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A Review on Unbiased Estimators for a Parameter of
Morgenstern Type Bivariate Gamma Distribution Using
Ranked Set Sampling

S. Tahmasebi∗, A. A. Jafari

Abstract. We obtain unbiased estimators for a parameter of Morgenstern type bivariate gamma
distribution (MTBGD) based on the observations made on the units of the ranked set sampling
regarding the study variable Y which is correlated with the auxiliary variable X, when (X,Y )
follows a MTBGD. Efficiency comparisons among these estimators are also made in this work.
Finally, we illustrate the methods developed by using a real data set in marine biological science.
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1. Introduction

Ranked set sampling (RSS) was first proposed by [9] for estimating the mean pasture
yields. McIntyre indicates that RSS is a more efficient sampling method than simple ran-
dom sampling (SRS) method for estimating the population mean. In the RSS technique,
the sample selection procedure is composed of two stages. At the first stage of sample
selection, n simple random samples of size n are drawn from an infinite population and
each sample is called a set. Then, each of units are ranked from the smallest to the largest
according to variable of interest, say X, in each set. Ranking of the units is done with a
low-level measurement such as using previous experiences, visual measurement or using
a concomitant variable. At the second stage, the first unit from the first set, the second
unit from the second set and going on like this nth unit from the nth set are taken and
measured according to the variable X with a high level of measurement satisfying the
desired sensitivity. The obtained sample is called an RSS.

[14] introduced a modified ranked set sampling procedure in which only the largest or
the smallest ranked unit is chosen for quantification. [11] investigated the use of a variety of
extreme ranked set samples (ERSS) for estimating the population mean. Another scheme
of ranked set sampling was investigated by [1] which is the moving extreme ranked set
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sampling (MERSS). It is a modification of the RSS where only the lowest or largest unit
of sets of varied sizes is measured. [13] applied RSS for bivariate random variable (X,Y ),
where X is the variable of interest and Y is a concomitant variable that is not of direct
interest but is relatively easy to measure. Let X(r)r be the measured observation on the
variable X in the rth unit of the RSS and let Y[r]r be the corresponding measurement
made on the study variable Y of the same unit, r = 1, 2, 3, · · · , n. Then clearly Y[r]r is the
concomitant of rth order statistic arising from the rth sample.

[8] used RSS to estimate the two-parameter exponential distribution. [15] has obtained
the estimation of parameters of location-scale family of distribution by RSS. [2, 3] esti-
mated the means of the bivariate normal distribution using moving extreme RSS with
concomitant variable. Estimation of a parameter of Morgenstern type bivariate exponen-
tial distribution by using RSS was considered by [5]. [4] considered estimation of the
parameters of Downton’s bivariate exponential distribution using RSS scheme.

A Morgenstern type bivariate gamma distribution (MTBGD) is constructed by [6] with
the probability density function (pdf)

fX,Y (x, y) =
xα−1yβ−1 exp(−x− y)

Γ(α)Γ(β)
[1 + λ(1− 2P (α, x))(1− 2P (β, y))], (1)

x, y > 0, β > 0, |λ| > 0,

where P (a, z) = 1
Γ(a)

∫ z
0 e

−tta−1dt is the incomplete gamma function. [7] studied the

moments and the correlation coefficient, and [10] discussed the general distribution theory
of Morgenstern type bivariate gamma distribution and the properties of the concomitants
of order statistics from it and presented estimations for the parameters of the distribution
using the concomitants and method of moments.

In [12] the pdf of Y[r]r for 1 ≤ r ≤ n is given by

h[r]r(y) =
yβ−1 exp(−y)

Γ(β)
[1 + λ(

n− 2r + 1

n+ 1
)(1− 2P (β, y))], y > 0, (2)

and its mean and variance of Y[r]r are obtained by [10] as

E[Y[r]r] = β − δr, V ar[Y[r]r] = β − δr − δ2
r , (3)

where δr = λ(n−2r+1)
4β(n+1)B(β,β+1)

and B(a, b) = Γ(a)Γ(b)
Γ(a+b) .

The organization of this article is as follows: In Section 2, we present four unbiased
estimators for a parameter, β in MTBGD when λ and α are known. These estimators
are also made by the ranked set sample mean, and the ERSS and MERSS methods. We
evaluate the efficiency of all estimators considered in this paper. In Section 3, we illustrate
the ERSS and MERSS methods using a real data set in marine biological science.

2. Main Results

Suppose that the random variable (X,Y ) has a MTBGD as defined in (1). In this
section, we find four unbiased estimators for the parameter β based on different sampling
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schemes. In each case, we first present the general pattern and then, an unbiased estimators
with its variances is given.

2.1. RSS estimation

The procedure of RSS described by [13] for a bivariate random variable is as follows:
Step 1. Randomly select n independent bivariate samples, each of size n.
Step 2. Rank the units within each sample with respect to a variable of interest X
together with the Y variate associated.
Step 3. In the rth sample of size n, select the unit (X(r)r, Y[r]r), r = 1, 2, ..., n.
Therefore, Y[r]r, r = 1, 2, 3, · · · , n, are the RSS observations made on the units of the
ranked set sampling regarding the study variable Y which is correlated with the auxiliary
variable X.

Theorem 1. An unbiased estimator for β based on the procedure of RSS is given by

β̂RSS =
1

n

n∑
r=1

Y[r]r, (4)

and its variance is

V ar(β̂RSS) =
β

n
{1− δ2

n(n+ 1)

3β(n− 1)
}, (5)

where δn = λ(1−n)
4β(n+1)B(β,β+1)

.

Proof. Since
∑n

r=1 δr = 0, using (3) we have

E(β̂RSS) =
1

n

n∑
r=1

E(Y[r]r) =
1

n

n∑
r=1

(β − δr) = β.

Also, since
∑n

r=1(n− 2r + 1)2 = 1
3n(n+ 1)(n− 1), we have

V ar(β̂RSS) =
1

n2

n∑
r=1

V ar(Y[r]r) =
1

n2

n∑
r=1

(β − δr − δ2
r )

=
β

n
− λ2(n− 1)

3× 42β(n+ 1)n[B(β, β + 1)]2

=
β

n
{1− (n+ 1)δ2

n

3β(n− 1)
},

and proof is completed.J

By comparing the variance of β̂RSS with the Cramer Rao lower bound β
n of any unbiased

estimator of β based on a simple random sample (SRS) of size n from Gamma(β, 1), we
obtain the efficiency of β̂RSS as

e1 =
β
n

β
n{1−

(n+1)δ2n
3β(n−1)}

=
1

1− λ2(n−1)[Γ(2β)]2

3×42β−1β(n+1)[Γ(β)]4

.
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Obviously, we can see that i) e1 ≥ 1, ii) for fixed n > 1, the efficiency increases as |λ|
increases.

2.2. ERSS Estimation

The extreme ranked set sampling (ERSS) method with concomitant variable intro-
duced by [11] can be described as follows:

Step 1. Select n random samples each of size n, bivariate units from the population.

Step 2. If the sample size n is even, then select from n
2 samples the smallest ranked unit X

together with the associated Y and from the other n
2 samples the largest ranked unit X to-

gether with the associated Y . This selected observations (X(1)1, Y[1]1), (X(n)2, Y[n]2), (X(1)3,
Y[1]3), ..., (X(1)n−1, Y[1]n−1), (X(n)n, Y[n]n) can be denoted by ERSS1.

Step 3. If n is odd, then select from n−1
2 samples the smallest ranked unit X together with

the associated Y and from the other n−1
2 samples the largest ranked unit X together with

the associated Y and from one sample the median of the sample for actual measurement. In
this case the selected observations (X(1)1, Y[1]1), (X(n)2, Y[n]2), (X(1)3, Y[1]3), . . . , (X(n)n−1,

Y[n]n−1), (
X(1)n+X(n)n

2 ,
Y[1]n+Y[n]n

2 ) can be denoted by ERSS2 and (X(1)1, Y[1]1), (X(n)2, Y[n]2),
(X(1)3, Y[1]3), . . . , (X(n)n−1, Y[n]n−1), (X(n+1

2
)n, Y[n+1

2
]n) can be denoted by ERSS3.

Theorem 2. i. If n is even, then an unbiased estimator of β using ERSS1 is

β̂ERSS1 =
1

n

n/2∑
r=1

(Y[1]2r−1 + Y[n]2r), (6)

with variance

V ar(β̂ERSS1) =
β

n
{1− δ2

n

β
}. (7)

ii. If n is odd, then unbiased estimators of β using ERSS2 and ERSS3 are

β̂ERSS2 =
1

n

(n−1)/2∑
r=1

(Y[1]2r−1 + Y[n]2r) +
Y[1]n + Y[n]n

2n
, (8)

β̂ERSS3 =
1

n

(n−1)/2∑
r=1

(Y[1]2r−1 + Y[n]2r) +
Y[n+1

2
]n

n
, (9)

with variance

V ar(β̂ERSS2) =
β

n
{1− δ2

n[(2n− 1)(n+ 2)(n− 1)2 − 4]

2nβ(n+ 2)(n− 1)2
}, (10)

V ar(β̂ERSS3) =
β

n
{1− (n− 1)δ2

n

nβ
}. (11)

respectively.
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Proof. i. Since
∑n/2

r=1 δ1 = λn(n−1)
2×4β(n+1)B(β,β+1)

and
∑n/2

r=1 δn = λn(−n+1)
2×4β(n+1)B(β,β+1)

, we have

E(β̂ERSS1) =
1

n

n/2∑
r=1

(E(Y[1]2r−1) + E(Y[n]2r)) =
1

n

n/2∑
r=1

(β − δ1 + β − δn) = β.

Also, since
∑n/2

r=1 δ
2
1 =

∑n/2
r=1 δ

2
n = nδ2n

2 , we have

V ar(β̂ERSS1) =
1

n2

n/2∑
r=1

(V ar(Y[1]2r−1) + V ar(Y[n]2r))

=
1

n2

n/2∑
r=1

(β − δ1 − δ2
1 + β − δn − δ2

n) =
β

n
− δ2

n

n
.

ii. In the estimator β̂ERSS2 , it is easy to see that Y[1]1, Y[n]2, Y[1]3, ..., Y[n]n−1 are independent
of Y[1]n and Y[n]n, but the random variables Y[1]n and Y[n]n are dependent. From [12] the
joint density function of (Y[1]n, Y[n]n) is given by

h[1,n]n(z, w) =
(zw)β−1e−(z+w)

[Γ(β)]2
[1 + 2λ(

n− 1

n+ 1
)(P (β,w)− P (β, z))

−λ
2(n− 2)

n+ 2
(1− 2P (β,w))(1− 2P (β, z))].

Therefore, we have

Cov(Y[1]n, Y[n]n) =
λ2

(n+ 1)2(n+ 2)42β−1[B(β, β + 1)]2
.

Also, Y[1]1, Y[n]2, Y[1]3, ..., Y[n]n−1 and Y[n+1
2

]n are all independent in µ̂ERSS3 . Since

(n−1)/2∑
r=1

δ1 =
λ(n− 1)2

2× 4β(n+ 1)B(β, β + 1)
,

(n−1)/2∑
r=1

δn =
−λ(n− 1)2

2× 4β(n+ 1)B(β, β + 1)
,

and δ(n+1)/2 = 0, we have

E(β̂ERSS2) =
1

n

(n−1)/2∑
r=1

(E(Y[1]2r−1) + E(Y[n]2r)) +
E(Y[1]n) + E(Y[n]n)

2n

=
1

n

(n−1)/2∑
r=1

(β − δ1 + β − δn) +
β − δ1 + β − δn

2n
= β,

E(β̂ERSS3) =
1

n

(n−1)/2∑
r=1

(E(Y[1]2r−1) + E(Y[n]2r)) +
E(Y[n+1

2
]n)

n
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=
1

n

(n−1)/2∑
r=1

(β − δ1 + β − δn) +
β − δ(n+1)/2

n
= β,

V ar(β̂ERSS2) =
1

n2

(n−1)/2∑
r=1

[V ar(Y[1]2r−1) + V ar(Y[n]2r)]

+
V ar(Y[1]n) + V ar(Y[n]n) + 2Cov(Y[1]n, Y[n]n)

4n2

=
β

n
{1− δ2

n[(2n− 1)(n+ 2)(n− 1)2 − 4]

2nβ(n+ 2)(n− 1)2
},

V ar(β̂ERSS3) =
1

n2

(n−1)/2∑
r=1

[V ar(Y[1]2r−1) + V ar(Y[n]2r)] +
V ar(Y[n+1

2
]n)

n2

=
β

n
{1− (n− 1)δ2

n

nβ
}.

J

Now, by using (5), (7), (10) and (11), the efficiency of β̂RSS relative to the estimators
β̂ERSS1 , β̂ERSS2 and β̂ERSS3 , respectively, are given by

e2 = e(β̂ERSS1 | β̂RSS) =
1− δ2n(n+1)

3β(n−1)

1− δ2n
β

,

e3 = e(β̂ERSS2 | β̂RSS) =
1− δ2n(n+1)

3β(n−1)

1− δ2n[(2n−1)(n+2)(n−1)2−4]
2nβ(n+2)(n−1)2

,

e4 = e(β̂ERSS3 | β̂RSS) =
1− δ2n(n+1)

3β(n−1)

1− (n−1)δ2n
nβ

.

Note that i) e2 ≥ 1, for all n, ii) e3 ≥ 1 if n ≥ 3 and e3 ≤ 1 if n = 2 iii) e4 ≥ 1 if n ≥ 3
and e4 ≤ 1 if n = 2. iv) for fixed n > 1, ej ’s increase in |λ| and increase in n for fixed

|λ| > 0. So we conclude that β̂ERSS1 , β̂ERSS2 and β̂ERSS3 are more efficient than β̂RSS .

2.3. MERSS Estimation

[3] proposed the concept of MERSS with concomitant variable for the estimation of the
means of the bivariate normal distribution. The procedure of MERSS with concomitant
variable in MTBGD is as follows:
Step 1. Select n units each of size n from MTBGD using SRS. Identify by judgment the
minimum of each set with respect to the variable X.
Step 2. Repeat step 1, but for the maximum.

Note that the 2n pairs of set {(X(1)r, Y[1]r), (X(n)r, Y[n]r); r = 1, 2, ..., n} that are ob-
tained using the above procedure, are independent but not identically distributed.



A Review on Unbiased Estimators for a Parameter of Morgenstern Type 9

Theorem 3. An unbiased estimator for β based on MERSS is given by

β̂MERSS =
1

2n

n∑
r=1

(Y[1]r + Y[n]r), (12)

and its variance is

V ar(β̂MERSS) =
β

n
{1− δ2

n

2β
}. (13)

Proof. The proof is similar to proof of Theorem 2, part i.J

Table 1. Comparing efficiency of estimations for β = 10.

n |λ| e1 e2 e3 e4 e5

3 0.20 1.0021 1.0010 1.0004 1.0000 0.9995
3 0.40 1.0083 1.0042 1.0017 1.0000 0.9979
3 0.60 1.0190 1.0096 1.0038 1.0000 0.9953
3 0.80 1.0342 1.0174 1.0069 1.0000 0.9915
3 1.00 1.0546 1.0280 1.0110 1.0000 0.9865
4 0.20 1.0025 1.0020 1.0014 1.0009 0.9998
4 0.40 1.0100 1.0081 1.0056 1.0035 0.9990
4 0.60 1.0229 1.0186 1.0129 1.0081 0.9977
4 0.80 1.0414 1.0342 1.0237 1.0147 0.9959
4 1.00 1.0662 1.0559 1.0384 1.0237 0.9934
5 0.20 1.0028 1.0028 1.0022 1.0017 1.0000
5 0.40 1.0112 1.0113 1.0089 1.0067 1.0000
5 0.60 1.0255 1.0261 1.0206 1.0155 1.0000
5 0.80 1.0462 1.0484 1.0380 1.0285 1.0000
5 1.00 1.0741 1.0800 1.0624 1.0465 1.0000
6 0.20 1.0030 1.0034 1.0029 1.0023 1.0002
6 0.40 1.0120 1.0139 1.0116 1.0095 1.0009
6 0.60 1.0273 1.0323 1.0270 1.0220 1.0020
6 0.80 1.0497 1.0602 1.0501 1.0406 1.0036
6 1.00 1.0798 1.1004 1.0831 1.0669 1.0057
10 0.20 1.0034 1.0050 1.0045 1.0041 1.0008
10 0.40 1.0137 1.0204 1.0186 1.0169 1.0031
10 0.60 1.0314 1.0479 1.0437 1.0395 1.0072
10 0.80 1.0573 1.0909 1.0826 1.0744 1.0132
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10 1.00 1.0925 1.1555 1.1404 1.1259 1.0215
15 0.20 1.0036 1.0059 1.0056 1.0053 1.0011
15 0.40 1.0147 1.0245 1.0231 1.0218 1.0046
15 0.60 1.0337 1.0579 1.0546 1.0514 1.0106
15 0.80 1.0615 1.1111 1.1045 1.0979 1.0196
15 1.00 1.0996 1.1930 1.1807 1.1687 1.0321
20 0.20 1.0038 1.0065 1.0062 1.0060 1.0013
20 0.40 1.0152 1.0268 1.0257 1.0246 1.0055
20 0.60 1.0349 1.0636 1.0609 1.0583 1.0126
20 0.80 1.0637 1.1227 1.1172 1.1119 1.0233
20 1.00 1.1033 1.2152 1.2049 1.1948 1.0383

The efficiency of β̂RSS relative to β̂MERSS is given by

e5 = e(β̂MERSS | β̂RSS) =
1− δ2n(n+1)

3β(n−1)

1− δ2n
2β

.

Note that e5 > 1 if n > 5; e5 = 1 if n = 5; e5 < 1 if n < 5.

The efficiency of estimations, ei’s, for different values of n and |λ| is given in Table 1.
We consider β = 10. Generally, we can find that e2 > e3 > e4 > e5. Therefore, ERSS1 is
better than other methods. Also, ei’s are slowly increasing functions of β.

3. An Application in Marine Biological Science

In this section, we consider a bivariate data set from a marine biological research in
the Persian Gulf relating to 300 hawksbill turtle (eretmochelys imbricata) eggs. The first
component X from a bivariate observation represents the weight in gram of the eggs and
the second component Y represents diameter in millimeter of the hawksbill turtle eggs.
Clearly X can be measured easily but it is somewhat difficult to measure Y . Under the
assumption that (X,Y ) follows MTBGD, we select 9 random samples each of size 9 from
the 300 hawksbill turtle eggs data and rank the sampling units of each sample according
to the X variate values (weight of the eggs). Then, we measure the ranked set sample
observations Y[r]r corresponding to X(r)r. The obtained RSS, ERSS2, ERSS3 and MERSS

observations are reported in Table 2. The computed values of β̂RSS, β̂ERSS2 , β̂ERSS3 and
β̂MERSS are 37.888, 37.416, 37.443 and 37.222, respectively. We can find that the estimated
values for β based on different samplings are close.

Table 2. Obtained RSS, ERSS2, ERSS3 and MERSS observations.
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r 1 2 3 4 5 6 7 8 9

RSS X(r)r 18.0 30.5 26.0 38.7 29.6 38.8 36.5 29.4 33.0

Y[r]r 34.0 39.0 35.0 41.0 35.0 40.5 40.0 37.0 39.5

ERSS2 X(1)2r−1 18.0 25.3 25.2 31.3

Y[1]2r−1 34.0 34.0 35.0. 39.0

X(n)2r 32.6 41.5 40.2 30.1

Y[n]2r 39.0 42.0 40.5 35.0

X(1)n 28.5

Y[1]n 37.0

X(n)n 33.0

Y[n]n 39.5

ERSS3 X(1)2r−1 18.0 25.3 25.2 31.3

Y[1]2r−1 34.0 34.0 35.0 39.0

X(n)2r 32.6 41.5 40.2 30.1

Y[n]2r 39.0 42.0 40.5 35.0

X(n+1
2

)n 32.1

Y[n+1
2

]n 38.5

MERSS X(1)r 18.0 26.1 25.3 28.2 25.2 25.7 31.3 26.6 28.5

Y[1]r 34.0 35.0 34.0 36.0 35.0 35.0 39.0 36.0 37.0

X(n)r 25.0 32.6 40.0 41.5 31.4 40.2 41.1 30.1 33.0

Y[n]r 37.0 39.0 40.0 42.0 38.0 40.5 38.0 35.0 39.5
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