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Generalized Potentials on Commutative Hypergroups

M. G. Hajibayov

Abstract. By the Hardy-Littlewood-Sobolev theorem, the classical Riesz potential is bounded on
Lebesgue spaces. E. Nakai and H. Sumitomo [19] extended that theorem to the Orlicz spaces. We
introduce generalized potential operators on commutative hypergroups and under some assump-
tions on the kernel we show the boundedness of these operators from Lebesgue space into certain
Orlicz space. Our result is an analogue of Theorem 1.3 in [19].
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1. Introduction

For 0 < α < n, the operator

Rαf(x) =

∫

Rn

|x− y|α−nf(y)dy

is called a classical Riesz potential (fractional integral).
By the classical Hardy-Littlewood-Sobolev theorem, if 1 < p < ∞ and αp < n, then

Rαf is a bounded operator from Lp(Rn) into Lq(Rn), where
1

q
=

1

p
−

α

n
(see [13], [22]).

The Hardy-Littlewood-Sobolev theorem is an important result in the potential the-
ory. There are a lot of generalizations and analogues of that theorem. The boundedness
of the Riesz potentials on spaces of homogeneous type was studied in [5] and [15]. The
Hardy-Littlewood-Sobolev theorem was proved for the Riesz potentials associated to non-
doubling measures in [16]. In [4] and [10], generalized potential-type integral operators
were considered and (p, q) properties of these operators were proved. In [18], [19], [20],
[11] the Hardy-Littlewood-Sobolev theorem was extended to Orlicz spaces for general-
ized fractional integrals. The analogues of the Hardy-Littlewood- Sobolev theorem for
Riesz potentials on different hypergroups were given in [3], [6] [7], [8], [9], [24] and on
commutative hypergroups in [12].

In this paper, we define generalized fractional integrals on commutative hypergroups
and prove the analogue of Theorem 1.3 in [19] for the generalized fractional integrals on
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commutative hypergroups. The obtained result is an extension of the Hardy-Littlewood-
Sobolev theorem given in [7], [8], [9], [24], for Riesz potentials on different hypergroups.

Let K be a set. A function ρ : K ×K → [0,∞) is called quasi-metric if:

1. ρ (x, y) = 0 ⇔ x = y;

2. ρ (x, y) = ρ (y, x) ;

3. there exists a constant c ≥ 1 such that for every x, y, z ∈ K

ρ (x, y) ≤ c (ρ (x, z) + ρ (z, y)) .

Let all balls B(x, r) = {y ∈ K : ρ(x, y) < r} be λ-measurable and assume that the
measure λ fulfils the doubling condition

0 < λB(x, 2r) ≤ DλB(x, r) < ∞. (1)

A space (K, ρ, λ) which satisfies all conditions mentioned above is called a space of homo-
geneous type (see [2]).

In the theory of locally compact groups there arise certain spaces which, though not
groups, have some of the structure of groups. Often, the structure can be expressed in
terms of an abstract convolution of measures on the space.

A hypergroup (K, ∗) consists of a locally compact Hausdorff space K together with a
bilinear, associative, weakly continuous convolution on the Banach space of all bounded
regular Borel measures on K with the following properties:

1. For all x, y ∈ K, the convolution of the point measures δx∗δy is a probability measure
with compact support.

2. The mapping: (x, y) 7→ supp(δx ∗ δy) of K ×K into C(K) is continuous, where C(K)
is the space of compact subsets of K endowed with the Michael topology, that is the
topology generated by the subbasis of all

UV,W = {L ∈ C(K) : L ∩ V 6= ∅, L ⊂ W},

where V,W are open subsets of K.

3. There exists an identity e ∈ K such that δe ∗ δx = δx ∗ δe = δx for all x ∈ K.

4. There exists a topological involution ∼ from K onto K such that (x∼)∼ = x, for
x ∈ K, with

(δx ∗ δy)
∼ = δy∼ ∗ δx∼

and e ∈ supp(δx ∗ δy) if and only if x = y∼ for x, y ∈ K, where for any Borel set B,
µ∼ (B) = µ ({x∼ : x ∈ B}) (see [14], [21], [1], [17]).
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If δx ∗ δy = δy ∗ δx for all x, y ∈ K, then the hypergroup K is called commutative. It
is known that every commutative hypergroup K possesses a Haar measure which will be
denoted by λ (see [21]). That is, for every Borel measurable function f on K,

∫

K

f(δx ∗ δy)dλ(y) =

∫

K

f(y)dλ(y) (x ∈ K).

Define the generalized translation operators T x, x ∈ K, by

T xf(y) =

∫

K

fd(δx ∗ δy)

for all y ∈ K. If K is a commutative hypergroup, then T xf(y) = T yf(x) and the convo-
lution of two functions is defined by

(f ∗ g) (x) =

∫

K

T xf(y)g(y∼)dλ(y).

Let p > 0. By Lp (K,λ) we denote a class of all λ-measurable functions f : K →

(−∞, +∞) with ‖f‖Lp(K,λ) =

(

∫

K

|f (x)|p dλ (x)

)
1

p

< ∞.

A function Φ : [0,∞] → [0,∞] is called an N -function if it can be represented as

Φ (r) =

r
∫

0

φ (t) dt,

where φ : [0,∞] → [0,∞] is a left continuous nondecreasing function such that φ (0) = 0
and limt→∞ φ (t) = ∞.

Let Φ be an N -function. Define the Orlicz space LΦ (K,λ) to be the set of all locally
integrable functions f in K for which

∫

K

Φ

(

|f (x) |

η

)

dλ (x) < ∞

for some η > 0. Here LΦ (K,λ) is equipped with the norm

‖f‖Φ = inf{η > 0 :

∫

K

Φ

(

|f (x) |

η

)

dλ (x) ≤ 1}.

For Φ (r) = rp, 1 < p < ∞, we have LΦ (K,λ) = Lp (K,λ).
The notation χA(x) denotes the characteristic function of set A.
Define a function Λx(y) = T xχB(e,r)(y

∼).
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We will assume that there exist constants c1 > 0, c2 > 0 and c3 > 0 such that for every
x, y ∈ K and r > 0

suppΛx(·) ⊂ B(x, c1r) (2)

and
λB(x, r)T xχB(e,r)(y

∼) ≤ c2λB(e, r) ≤ c3r
N . (3)

As examples of hypergroups satisfying the conditions (2) and (3), we can mention La-
guerre, Dunkl and Bessel hypergroups (see [7], [8], [9]).
A non-negative function a(r) defined on [0,∞) is called almost increasing (almost decreas-
ing), if there exists a constant C > 0 such that

a(t1) ≤ Ca(t2)

for all 0 < t1 < t2 < ∞ (0 < t2 < t1 < ∞, respectively).
For an increasing function a : (0,∞) → (0,∞) , define

Iaf(x) =

∫

K

T x

(

a(ρ(e, y))

ρ(e, y)N

)

f(y∼)dλ(y)

on the commutative hypergroup (K, ∗) equipped with the quasi-metric ρ. If a(r) = rα, 0 <

α < N, then Ia is the Riesz potential of order α.
Now we formulate a main result of the paper.

Theorem 1. Let (K, ∗) be a commutative hypergroup, with the quasi-metric ρ and doubling
Haar measure λ satisfying the conditions (2) and (3). Assume that 1 < p < ∞ and

a = a(r) is a non-negative almost increasing function on [0,∞),
a(r)

rλ
is almost decreasing

for some 0 < λ < N
p

and
1
∫

0

a(t)

t
dt < ∞.

Then the operator Ia is bounded from Lp(K,λ) into the Orlicz space LΦ(K,λ), where the
N -function is defined by its inverse

Φ−1 (r) =

r
∫

0

A
(

t−
1

N

)

t
− 1

p′ dt,

with A (r) =
r
∫

0

a(t)
t
dt.

If we take a(r) = rα, 0 < α < N, then we have Hardy-Littlewood-Sobolev theorem for
the Riesz potential

Iαf(x) =

∫

K

T xρ(e, y)α−Nf(y∼)dλ(y)

on the commutative hypergroup (K, ∗).
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Corollary 1. Let (K, ∗) be a commutative hypergroup, with the quasi-metric ρ and dou-
bling Haar measure λ satisfying the conditions (2) and (3). If 0 < α < N, 1 < p < N

α
and

1
p
− 1

q
= α

N
, then Iα is a bounded operator from Lp (K,λ) into Lq (K,λ).

2. Preliminaries

Define Hardy-Littlewood maximal function

Mf(x) = sup
r>0

1

λB(e, r)

(

|f | ∗ χB(e,r)

)

(x)

on commutative hypergroup (K, ∗) equipped with the pseudo-metric ρ.

Lemma 1. Let (K, ∗) be a commutative hypergroup, with quasi-metric ρ and doubling
Haar measure λ. Assume that there exist constants c1 > 0 and c2 > 0 such that for every
x, y ∈ K and r > 0

suppΛx(·) ⊂ B(x, c1r)

and
λB(x, r)T xχB(e,r)(y

∼) ≤ c2λB(e, r).

Then

1) The maximal operator M satisfies a weak type (1, 1) inequality, that is, there exists
a constant C > 0 such that for every f ∈ L1(K,λ) and α > 0

λ{x : Mf(x) > α} ≤
C

α

∫

K

|f(x)|dλ(x).

2) The maximal operator M is of strong type (p, p), for 1 < p ≤ ∞, that is,

‖Mf‖Lp(K,λ) ≤ Cp‖f‖Lp(K,λ), (4)

for some constant Cp and every f ∈ Lp(K,λ).

Proof. It is clear that there exists nonnegative integer m such that c1 ≤ 2m and
λB(x, c1r) ≤ DmλB(x, r), where D is a constant in doubling condition (1). Then we have

Mf(x) = sup
r>0

1

λB(e, r)

∫

K

T x|f(y)|χB(e,r)(y
∼)dλ(y)

= sup
r>0

1

λB(e, r)

∫

K

|f(y)|T xχB(e,r)(y
∼)dλ(y)

≤ sup
r>0

1

λB(e, r)

∫

B(x,c1r)

|f(y)|T xχB(e,r)(y
∼)dλ(y)
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= sup
r>0

1

λB(x, r)

∫

B(x,c1r)

|f(y)|
T xχB(e,r)(y

∼)λB(x, r)

λB(e, r)
dλ(y)

≤ c2 sup
r>0

1

λB(x, r)

∫

B(x,c1r)

|f(y)|dλ(y) ≤ c2D
mMρf(x),

where

Mρf(x) = sup
r>0

1

λB(x, r)

∫

B(x,r)

|f(y)|dλ(y)

is a maximal operator on (K, ρ, λ). It is well known that the maximal operator Mρ is of
weak type (1, 1) and is bounded on Lp(K,λ) (see [2], [23]). This fact and the inequality
Mf(x) ≤ c2D

mMρf(x) complete the proof.

3. Proof of Theorem 1

We may suppose that f(x) ≥ 0 and, by the linearity of the operator Ia, it suffices to
prove that ‖Iaf‖Φ ≤ C < ∞ for ‖f‖Lp(K,λ) ≤ 1. In accordance with Hedberg’s trick, we
split Iaf (x) in the standard way:

Iaf (x) =

∫

B(e,r)

a (ρ (e, y))

ρ (e, y)N
T xf (y∼) dλ (y)

+

∫

X\B(e,r)

a (ρ (e, y))

ρ (e, y)N
T xf (y∼) dλ(y) = Ar(x) + Br(x).

Estimate Ar(x). Since
a(t)
tN

is almost decreasing, we have

Ar(x) =
∞
∑

k=0

∫

2−k−1r≤ρ(e,y)<2−kr

a (ρ (e, y))

ρ (e, y)N
T xf (y∼) dλ(y)

≤ C

∞
∑

k=0

a
(

2−k−1r
)

(2−k−1r)
N

∫

2−k−1r≤ρ(e,y)<2−kr

T xf (y∼) dλ(y) ≤ CMf (x)

∞
∑

k=0

a
(

2−k−1r
)

≤ CMf (x)
∞
∑

k=0

2−kr
∫

2−k−1r

a(t)

t
dt.

Therefore,

Ar(x) ≤ CA(r)Mf(x), A(r) =

r
∫

0

a(t)

t
dt. (5)
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Now estimate Br(x). By the Hölder inequality and the condition ‖f‖Lp(K,λ) ≤ 1, we obtain

Br(x) ≤







∫

K\B(e,r)

(T xf(y∼))p dλ(y)







1

p






∫

K\B(e,r)

(

a (ρ (e, y))

ρ (e, y)N

)p′

dλ(y)







1

p′

≤







∫

K\B(e,r)

(

a (ρ (e, y))

ρ (e, y)N

)p′

dλ(y)







1

p′

=







∞
∑

k=0

∫

2kr≤ρ(e,y)<2k+1r

(

a (ρ (e, y))

ρ (e, y)N

)p′

dλ(y)







1

p′

≤ C







∞
∑

k=0

(

a
(

2kr
)

(2kr)
N

)p′
∫

ρ(e,y)<2k+1r

dλ(y)







1

p′

≤ C





∞
∑

k=0

(

a
(

2kr
)

(2kr)
N

)p′
(

2k+1r
)N





1

p′

≤ C





∞
∑

k=0

(

a
(

2kr
)

(2kr)
N
p

)p′




1

p′

≤ C







∞
∑

k=0

(

a
(

2kr
))p′

2k+1r
∫

2kr

(

1

t
N
p

)p′ 1

t
dt







1

p′

≤ C







∞
∑

k=0

2k+1r
∫

2kr

(

a(t)

t
N
p

)p′ 1

t
dt







1

p′

= C





∞
∫

r

(

a(t)

t
N
p

)p′ 1

t
dt





1

p′

≤ C
a(r)

rβ





∞
∫

r

(

t
β−N

p

)p′

t−1dt





1

p′
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≤ C
a(r)

r
N
p

.

Therefore

Br(x) ≤ CA(r)r
−N

p . (6)

From (5) and (6), we have

Iaf(x) ≤ C
(

Mf (x) + r
−N

p

)

A (r) .

Then

Iaf(x) ≤ C
[

Mf(x)r
N
p + 1

]

Φ−1

(

1

rN

)

(7)

by Theorem 4.9 in [11]. If we choose r = [Mf(x)]−
p

N , then the inequality (7) turns into

Iaf(x) ≤ CΦ−1 ([Mf(x)]p)

and consequently,

∫

K

Φ

(

Iaf(x)

C

)

dλ(x) ≤

∫

K

[Mf(x)]pdλ(x) ≤ 1,

where we have used (4) and the fact that ‖f‖Lp(K,λ) ≤ 1. Hence

‖Iaf‖Φ ≤ C,

which completes the proof.
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