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1. Introduction

One of the methods for solving external Dirichlet boundary value problem for Laplace
equation is reducing it to the boundary integral equations (BIE). As the integral equations
in closed form are very rarely solvable, it’s vital to develop approximate methods for
solving integral equations (with the corresponding theoretical justification, of course).
Let us recall that the external Dirichlet boundary value problem for Laplace equation
is to find a function u ∈ C2

(

R
3\D̄

)
⋂

C
(

R
3\D

)

, which satisfies the Laplace equation
∆u = 0 in R

3\D̄, Sommerfeld radiation condition at infinity and the boundary condition
u (x) = f (x) on S, where D ⊂ R

3 is a bounded domain with twice continuous boundary
S, and f is a given function continuous on S.

It is proved in [1] that if the function u (x) has a normal derivative in the sense of
uniform convergence, then the external Dirichlet boundary value problem for Laplace
equation can be reduced to BIE

ρ (x) + (Aρ) (x) = g (x) , (1)

where

(Aρ) (x) =
1

2π

∫

S

∂

∂~n (x)

(

1

|x− y|

)

ρ (y) dSy −
iη

2π

∫

S

1

|x− y| ρ (y) dSy,

g (x) =
1

2π

∂

∂~n (x)

(
∫

S

∂

∂~n (y)

(

1

|x− y|

)

f (y) dSy

)

−
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−iη
(

1

2π

∫

S

∂

∂~n (y)

(

1

|x− y|

)

f (y) dSy − f (x)

)

,

~n (x) is an outer unit normal to S at the point x ∈ S, η 6= 0 is an arbitrary real number.
It is known that A ∈ L (C (S) , Cα (S)) (see [1]), where Cα (S) is a Hölder space with an
exponent 0 < α < 1, and L (C (S) , Cα (S)) is a space of linear bounded operators from
C (S) to Cα (S).

Note that the external Dirichlet boundary value problem can be reduced to various
integral equations whose approximate solution has been considered in [2-4]. The advantage
of the equation (1) is that its solution is a normal derivative of the solution of the external

Dirichlet boundary value problem for Laplace equation on S, i.e. ρ (x) = ∂u (x)
∂~n (x) , x ∈ S.

Besides, the function

u (x) =
1

4π

∫

S

{

f (y)
∂

∂~n (y)

(

1

|x− y|

)

− ρ (y)

|x− y|

}

dSy , x ∈ R
3\D̄

is a solution of the external Dirichlet boundary value problem for Laplace equation. Also
note that the normal derivative of the solution of the external Dirichlet boundary value
problem for Laplace equation on the surface S is a solution of a moment equation (see
[1]).

As is known, the approximate methods for solving BIE which depend on the normal
derivatives of double layer potential have not yet been developed. The reason is that
before [5] there was no effective formula for the calculation of derivative of a double layer
potential (i.e. it was in general impossible to construct cubature formulas for the normal
derivative of a double layer potential by the existing formulas), and before [6] there was
no cubature formula for the normal derivative of a double layer potential.

This work is dedicated to the justification of collocation method for BIE (1).

2. Main Results

To justify the collocation method, we first construct a cubature formula for expressions
(Aρ) (x) and g (x) , x ∈ S. Introduce the sequence {h} ⊂ R of the values of discretization

parameter h, which tends to zero, and divide S into elementary parts S =
⋃N(h)

l=1 Sh
l in

such a way that:

(1) ∀ l ∈ {1, 2, ..., N(h)}, Sh
l is closed and the set of its internal points

0

Sh
l with respect

to S is nonempty, with mes
0

Sh
l = mesSh

l and
0

Sh
l

⋂

0

Sh
j = ∅ for j ∈ {1, 2, ...N(h)} , j 6= l;

(2) ∀ l ∈ {1, 2, ..., N(h)}, Sh
l is a connected piece of the surface S with a continuous

boundary;

(3) ∀ l ∈ {1, 2, ..., N(h)} , diamSh
l ≤ h;

(4) ∀ l ∈ {1, 2, ..., N(h)}, there exists a so-called control point xl ∈ Sh
l such that:
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(4.1) rl(h) ∼ Rl(h) (rl(h) ∼ Rl(h) ⇔ C1 ≤ rl(h)
Rl(h)

≤ C2, where C1 and C2 are positive

constants independent of h), with rl(h) = min
x∈∂Sh

l

|x− xl| and Rl(h) = max
x∈∂Sh

l

|x− xl|;

(4.2)
√

Rl(h) <
d
2 , where d is the radius of a standard sphere (see [7]);

(4.3) ∀ j ∈ {1, 2, ..., N(h)} rj(h) ∼ rl(h).
It is clear that r(h) ∼ R(h), where R(h) = max

l=1, N(h)
Rl(h), r(h) = min

l=1, N(h)
rl(h).

Let Ul =
{

j | 1 ≤ j ≤ N(h) , |xl − xj | ≤
√

R(h)
}

and Vl = {j | 1 ≤ j ≤ N(h) ,

|xl − xj | >
√

R(h)
}

.

It is proved in [8] that if ρ ∈ C (S), then the expressions

LN(h)(xl) =

N(h)
∑

j = 1
j 6= l

1

|xl − xj |
ρ (xj) mesS

h
j ,

KN(h)(xl) =

N(h)
∑

j = 1
j 6= l

∂

∂n (xj)

(

1

|xl − xj |

)

ρ (xj) mesS
h
j

and

K̃N(h)(xl) =

N(h)
∑

j = 1
j 6= l

∂

∂n (xl)

(

1

|xl − xj|

)

ρ (xj) mesS
h
j

are cubature formulas at the points xl, l = 1, N(h) for the integrals

L (x) =

∫

S

1

|x− y| ρ (y) dSy,K (x) =

∫

S

∂

∂~n (y)

(

1

|x− y|

)

ρ (y) dSy

and

K̃ (x) =

∫

S

∂

∂~n (x)

(

1

|x− y|

)

ρ (y) dSy,

respectively, with

max
l=1, N(h)

∣

∣

∣
L(xl)− LN(h)(xl)

∣

∣

∣
≤M [‖ρ‖∞R (h) |lnR (h)|+ ω (ρ,R (h))] ,

max
l=1, N(h)

∣

∣

∣
K(xl)−KN(h)(xl)

∣

∣

∣
≤M [‖ρ‖∞R (h) |lnR (h)|+ ω (ρ,R (h))] ,

max
l=1, N(h)

∣

∣

∣
K̃(xl)− K̃N(h)(xl)

∣

∣

∣
≤M [‖ρ‖∞ (R (h)) |ln (R (h))|+ ω (ρ,R (h))] ,
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where ω (ρ,R (h)) is a modulus of continuity of the function ρ (x).

And, it is proved in [6] that if f ∈ C1 (S) and
∫ d

0
ω(gradf, t)

t
dt < +∞, then the expression

TN(h)(xl) = −3

N(h)
∑

j = 1
j 6= l

(−−→xlxj , ~n(xj)) · (−−→xlxj , ~n(xl))
|xl − xj |5

(f(xj)− f(xl)) mesS
h
j +

+
∑

j∈V l

(~n(xl), ~n(xj))

|xl − xj |3
(f(xj)− f(xl)) mesS

h
j

is a cubature formula at the points xl, l = 1, N(h) for the integral

T (x) =
∂

∂~n (x)

(
∫

S

∂

∂~n (y)

(

1

|x− y|

)

f (y) dSy

)

,

with

max
l=1, N(h)

∣

∣

∣
T (xl)− TN(h)(xl)

∣

∣

∣
≤

≤M

[

‖f‖∞R (h) |ln (R (h))|+ ‖grad f‖∞
√

R (h) +

∫

√
R(h)

0

ω(grad f, t)

t
dt

]

.

As (Aρ) (x) = 1
2π

(

K̃ (x)− iη L (x)
)

and g (x) = 1
2πT (x)− iη

(

1
2πK (x)− f (x)

)

, it is

not difficult to prove the following theorems.

Theorem 2.1. Let ρ(x) ∈ C (S). Then the expression

(AN(h)ρ)(xl) =

N(h)
∑

j=1

al j ρ (xj) (2)

is a cubature formula at the points xl , l = 1, N (h) for (Aρ)(x) , where

al j = 0 , if l = j ,

al j =
1
2πmesS

h
j

[

∂
∂~n(xl)

(

1
|xl−xj |

)

− iη
|xl−xj |

]

, if l 6= j,

and the following estimate holds:

max
l=1, N(h)

∣

∣ (Aρ) (xl)−
(

AN(h)ρ
)

(xl)
∣

∣ ≤M ∗)[ ‖ρ‖∞R (h) | lnR (h) |+ ω (ρ,R (h)) ] .

Theorem 2.2. If f(x) is a continuously differentiable function on S and
∫ d

0
ω(gradf, t)

t
dt <

+∞, then the expression

gN(h)(xl) =

N(h)
∑

j=1

gl j f (xj) (3)

∗)Hereinafter M denotes a positive constant which can be different in different inequalities.



On Approximate Solution of External Dirichlet Boundary Value Problem 17

is a cubature formula at the points xl , l = 1, N (h) for g(x) , where

gl l =
3

2π

N(h)
∑

j = 1
j 6= l

(−−→xlxj , ~n(xj)) · (−−→xlxj , ~n(xl))
|xl − xj|5

mesSh
j −

− 1

2π

∑

j∈Vl

(~n(xl), ~n(xj))

|xl − xj |3
mesSh

j + iη ; l = 1, N (h) ,

gl j = −
mesSh

j

2π

[

3
(−−→xlxj , ~n(xj)) · (−−→xlxj , ~n(xl))

|xl − xj|5
+

+iη
∂

∂n (xj)

(

1

|xl − xj |

)]

; if j ∈ Ul , j 6= l ,

gl j = −
mesS h

j

2π

[

3
(−−→xlxj, ~n(xj)) · (−−→xlxj , ~n(xl))

|xl − xj |5
+

+iη
∂

∂n (xj)

(

1

|xl − xj|

)

− (~n(xl), ~n(xj))

|xl − xj|3

]

; if j ∈ Vl ,

and the following estimate holds:

max
l=1, N(h)

∣

∣

∣
g(xl)− gN(h)(xl)

∣

∣

∣
≤

≤M

[

‖f‖∞R (h) |lnR (h)|+ ‖grad f‖∞
√

R (h) +

∫

√
R(h)

0

ω (grad f, t)

t
dt

]

.

Denote by CN(h) a space ofN (h)-dimensional vectors zN(h) =
(

z
N(h)
1 , z

N(h)
2 , . . . , z

N(h)
N(h)

)

,

z
N(h)
l ∈ C , l = 1, N (h) , furnished with the norm

∥

∥zN(h)
∥

∥ = max
l=1,N(h)

∣

∣

∣
z
N(h)
l

∣

∣

∣
. For

zN(h) ∈ C
N(h) we assume

A
N(h)
l zN(h) =

N(h)
∑

j=1

alj z
N(h)
j , l = 1, N (h) ;

AN(h) zN(h) =
(

A
N(h)
1 zN(h), A

N(h)
2 zN(h) , . . . , A

N(h)
N(h) z

N(h)
)

,

g
N(h)
l =

N(h)
∑

j=1

glj f (xj) , l = 1, N (h) ; gN(h) =
(

g
N(h)
1 , g

N(h)
2 , . . . , g

N(h)
N(h)

)

.
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Using cubature formulas (2) and (3), we replace BIE (1) by the following system of

algebraic equations with respect to z
N(h)
l - approximate values of ρ (xl) , l = 1, N (h):

zN(h) + AN(h) zN(h) = gN(h), (4)

where AN(h) ∈ L
(

C
N(h), CN(h)

)

.

To justify the collocation method, we will use Vainikko’s convergence theorem for linear
operator equations (see [9]). To formulate that theorem, we need some concepts and facts
from [9].

Definition 2.1 ([9]). A system Q =
{

qN(h)
}

of operators qN(h) : C (S) → C
N(h) is called

a connecting system for C (S) and C
N(h) if

∥

∥qN(h)ϕ
∥

∥→ ‖ϕ ‖∞ as h→ 0 , ∀ϕ ∈ C (S);
∥

∥qN(h) (aϕ+ a′ϕ′)−
(

a qN(h)ϕ+ a′qN(h)ϕ′
)
∥

∥ → 0 as h → 0, ∀ϕ, ϕ′ ∈ C(S),
a, a′ ∈ C.

Definition 2.2 ([9]). A sequence
{

ϕN(h)

}

of elements ϕN(h) ∈ C
N(h) is called Q-

convergent to ϕ ∈ C (S) if
∥

∥ϕN(h) − qN(h)ϕ
∥

∥ → 0 as h → 0. We denote this fact by

ϕN(h)
Q→ϕ .

Definition 2.3 ([9]). A sequence
{

ϕN(h)

}

of elements ϕN(h) ∈ C
N(h) is called Q-compact

if every subsequence of it contains a Q-convergent subsequence.

Definition 2.4 ([9]). A sequence of operators BN(h) : C
N(h) → C

N(h) is called QQ-
convergent to the operator B : C (S) → C (S) if for every Q-convergent sequence

{

ϕN(h)

}

it holds ϕN(h)
Q→ϕ⇒ BN(h)ϕN(h)

Q→Bϕ . We denote this fact by BN(h) QQ→ B .

Definition 2.5 ([9]). A sequence of operators BN(h) ∈ L
(

C
N(h) , CN(h)

)

converges

regularly to the operator B ∈ L (C (S) , C (S)) if BN(h) QQ→ B and the following regularity
condition holds:

ϕN(h) ∈ C
N(h),

∥

∥ϕN(h)

∥

∥ ≤ M ,
{

BN(h)ϕN(h)

}

is Q-compact ⇒
{

ϕN(h)

}

is Q-
compact.

Theorem 2.3 ([9]). Let BN(h) → B regularly, where BN(h) (N (h) ≥ N0) are Fredholm

operators of index zero, Ker B = { 0 } and ψN(h)
Q→ψ, ψN(h) ∈ C

N(h) , ψ ∈ C (S). Then

the equation B ϕ = ψ has a unique solution ϕ̃ ∈ C (S), the equation BN(h)ϕN(h) =

ψN(h) (N (h) ≥ N0) has a unique solution ϕ̃N(h) ∈ C
N(h), and ϕ̃N(h)

Q→ ϕ̃ with

c1

∥

∥

∥
BN(h)qN(h)ϕ̃− ψN(h)

∥

∥

∥
≤
∥

∥

∥
ϕ̃N(h) − qN(h)ϕ̃

∥

∥

∥
≤ c2

∥

∥

∥
BN(h)qN(h)ϕ̃− ψN(h)

∥

∥

∥
,

where c1 = 1/ sup
N(h)≥N0

∥

∥BN(h)
∥

∥ > 0 , c2 = sup
N(h)≥N0

∥

∥

∥

(

BN(h)
)−1
∥

∥

∥
< +∞.

Now we formulate the main result of this work.

Theorem 2.4. Let f(x) be a continuously differentiable function on S and
∫ d

0
ω(gradf, t)

t
dt <

+∞. Then the equations (1.1) and (2.3) have unique solutions ρ∗ ∈ C (S) and z
N(h)
∗ ∈
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C
N(h) (N (h) ≥ N0), respectively, and

∥

∥

∥
z
N(h)
∗ − pN(h)ρ∗

∥

∥

∥
→ 0 as h→ 0 with

∥

∥

∥
z
N(h)
∗ − pN(h)ρ∗

∥

∥

∥
≤M ·

(

(R (h))α + ω (gradf,R (h)) +

∫ R(h)

o

ω (gradf, t)

t
dt+

+R (h)

∫ diamS

R(h)

ω (gradf, t)

t2
dt

)

∀α ∈ (0 , 1) ,

where pN(h)ρ∗ =
(

ρ∗ (x1) , ρ∗ (x2) , ..., ρ∗
(

xN(h)

))

.

Proof. As the system of simple demolition operators P =
{

pN(h)
}

is a connecting

system for C (S) and C
N(h), we obtain from Theorems 2.1 and 2.2 that IN(h)+AN(h) PP→ I+

A regularly and gN(h) P→ g. Besides, the operators IN(h) +AN(h) are Fredholm operators
of index zero. It is proved in [1] that Ker {I +A} = {0}. Then, by Theorem 2.3, we

obtain that the equations (1) and (4) have unique solutions ρ∗ ∈ C (S) and z
N(h)
∗ ∈

C
N(h) (N (h) ≥ N0), respectively, with

c1 δN(h) ≤
∥

∥

∥
z
N(h)
∗ − pN(h)ρ∗

∥

∥

∥
≤ c2 δN(h),

where c1 = 1/ sup
N(h)≥N0

∥

∥ IN(h) +AN(h)
∥

∥ > 0 , c2 = sup
N(h)≥N0

∥

∥

∥

(

IN(h) +AN(h)
)−1
∥

∥

∥
<

+∞ , δN(h) = max
l=1,N(h)

∣

∣

∣
A

N(h)
l

(

pN(h)ρ∗
)

− (Aρ∗) (xl)
∣

∣

∣
.

From Theorem 2.1 we obtain that δN(h) ≤M [ ‖ρ∗‖∞R (h) | lnR (h) |+ ω (ρ∗, R (h)) ].

As ρ∗ = (I +A)−1 g, we have ‖ρ∗‖∞ ≤
∥

∥

∥
(I +A)−1

∥

∥

∥
· ‖g‖∞. Besides, it is clear that

ω (ρ∗, R (h)) = ω (g −Aρ∗, R (h)) ≤ ω (g,R (h)) + ω (Aρ∗, R (h)). Then, by virtue of the
estimate ω (Aρ∗, R (h)) ≤M (R (h))α ∀α ∈ (0 , 1) and the estimates obtained in [5]

‖Tf‖∞ ≤M

(
∫ diamS

0

ω (gradf, t)

t
dt+ ‖f‖∞ + ‖gradf‖∞

)

and

ω (Tf,R (h)) ≤M

(

R (h) |lnR (h)|+ ω (gradf,R (h)) +

∫ R(h)

o

ω (gradf, t)

t
dt+

+R (h)

∫ diamS

R(h)

ω (gradf, t)

t2
dt

)

,

we get the validity of Theorem 2.4.J
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