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Reproducing Kernel Hilbert Spaces and the Associated

Integral Equations
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Abstract. In this paper we consider various reproducing kernel Hilbert spaces and the classes
of integral equations associated with them. We find solutions of these integral equations in the
respective spaces.
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1. Reproducing kernel Hilbert spaces

Ahern, Flores and Rudin [1], Axler, Cuckovic [4] and Yi [16] studied the class of integral
equations

g(x) = (1− x)n+1

∫ 1

0

n+ tx

(1− tx)n+2
g(t)tn−1dt, n ≥ 1 (1)

associated with the invariant mean value property (see [1],[11], [2],[3] ) of M-harmonic
functions. They proved that constants are the only solutions of these integral equations if
n ≤ 11 and this is not true if n ≥ 12. Let Bn be the open unit ball of Cn [13], n ≥ 1, n ∈ Z,
with respect to the Euclidean metric. The group of all one-to-one holomorphic maps of
Bn onto Bn (the automorphisms of Bn) will be denoted by Aut(Bn). It is generated by
the unitary operators on C

n and the involutions φa of the form

φa(z) =
a− Pz − (1− |a|2) 1

2Qz

1− 〈z, a〉 , (2)

where a ∈ Bn, P is the orthogonal projection onto the space spanned by a, Qz = z −Pz,

〈z, a〉 =
n
∑

i=1

ziai, and |a|2 = 〈a, a〉 .
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The letter ν denotes the Lebesgue measure on C
n, normalized so that ν(Bn) = 1 and for

1 ≤ p ≤ ∞, the space Lp(Bn) refers to the usual Lebesgue spaces and the integration
is with respect to the measure ν. For n = 1, dν is equal to dA, the normalized area
measure on the open unit disk D in the complex plane C. Let Lp

a(Bn), 1 ≤ p < ∞, denote
the corresponding Bergman spaces of analytic functions in Bn that are also in Lp(Bn, dν).
We now consider the Bergman space L2

a(Bn) of holomorphic functions in L2(Bn, dν). The
reproducing kernel KBn(z, w) of L

2
a(Bn, dν) is holomorphic in z and antiholomorphic in w

and
∫

Bn

|KBn(z, w)|2dν(w) = KBn(z, z) > 0 (3)

for all z ∈ Bn. Thus we define for each λ ∈ Bn, a unit vector kλ in L2
a(Bn) by

kλ(z) =
KBn(z, λ)
√

KBn(λ, λ)
. (4)

For z, λ ∈ Bn,

KBn(z, λ) =
n!

(1− z · λ)n+1
, (5)

where z · λ = z1λ1 + z2λ2 + .......+ znλn. For more details see [11]. If f ∈ L1(Bn, dν), the
Berezin transform of f is defined by

(Bf)(w) =

∫

Bn

f(z)|kw(z)|2dν(z). (6)

Suppose f is radial and there is a function g : [0, 1] → C such that f(z) = g(|z|2). It
is not difficult to prove [1] that Bf = f if and only if

g(x) = (1− x)n+1

∫ 1

0

n+ tx

(1− tx)n+2
g(t)tn−1dt. (7)

In 2003, Jevtic [10] studied the class of integral equations

g(x) = (1− x)γ
γ

2

∫ 1

0

1 + tx

(1− tx)γ+1
g(t)t

γ
2
−1dt, γ ≥ 2 (8)

that arise naturally in the study of the invariant mean value properties of hyperbolically-
harmonic functions and showed that the constants are the only solutions of the equation
(8) if 2 ≤ γ ≤ 12 but this is not true if γ ≥ 13. The approach to the problem considered
in [10] comes from Yi’s work [16].

In this work we focus on various reproducing kernel Hilbert spaces like Hardy space,
Bergman space, Paley-Wiener space PW [−1, 1], the space E2(µ0), etc. In these spaces,
solutions of integral equations similar to (1) are discussed. Characteristics of the noncon-
stant solutions of the integral equations (1), which are in PW [−1, 1] ∩ L2[0, 1], are also
discussed.
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In section 2 we consider integral equations of the type

∫ 1

0

g(t)

1− tz
dt = λg(z); (9)

∫ 1

0

h(t)

1− tz
dt = λh(z) + 1, (10)

where 0 ≤ λ ≤ π, g(z) =

∞
∑

n=0

gnz
n, h(z) =

∞
∑

n=0

hnz
n, |z| ≤ 1 and

∞
∑

n=0

g2n < ∞,

∞
∑

n=0

h2n <

∞, gn, hn ∈ R, n = 0, 1, 2, · · · . We showed that if 0 ≤ λ ≤ π, then neither of the
integral equations (9) and (10) has a solution, except for the solution g(z) ≡ 0 of (9). In
section 3 we introduce the reproducing kernel Hilbert space E2(µ0) and show that the
integral equation

F (z) = 2(1− z)2
∫

D

1 + zw

(1− zw)3
F (w)log

1

|w|dA(w), z ∈ D,

has no non-zero solution in the space E2(µ0). In section 4 we introduce the Paley-Wiener
space PW [−1, 1] which is also a reproducing kernel Hilbert space and show that if there
exists a nonconstant solution f of the integral equation (1) in PW [−1, 1] ∩ L2[0, 1], then
there exists no sequence (tk)

∞
k=−∞ ⊂ [0, 1] that is uniformly discrete and

∞
∑

k=−∞

|f(tk)− f(tk−1)| = ∞.

2. Hilbert matrix and the associated integral equations

In this section we focus on the Hardy space of the open unit disk D and consider
integral equations (9) and (10). Wilhelm Magnus [9] arrived at these integral equations
while looking at the spectrum of the Hilbert matrix. Magnus [9] showed that the spectrum
of Hilbert’s matrix is purely continuous and every real value λ for which 0 ≤ λ ≤ π belongs
to the spectrum. In this section we simplified the proof of Magnus and showed that if
0 ≤ λ ≤ π, then neither of the integral equations has a solution, except for the solution
g(z) ≡ 0 of (9). We also showed that the spectrum of the Hilbert matrix contains the
closed interval [0, π].

Let T denote the unit circle in C and dθ be the arc-length measure on T. For 1 ≤ p ≤
+∞, Lp(T) will denote the Lebesgue space of T induced by

dθ

2π
. Given f ∈ L1(T), the

Fourier coefficients of f are

an(f) =
1

2π

∫ 2π

0
f(θ)e−inθdθ, n ∈ Z, (11)

where Z is the set of all integers. Let Z+ denote the set of nonnegative integers. For
1 ≤ p ≤ +∞, the Hardy space of T denoted by H

p, is the subspace of Lp(T) consisting
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of functions f with an(f) = 0 for all negative integers n. We shall let H
p(D) denote

the space of analytic functions on D which are harmonic extensions of functions in H
p.

The Hardy space H
2(D) is a reproducing kernel Hilbert space and the reproducing kernel

(called the Cauchy or Szego kernel) Kw(z) =
1

1− w̄z
, for z, w ∈ D. It is not so important

to distinguish H
p(D) from H

p. Let P denote the orthogonal projection from L2(T) onto
H

2(T). The sequence of functions {einθ}n∈Z+
forms an orthonormal basis for H2(T).

It is well known [7] that the Hilbert matrix H =

(

1

i+ j + 1

)

, i, j = 0, 1, 2, · · · act-

ing by multiplication on sequences, induces a bounded linear operator Ha = b, bn =
∞
∑

k=0

ak
n+ k + 1

, on the l2 space with norm ‖H‖l2→l2 = π. It also induces an operator H on

the Hardy space H
2(D). To study the effect of the Hilbert matrix on Hardy spaces, let

f(z) =
∞
∑

n=0

anz
n and assume f ∈ H

1(D). Hardy’s inequality [7] says
∞
∑

n=0

|an|
n+ 1

≤ π‖f‖1

and it follows that the power series

F (z) =

∞
∑

n=0

(

∞
∑

k=0

ak
n+ k + 1

)

zn

has bounded coefficients, hence its radius of convergence is ≥ 1. In this way we obtain a
well defined analytic function F = H(f) on the disk for each f ∈ H

1(D). A calculation
shows that we can write

H(f)(z) =

∫ 1

0

f(t)

1− tz
dt, (12)

where the convergence of the integral is guaranteed by Fejer-Riesz inequality [7] and the

fact that
1

1− tz
is bounded in t for each z ∈ D.

The correspondence f → H(f) is clearly linear and we consider the restriction of
this mapping to the space H

2(D). The isometric identification of H
2(D) with l2 gives

‖H‖H2(D)→H2(D) = π. Let g(z) =

∞
∑

m=0

gmzm and h(z) =

∞
∑

m=0

hmzm belong to H
2(D) where

|z| < 1. This implies (gm) ∈ l2 and (hm) ∈ l2. Now Hg = λg implies

∞
∑

n=0

〈Hg, zn〉zn = λ

∞
∑

n=0

gnz
n. (13)

Hence
∞
∑

m,n=0

gm〈Hzm, zn〉zn = λ

∞
∑

n=0

gnz
n.

Therefore
∞
∑

m,n=0

gm
m+ n+ 1

zn = λ
∞
∑

n=0

gnz
n. (14)
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Since
∫ 1

0
g(t)tndt =

∞
∑

m=0

gm
m+ n+ 1

,

we obtain
∞
∑

n=0

(
∫ 1

0
g(t)tndt

)

zn = λ
∞
∑

n=0

gnz
n. (15)

Hence
∫ 1

0

g(t)

1− tz
dt = λg(z). (16)

Thus, if for 0 ≤ λ ≤ π the above integral equation has only the trivial solution g(z) ≡ 0,
then λ cannot be an eigenvalue of the Hilbert matrix H. The equation

∫ 1

0

h(t)

1− tz
dt = λh(z) + 1

also follows from similar considerations. That is, if we define

(V h)(z) =

∫ 1

0

h(t)

1− tz
dt, (17)

our question is whether the constant 1 belongs to the image of V − λ. Notice that if
1 /∈ Ran(V − λ), then constants do not belong to the range of V − λ. If (10) has no
solution and (9) has only the trivial solution, then it will mean that λ belongs to the
spectrum of the Hilbert matrix H.

Suppose the real numbers gn, hn, n = 0, 1, 2 · · · satisfy

∞
∑

n=0

g2n = M < ∞,
∞
∑

n=0

h2n = N < ∞. (18)

Hence the power series g(z) =
∑∞

n=0 gnz
n, h(z) =

∑∞
n=0 hnz

n converges for |z| < 1. The
following holds:

Theorem 1. Suppose λ is a real number such that 0 ≤ λ ≤ π. Then neither of the
following integral equations

∫ 1

0

g(t)

1− tz
dt = λg(z), (19)

∫ 1

0

h(t)

1− tz
dt = λh(z) + 1 (20)

has a solution, except for the solution g(z) ≡ 0 of (19).
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Proof. From Cauchy-Schwarz inequality it follows that for |z| < 1,

|g(z)| ≤
√
M

√

|1− |z|2|
, |h(z)| ≤

√
N

√

|1− |z|2|
.

We can iterate (19) and (20) to get

∫ 1

0

g(t)

t− z
log

(

1− z

1− t

)

dt = λ2g(z);

∫ 1

0

h(t)

t− z
log

(

1− z

1− t

)

dt = λ2h(z) + λ− 1

2
log(1− z).

For f ∈ H
1(D), the Fejer-Riesz theorem [7], which guarantees convergence along with

analyticity, shows that the integral in (12) is independent of the path of integration. For
z ∈ D, we can choose the path

ζ(t) = ζz(t) =
t

(t− 1)z + 1
, 0 ≤ t ≤ 1,

i.e., a circular arc in D joining 0 to 1. A change of variable in (12) gives

H(f)(z) =

∫ 1

0

1

(t− 1)z + 1
f

(

t

(t− 1)z + 1

)

dt =

∫ 1

0
(Ttf)(z)dt, (21)

where Tt(f)(z) = wt(z)f(ϕt(z)), wt(z) =
1

(t−1)z+1 and ϕt(z) =
t

(t−1)z+1 . It is easy to see

that ϕt is a self map of the disk, hence f 7→ f ◦ ϕt is bounded on H
2(D) (see [17]) and

for each 0 < t < 1, wt(z) is a bounded analytic function. Thus Tt : H2(D) → H
2(D) is

bounded for 0 < t < 1. More information about these operators can be found in [6].

If 0 < λ < π and Hg = λg, then (Hg)(1) = λg(1). But (Hg)(1) =
∫ 1
0 (Ttg)(1)dt =

∫ 1
0 wt(1)g(ϕt(1))dt =

∫ 1
0

1
t
g(1)dt = g(1)

∫ 1
0

1
t
dt. Thus g(1) = 0. Further

λg′(z) =
∫ 1
0 (Ttg)

′(z)dt

= −(t−1)
[(t−1)z+1]2

g(ϕt(z)) + g′(ϕt(z))
1

(t−1)z+1
1−(t−1)(t−z)
[(t−1)z+1]2

.

Hence λg′(1) = g′(1)
[

2−t
t3

]

. Thus g′(1) = 0. Similarly one can show that h(1) = h′(1) = 0.

Thus we have shown that if 0 < λ < π, then

g(1) = g′(1) = 0, |g′(z)| ≤ M ′, (22)

where M ′ is a constant and 0 ≤ z ≤ 1. Similarly, one can verify that

h(1) = h′(1) = 0, |h′(z)| ≤ N ′. (23)

Differentiating (19), (20) with respect to z, we obtain from (22) and (23) that
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λg′(z) =

∫ 1

0

tg(t)

(1− tz)2
dt = −1

z

∫ 1

0

tg′(t) + g(t)

1− tz
dt (24)

and (24) is also valid if we substitute h(z) for g(z).
If we combine (24) and (19), we obtain

λ{zg′(z) + g(z)} =

∫ 1

0

tg′(t)

1− tz
dt.

Since |g′(t)| ≤ M ′, this gives λ(n+ 1)|gn| ≤ M ′
∫ 1
0 tn+1dt, which also shows that

∞
∑

n=0

(n+ 1)2g2n < ∞. (25)

Expanding
1

1− tz
in a series of ascending powers of tz in the equation

λg′(z) = −1

z

∫ 1

0

tg′(t) + g(t)

1− tz
dt,

we obtain the infinite system of linear equations

∞
∑

m=0

(m+ 1)gm
n +m+ 1

= −λngn, n = 0, 1, 2, · · · . (26)

Putting (m+ 1)gm = xm, we find

∞
∑

m,n=0

xnxm
n+m+ 1

= −λ
∞
∑

n=0

n

n+ 1
x2n. (27)

Since (25) holds, using Hilbert inequality [7] we obtain a contradiction unless x1 =
x2 = · · · = 0. One can also obtain from (27) that x0 = 0 and therefore g(z) ≡ 0. The proof
for h(z) ≡ 0 (i.e., for the non-existence of h(z)) is precisely the same. Thus, if 0 < λ < π,
then the equations (19) and (20) has only trivial solution.

To complete the proof, it will be sufficient to show that g(z) ≡ 0 if λ = 0 or λ = π.

Let G(z) =
∞
∑

n=0

gn
n+ 1

zn+1. This is a continuous function of z for 0 ≤ z ≤ 1 and from (19)

we have in the case λ = 0,

∫ 1

0
g(t)tndt = G(1) − n

∫ 1

0
G(t)tn−1dt = 0

for n = 0, 1, 2 · · · . For n = 0, this gives G(1) = 0, and for n = 1, 2, · · · , we find that all
the moments of G(t) vanish, i.e., G(t) ≡ 0. Since the norm of the operator H is equal to π
and the spectrum of H is a closed set, the equation (19) has only trivial solution if λ = π.
J
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3. The spaces E2(µ)

In this section we introduce the reproducing kernel Hilbert space E2(µ0) and show
that the integral equation

F (z) = 2(1 − z)2
∫

D

1 + zw

(1− zw)3
F (w)log

1

|w|dA(w),

z ∈ D, has no non-zero solution in the space E2(µ0). Let ν be a finite positive Borel
measure defined on the closed unit interval [0,1] such that ν({0}) = 0 and ν([a, 1]) > 0
for every 0 ≤ a < 1. Then by the Riesz representation theorem [5], [15] there is a finite
positive Borel measure µ supported on the closed unit disk D such that

∫

D

f(z)dµ(z) =
1

2π

∫ 2π

0
dθ

∫ 1

0
f(reiθ)dν(r) (28)

holds for all continuous functions f(z) on D. Notice that the condition ν({0}) = 0 is needed

to insure that (28) is always meaningful. Symbolically we write dµ(r, θ) =
1

2π
dν(r)dθ. Any

measure µ defined in this way is said to be a symmetric measure on D. The measure ν
is called the radial component of µ. In case ν is a probability measure, we say that µ is
normalized.

Let µ be a symmetric measure on D. For any 0 < p < ∞ and any F in Lp(µ) we write

‖F‖p,µ =

(
∫

D

|F (w)|pdµ(w)
)

1

p

. (29)

If f(z) is analytic in D, we put

Mp(r, f, µ) =

(
∫

D

|f(rw)|pdµ(w)
)

1

p

(30)

for 0 ≤ r < 1. If ν has no mass at 1, (30) is also meaningful for r = 1,Mp(1, f, µ) possibly
being equal to +∞. If ν is a single unit point mass at 1, the means Mp(r, f, µ) reduce to
the standard H

p means

Mp(r, f) =

(

1

2π

∫ 2π

0
|f(reiθ)|pdθ

)

1

p

. (31)

If µ is a symmetric measure on D and f(z) is an analytic function in D, then for any
0 < p < ∞ it is not so difficult to verify [7] that Mp(r, f, µ) is a nondecreasing function of
r.
For 0 < p < ∞, we denote by Ep(µ) the linear space of all functions f(z) analytic in D

such that
|‖f‖|p,µ = sup

r<1
Mp(r, f, µ) < ∞. (32)
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Relation (32) determines a metric on Ep(µ) for all 0 < p < ∞. For p ≥ 1, Ep(µ) becomes
a normed linear space with the above norm. Fix some 0 < p < ∞. For any z in D, we
define the evaluation functional εz on Ep(µ) by

εz : f −→ f(z) (33)

for all f in Ep(µ). If µ is a symmetric measure on D, and 0 < p < ∞, then Ep(µ) is
complete and if K is a compact subset of D, then {εz : z ∈ K} is a uniformly bounded
set of linear functionals on Ep(µ). For proof see [8]. If ν({1}) = 0, we denote by Lp

a(µ,D)
the Bergman space of functions analytic in D that are Lp(µ)-integrable. It is known [8]
that if ν({1}) > 0, then Ep(µ) = H

p with an equivalent metric and if ν({1}) = 0, then
Ep(µ) = Lp

a(µ,D). Let Hp(µ) be the Lp(µ)-closure of the polynomials. It is shown in [8]
that H

p(µ) is isometrically isomorphic to Ep(µ) for all 0 < p < ∞. We shall now focus
our attention on the case p = 2. For α ≥ 0, we write

w(α) =

∫ 1

0
tαdν(t). (34)

The function w(α) is obviously a nonincreasing function of α. Since point evaluation is
a bounded linear functional on the space E2(µ), it is a functional Hilbert space. The

sequence en(z) = w(2n)−
1

2 zn, n ≥ 0 is easily seen to be a complete orthonormal set in

E2(µ). If f ∈ E2(µ), it is not difficult to verify that 〈f, en〉 = anw(2n)
1

2 , where an is the
nth Taylor coefficient of f(z). The reproducing kernel of E2(µ) is given by

K(w, z) =
∞
∑

n=0

en(z)en(w) =
∞
∑

n=0

w(2n)−1(wz)n. (35)

Consider the measure µ0 defined on D by

dµ0(r, θ) =
2

π
r log

(

1

r

)

drdθ. (36)

Theorem 2. (a)There exists no nonzero F ∈ E2(µ0) such that for all z ∈ D,

F (z) = 2(1 − z)2
∫

D

1 + z̄w

(1− z̄w)3
F (w) log

1

|w|dA(w). (37)

(b)Radial functions in E2(µ0) are constants.

Proof. (a) In the space E2(µ0), we have

w(2n) =

∫ 1

0
r2n
(

4r log

(

1

r

))

dr

=

∫ ∞

0
4te−(2n+2)tdt
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=
1

(n+ 1)2
.

It then follows from Parseval’s identity that f(z) =

∞
∑

n=0

anz
n belongs to E2(µ0) if and only

if

∞
∑

n=0

(n+ 1)−2|an|2 < ∞ and

|‖f‖|22,µ0
=

∞
∑

n=0

|an|2
(n+ 1)2

.

The reproducing kernel of E2(µ0) is given by

K(w, z) =
∞
∑

n=0

(n+ 1)2(wz)n =
1 + wz

(1− wz)3
.

Suppose there exists a function F ∈ E2(µ0) such that for all z ∈ D,

F (z) = 2(1 − z)2
∫

D

1 + z̄w

(1− z̄w)3
F (w) log

1

|w|dA(w). (38)

Then for all z ∈ D, F (z) = (1 − z)2F (z) as
1 + z̄w

(1− z̄w)3
is the reproducing kernel for the

space E2(µ0). Thus F ≡ 0.
(b) The function F (w) ∈ E2(µ0) where w = seiθ if and only if

∫

D

|F (w)|2dµ0(w) < ∞.

That is, if and only if

∫ 2π

0
dθ

∫ 1

0
|F (seiθ)|2 2

π
s log

1

s
ds < ∞. (39)

This is true if and only if

4

∫ 1

0
|F (seiθ)|2s log 1

s
ds < ∞.

Let f(s) = f(|w|) = F (seiθ) = F (w). Then 4

∫ 1

0
|f(s)|2s log 1

s
ds < ∞. Thus, if f(|w|) =

F (w), then F ∈ E2(µ0) if and only if f ∈ L2([0, 1], 4s log
1

s
ds). To prove (b), let F be a

radial function in E2(µ0) and assume f(|z|) = F (z). Then f ∈ L2([0, 1], 4s log
1

s
ds). Let

t = |z|. Hence

f(t) = f(|z|) = F (z) =

∫

D

K(z, w)F (w)dµ0(w)
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=

∫ 2π

0
dθ

∫ 1

0

1 + tseiθ

(1− tseiθ)3
f(s)

2

π
s log

1

s
ds

=
2

π

∫ 2π

0
K(t, seiθ)dθ

∫ 1

0
f(s)s log

1

s
ds

= 4

∫ 1

0
f(s)s log

1

s
ds.

Thus F is a constant. J

Notice that f ∈ E2(µ0) if and only if f(z) = g′(z) for some g ∈ H2. Moreover,
d

dz
is an

isometric isomorphism from H
2
0 onto E2(µ0), where H

2
0 is the collection of all H2 functions

that vanish at 0. This is immediate, since
d

dz
carries the orthonormal basis {zn}∞n=1 for

H
2
0 onto the orthonormal basis {(n + 1)zn}∞n=0 for E2(µ0). One of the measure that is

equivalent to the measure µ0 is given by

dµ1(r, θ) = r(1− r)drdθ.

4. The Paley-Wiener spaces

Let K be a compact subset of R. The Paley-Wiener space PW (K) is the space of
functions f whose Fourier transforms f̌ are supported on K. That is,

PW (K) =

{

f ∈ L2(R) : f(t) =
1

2π

∫

K

f̌(x)eixtdx, where f̌(x) ∈ L2(K)

}

.

Notice that

f(s) =
1

2π

∫ ∞

−∞
f̌(x)eixsχK(x)dx

=
1

2π
〈f̌(x), e−ixsχK(x)〉

= 〈f,Ks〉,

where the reproducing kernel Ks satisfies Ǩs(x) = e−ixsχK(x) or Ks(t) =
1
2π

∫

K

eix(t−s)dx.

In this section we show that if there exists a nonconstant solution f of the integral
equation (1) in PW [−1, 1] ∩ L2[0, 1], then there exists no sequence (tk)

∞
k=−∞ ⊂ [0, 1] that

is uniformly discrete and
∞
∑

k=−∞

|f(tk)− f(tk−1)| = ∞.

The reproducing kernel of PW [−b, b] is given by Ks(t) = K(t− s), where

K(t) =

{

sin bt
πt

, if t 6= 0;
b
π
, if t = 0.
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It is known [12] that if f ∈ PW [−b, b], then

f(t) =

∞
∑

n=−∞

f
(nπ

b

) sin b
(

t− nπ
b

)

π
(

t− nπ
b

)

=

∞
∑

n=−∞

π

b
〈f,Knπ

b
〉Knπ

b
(t)

converges uniformly and in the L2(R) norm. That is, f can be reconstructed from samples
spaced at equal intervals π

b
. Thus we see that the normalized reproducing kernel functions

knπ
b
(t) =

√

π
b
Knπ

b
(t), n ∈ Z form an orthonormal basis for PW [−b, b].

Theorem 3. Suppose V ∈ L2[0, 1]∩PW ([−1, 1]), V is an absolutely continuous function
such that V ′ is in L2[0, 1]. Suppose V is a solution of the integral equation (1) and
∫ 1

0
V (s)sn−1ds = 0. Then

‖V ‖2 ≤ ‖V ′‖2 ≤ ‖V ‖∞.

Proof. From Bernstein’s inequality [12],[14] it follows that ‖V ′‖∞ ≤ ‖V ‖∞. Thus
‖V ′‖2 ≤ ‖V ‖∞. Now suppose V is a solution of the integral equation (1). Hence

V (t) = (1− t)n+1

∫ 1

0

n+ ts

(1− st)n+2
V (s)sn−1ds. (40)

Therefore V (0) = n
∫ 1
0 V (s)sn−1ds = 0. Suppose f, f ′ ∈ L2[0, 2π], f(t) =

∑∞
m=−∞ ameimt,

f ′(t) =

∞
∑

m=−∞

imameimt are the corresponding Fourier series converging in L2 norm. Sup-

pose a0 = 0. Then

‖f‖22 =
∞
∑

m=−∞

|am|2 ≤
∞
∑

m=−∞

m2|am|2 = ‖f ′‖22.

Now for g, g′ ∈ L2(0, π2 ), with g(0) = 0, we can extend g to a function f satisfying the
hypotheses above by setting

f(t) =

{

g(π − t), for π
2 ≤ t ≤ π;

−g(t− π), for π ≤ t ≤ 2π.

It is then clear that f and f ′ lie in L2[0, 2π] and that

∫ 2π

0
f(t)dt = 0. Consequently,

‖f‖2 ≤ ‖f ′‖2 and hence ‖g‖2 ≤ ‖g′‖2. The inequality for the interval [0,1] is obtained by

a change of variable u =
π

2
t.J
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Definition 1. A set (tk) ⊂ [0, 1] is said to be uniformly discrete if there is a constant
δ > 0 such that |tj − tk| ≥ δ whenever j 6= k.

Theorem 4. Suppose f ∈ PW ([−1, 1])∩L2[0, 1] and suppose f is a nonconstant solution
of the integral equation (1). Then there exists no sequence (tk)

∞
k=−∞ ⊂ [0, 1] that is

uniformly discrete and
∞
∑

k=−∞

|f(tk)− f(tk−1)| = ∞. (41)

Proof. We shall first show that if f is a nonconstant fixed point of the integral operator

TV (t) = (1− t)n+1

∫ 1

0

n+ ts

(1− ts)n+2
V (s)sn−1ds,

then f is a function of unbounded variation not attaining its supremum and infimum
anywhere, but approaching both at 1. The points to note are:

(a) Constant functions are fixed points.

(b) If u ≥ 0 on [0, 1), u ∈ C([0, 1)) and u is not identically zero, then Tu > 0 on [0, 1).

These statements can be verified easily (see [1] and [16]). Thus it follows that if u ∈ L∞,
then Tu ∈ L∞ and ‖Tu‖∞ ≤ ‖u‖∞. Therefore ‖T‖ ≤ 1. When u is a constant function,
we have ‖Tu‖∞ = ‖u‖∞. Hence ‖T‖ = 1 and the spectral radius of T is 1. From these, it
also follows that if u is a nonconstant fixed point in C([0, 1)), then

(i) inf
t∈[0,1)

u < u(t) for all t ∈ [0, 1).

(ii) sup
t∈[0,1)

u > u(t) for all t ∈ [0, 1).

(iii) lim inf
t→1

u(t) = inf
t∈[0,1)

u.

(iv) lim sup
t→1

u(t) = sup
t∈[0,1)

u.

If u is unbounded below, then (i) and (iii) are trivial. If u is bounded below, let α = inf
t∈[0,1)

u.

Now, u(t) − α ≥ 0 and is not identically zero since u is not constant. By (a) and (b),
u − α = T (u − α) > 0 on [0, 1), proving (i). Again (iii) is now immediate by continuity.
If u is unbounded above, then (ii) and (iv) are trivial. If u is bounded above, the same
argument as above applied to sup u − u shows (ii) and (iv). What (i)-(iv) show is that
nonconstant C([0, 1)) fixed points of T look something like the plot in Figure 1 where
either the infimum or supremum may be infinite. They oscillate infinitely many times, thus
having unbounded variation on [0, 1), not attaining their supremum or infimum anywhere,
but approaching both at 1.

Now let h ∈ L2(R) such that h is supported on [− δ
2 ,

δ
2 ] and |ȟ(x)| ≥ 1 for x ∈ [−1, 1].

For example, we could take

ȟ(x) =
2 sin εx

εx
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Figure 1: Unbounded variation of the fixed points of T

for sufficiently small ε > 0. We write ǧ =
f̌

ȟ
so that g ∈ PW ([−1, 1]) as well and since

f̌ = ǧȟ we see that

f(t) =

∫ 1

0
g(u)h(t − u)du

=

∫

|t−u|≤ δ
2

g(u)h(t − u)du.

Suppose (tk)
∞
k=−∞ is a sequence in [0, 1] which is uniformly discrete and

∞
∑

k=−∞

|f(tk)− f(tk−1)| = ∞.

Thus

f(tk) =

∫

|tk−u|≤ δ
2

g(u)h(tk − u)du,

f(tk−1) =

∫

|tk−1−u|≤ δ
2

g(u)h(tk−1 − u)du.

Hence

|f(tk)− f(tk−1)| =

∣

∣

∣

∣

∣

∫

|tk−u|≤ δ
2

g(u)h(tk − u)du−
∫

|tk−1−u|≤ δ
2

g(u)h(tk−1 − u)du

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

|tk−u|≤ δ
2

g(u)h(tk − u)du

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

|tk−1−u|≤ δ
2

g(u)h(tk−1 − u)du

∣

∣

∣

∣

∣

≤ ‖h‖2
(

∫

|tk−u|≤ δ
2

|g(u)|2du
)

1

2

+ ‖h‖2
(

∫

|tk−1−u|≤ δ
2

|g(u)|2du
)

1

2

.

Thus

∞ =

∞
∑

k=−∞

|f(tk)− f(tk−1)| ≤ 2‖h‖2‖g‖2.
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But this is not possible as g, h ∈ L2(R). J

It is known [12] that if f ∈ PW [−b, b] and s ∈ R, then the value of the derivative f ′(s)
is given by

f ′(s) =

∫ ∞

−∞
f(t)hs(t)dt,

where hs(t) = h(t− s) with

h(t) =

{

sin bt
πt2

− b cos bt
πt

, if t 6= 0;
0, if t = 0.

Now suppose n ∈ Z, 1 ≤ n ≤ 11 and V ∈ PW ([−1, 1])
⋂

L2[0, 1] is a solution of the
integral equation (1). Then by [12], it follows that

V ′(s) =

∫ 1

0
V (t)hs(t)dt = 0

for all s ∈ [0, 1] as constants are the only solutions of (1).
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