + F (µ)M1K2F (µ)M1K1 F (µ)M1K1M1G(µ)K4 + (F (µ)M1K2)
2

)
.

It follows from hypothesis (A) and Lemma 3 that

g

(
(λ− µ)2

[(
0 M1G(µ)

F (µ)M1 0

)
K
]2)

< 1,

which implies that the operator

(λ− µ)

(
0 M1G(µ)

F (µ)M1 0

)
∈ I2(X × Y ).

Then we can deduce from Remark 5 (ii) and the fact that F (µ)M1G(µ), M2 and M3 are
strictly singular that

(λ− µ)

(
0 M1G(µ)−M2

F (µ)M1 −M3 F (µ)M1G(µ)

)
∈ I2(X × Y ).

Now by applying Theorem 5 we can conclude that the operator λM − L is a Fredholm
if and only if UV (λ)W is a Fredholm operator. Now, observe that the operators U and
W are bounded and have bounded inverse. Hence the operator UV (λ)W is a Fredholm
operator if and only if V (λ) has this property if and only if λM1−A and λM4−S(µ) are
Fredholm operators. By Lemma 1 (iii) we have

i(λM−L) = i(U) + i(V (λ)) + i(W )
= 0 + i(V (λ)) + 0.

So,
i(λM−L) = i(λM1 −A) + i(λM4 − S(µ)). (9)

Let λ 6∈
(
σe,M1(A)∪ σe,M4(S(µ))

)
. Using Proposition 3, we get λM1 −A and λM4 − S(µ)

are Fredholm operators and i(λM1−A) = i(λM4−S(µ)) = 0. Then λM−L is a Fredholm
operator and i(λM−L) = 0. So, λ 6∈ σe,M(L). This shows that

σe,M(L) ⊆ σe,M1(A) ∪ σe,M4(S(µ)).
Now, let λ 6∈ σe,M (L). Using Proposition 3, we get λM − L is a Fredholm operator
and i(λM− L) = 0. Then λM1 − A and λM4 − S(µ) are Fredholm operators. Since
ΦA,M1 is connected and ρM1(A) 6= ∅ (see hypothesis H1) then, using Lemma 2 we get
i(λM1 −A) = 0. By, Eq. (9) we have i(λM4 − S(µ)) = 0. This shows that

σe,M(L) = σe,M1(A) ∪ σe,M4(S(µ)). J

References

[1] F. Abdmouleh, A. Ammar and A. Jeribi, Stability of the S-essential spectra on a
Banach space. Math. Slovaca 63, no. 2, 299-320 (2013).



A Characterization of S-Essential Spectrum by Means of Measure 87

[2] Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory. Graduate
Studies in Mathematics, 50, 2002.

[3] P. Aiena, Fredholm and local spectral theory, with applications to multipliers. Kluwer
Academic Publishers, Dordrecht, 2004.

[4] F. V. Atkinson, H. Langer, R. Mennicken and A. A. Shkalikov, The essential spectrum
of some matrix operators, Math. Nachr., 167 (1994), 5-20.(1994).

[5] R. W. Cross, Unbounded strictly singular operators. Nederl. Akad. Wetensch. Indag.
Math. 50, 245-248 (1988).

[6] S. Goldberg, Unbounded Linear Operators. New York: McGraw-Hill, 1966.

[7] M. Faierman, R. Mennicken and M. Mller, A boundary eigenvalue problem for a
system of partial differential operators occurring in magnetohydrodynamics. Math.
Nachr. 173, 141-167 (1995).

[8] A. Jeribi, N. Moalla and S. Yengui, S- essential spectra and application to an example
of transport operators Math. Methods Appl. Sci., 37 , no. 16, 2341-2353 (2014) .

[9] A. Jeribi, A characterization of the Schechter essential spectrum on Banach spaces
and applications. J. Math. Anal. Appl. 271, no. 2, 343-358 (2002).

[10] A. Jeribi, Fredholm operators and essential spectra. Arch. Inequal. Appl. 2, no. 2-3,
123-140 (2004).

[11] T. Kato , Perturbation theory for nullity, deficiency and other quantities of linear
operators. J. Anal. Math. 6, 261-322 1958.

[12] H. Langer, A. Markus, V. Matsaev and G. Tretter, Self-adjoint block operator matrices
with non-separated diagonal entries and their Schur complements, J. Funct. Anal.,
199, no. 2, 427-451 (2003).

[13] A. Lebow and M. Schechter, Semigroups of operators and measures of noncompact-
ness. J Funct Anal, 7: 1-26 (1971).

[14] R. Mennicken and A. K. Motovilov, Operator interpretation of resonances arising in
spectral problems for 2× 2 operator matrices, Math. Nachr., 201, 117-181 (1999).

[15] A. S. Markus, Introduction to the spectral theory of polynomial operator pencils. Amer-
ican Mathematical Society, Providence, RI . iv+250 pp. ISBN: 0-8218-4523-3 (1988).

[16] N. Moalla, A Characterization of Schechter’s Essential Spectrum by Mean of Measure
of Non-Strict-Singularity and Application to Matrix Operator. Acta Math. Sci. Ser. B
Engl. Ed. 32, no. 6, 2329-2340 (2012).
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