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The Two-Phase Problem for One Quasilinear Hyperbolic

System
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Abstract. We investigate the two-phase problem for one quasilinear hyperbolic system in one
space variable that cannot be reduced to a system in the Riemann invariants. We are looking for
a generalized solution of the problem in the class of piecewise Lipschitz continuous functions. This
solution admits a jump discontinuity on the line x = 0. Applying the method of characteristics
and the Banach fixed point theorem, we prove a local existence-uniqueness theorem.
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1. Introduction

Partial differential equations are one of the basic areas of applied analysis, and it is
difficult to imagine any area of applications where their impact is not felt. In recent decades
there has been tremendous emphasis on understanding and modeling nonlinear processes;
such processes are often governed by nonlinear PDEs, and the subject has become one of
the most active areas in applied mathematics and central in modern-day mathematical
research. Nonlinear equations have come to the forefront because, basically, the world is
nonlinear.

A single first-order PDE is a hyperbolic equation, it is wave-like, that is, associated with
the propagation of signals at finite speed. The fundamental idea associated with hyperbolic
equations is the notion of a characteristic. There are several ways of considering the
concept of a characteristic: one definition is that it is a curve in spacetime (a hypersurface
in higher dimensions) along which information is carried or a signal propagates. But
ultimately, a characteristic is a curve along which the PDE can be reduced to a simpler
form, for example, to an ordinary differential equation.

Besides, most physical models involve several unknown functions. For example, the
complete description of a fluid mechanical system might require knowledge of the density,
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pressure, temperature, and the particle velocity. So to describe this model and many
others we would need to formulate a system of PDEs

ut +Aux = b

in unknowns u = (u1, . . . , un), where the matrix A and vector b may depend on x, t, u. In
the case of hyperbolic systems, as well as for a single equation, the oldest, and still useful,
approach to this subject is the method of characteristics, or Riemann’s method, which
originated from the works of G. Monge [12], B. Riemann [13, 14], and H. Lewy [11]. It
was used later in numerous publications and books (see e.g. [5, 10, 3, 8, 15]). Until now,
a variety of initial and initial-boundary value problems for hyperbolic systems have been
solved by this method. It is based on the simple fact that, under certain conditions, we
can introduce new dependent variables r = (r1, . . . , rn), called the Riemann invariants, so
that to reduce a system to the form

rt + Λrx = f,

where Λ is a diagonal matrix similar to A. This system can be regarded as a family of
ordinary differential equations along some curves in space, which are called characteristics,
precisely:

drk

dt
= fk on

dx

dt
= λk, k ∈ {1, . . . , n},

where λk denote the diagonal entries of Λ, which are the eigenvalues of A at the same
time. Then, in a simple case, the solution can be found explicitly by integrating these
equations along appropriate characteristic curves. In more complicated case, we reduce our
problem to some operator equation, so functional analysis methods can be used to prove
its solvability. Note that the Riemann invariants do not always exist in the nonlinear
hyperbolic system having more than two dependent variables. But such a system can
always be written in the Schauder canonical form or the characteristic form (see [4, 15,
18, 19])

n
∑

i=1

lki

(

∂ui

∂t
+ λk

∂ui

∂x
− fi

)

= 0, k ∈ {1, . . . , n}, (1)

where lk = (lk1 , . . . , l
k
n) denote the left eigenvectors of A. Thus, finding approaches to

investigate general nonlinear processes is a difficult task in modern mathematics, even if
the process is governed by a system of three PDEs.

In many researches, it is useful to consider, in addition to (1), the system obtained
by differentiating (1), where the derivatives of the solution u are also unknowns. Putting
system (1) and differentiated one together gives the so called augmented system, which was
introduced by Courant and Lax [5]. Note that the augmented system of any quasilinear
hyperbolic system is already reducible to invariants. This approach was applied e.g. in
[16, 17] to study the problem that is close to ours. Of course, it is not possible to speak
of the equivalence of (1) and the augmented system because a classical solution of the
augmented system requires that u be twice continuously differentiable, but, on the other
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hand, the definition of a classical solution u of (1) requires only continuous differentiability
of it.

Since there are many areas where wave propagation is of fundamental importance,
the study of hyperbolic PDEs and systems of PDEs is of great interest in mathematics.
They have a broad range of applications, such as for fluid mechanics (water waves, aero-
dynamics, meteorology, traffic flow), acoustics (sound waves in air and liquids), elasticity
(stress waves, earthquakes), physics (optics, electromagnetic waves, quantum mechanics),
biology (spread of diseases, population dispersal, nerve signal transmission), chemistry
(combustion and detonation waves), and other topics of interest in applied mathematics.

Moreover, many industrial processes involve two or more separate phases. Considering
phase changing processes governed by PDEs, we obtain a multiphase (e.g. two-phase)
problem whose solution may suffer a jump discontinuity on the common boundary accord-
ing to given conjugation conditions.

This paper is dedicated to the study of two-phase problem for one quasilinear hyper-
bolic system of first order PDEs in one space variable that cannot be reduced to a system
in the Riemann invariants. We study solutions on the triangular region bounded above
by the line t = T , laterally by the curves x = s1(t) and x = s2(t), whereas x = 0 is
the interface between two phases. We prove a local existence theorem for a generalized
solution, which is meant to be a piecewise Lipschitz continuous function admitting a jump
discontinuity on the line x = 0 such that the corresponding integro-differential system is
satisfied. Note that, generalized solutions of quasilinear equations were first investigated
by Hopf [7]. Generalized solutions of nonlinear partial differential equations of first order
in the class of Lipschitz continuous functions were considered by Kruzhkov [9]. In this
paper we use the method of characteristics and the Banach fixed point theorem. This
technique is close to that used in [1, 2, 6]. Note that, when studying solvability, we do
not use the augmented system. Therefore our result was obtained without smoothness
assumptions on given data.

2. Problem formulation

Put

Ω−
T =

{

(x, t) ∈ R
2 : 0 < t < T, s1(t) < x < 0

}

,

Ω+
T =

{

(x, t) ∈ R
2 : 0 < t < T, 0 < x < s2(t)

}

,

where s1, s2 are given smooth functions such that s1(0) = s2(0) = 0, s1(t) < 0 < s2(t), 0 <

t ≤ T, s′1(0) < 0 < s′2(0).

On each of the domains Ω−
T , Ω

+
T we consider a hyperbolic system of quasilinear equa-
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tions in unknowns u = (u1, u2, u3)































∂u1

∂t
+ a11(x, t, u)

∂u1

∂x
+ a13(x, t, u)

∂u3

∂x
= b1(x, t, u),

∂u2

∂t
+ a22(x, t, u)

∂u2

∂x
+ a23(x, t, u)

∂u3

∂x
= b2(x, t, u),

∂u3

∂t
= b3(x, t, u),

(2)

where given functions aij, bj are required to be continuous on each domain, and they
can be continuously extended to the closures of these domains. Note that the system (2)
cannot be reduced to the Riemann invariants.

We introduce notation

u(−0, t0)
def
= lim

(x,t)→(0,t0)

(x,t)∈Ω−

T

u(x, t), u(+0, t0)
def
= lim

(x,t)→(0,t0)

(x,t)∈Ω+

T

u(x, t),

and append to system (2) the initial conditions

u(−0, 0) = v−, u(+0, 0) = v+. (3)

Assuming that the inequalities

max{a11(−0, 0, v−), a11(+0, 0, v+)} < s′1(0),

min{a22(−0, 0, v−), a22(+0, 0, v+)} > s′2(0)
(4)

hold, we impose the boundary conditions

u1(s2(t), t) = K+
1 (t, u1(s1(t), t), u2(s2(t), t)),

u2(s1(t), t) = K−
2 (t, u1(s1(t), t), u2(s2(t), t)),

u3(s1(t), t) = K−
3 (t, u1(s1(t), t), u2(s2(t), t)),

u3(s2(t), t) = K+
3 (t, u1(s1(t), t), u2(s2(t), t)),

(5)

along with the conjugation conditions

u1(−0, t) = K−
1 (t, u1(+0, t), u2(−0, t), u3(−0, t), u3(+0, t)),

u2(+0, t) = K+
2 (t, u1(+0, t), u2(−0, t), u3(−0, t), u3(+0, t)).

(6)

3. Equivalent integro-differential system

Now we reduce the problem (2), (3), (5), (6) to an integro-differential system. In (2),
we add the third equation multiplied by a13

a11
to the first one. Similarly, we add the third
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equation multiplied by a23
a22

to the second. Then we obtain







































∂u1

∂t
+ a11(x, t, u)

∂u1

∂x
+

a13

a11
(x, t, u)

(

∂u3

∂t
+ a11(x, t, u)

∂u3

∂x

)

= f1(x, t, u),

∂u2

∂t
+ a22(x, t, u)

∂u2

∂x
+

a23

a22
(x, t, u)

(

∂u3

∂t
+ a22(x, t, u)

∂u3

∂x

)

= f2(x, t, u),

∂u3

∂t
= f3(x, t, u),

(7)

where
ai3

aii
(x, t, u)

def
=

ai3(x, t, u)

aii(x, t, u)
, fi

def
= bi +

ai3

aii
b3, i ∈ {1, 2}, f3

def
= b3.

In the domain Ω−
T (in Ω+

T in the second case), fixing i ∈ {1, 2}, we consider the Cauchy
problem

dξ

dτ
= aii(ξ, τ, u(ξ, τ)), ξ(t) = x, (8)

where aii is assumed to be locally Lipschitz continuous on the domain Ω−
T ×R3 (or alter-

natively,on Ω+
T × R3), u is a Lipschitz continuous map of Ω−

T to R3 (or a map of Ω+
T to

R3), and (x, t) is a point in the corresponding domain. In this domain, the problem (8)
has a unique solution, which we denote by ξ = ϕi[u](τ ;x, t), where τ is an argument and
x, t are parameters. This solution can be extended in the direction of decrease of τ to the
boundary of the domain. By χi[u](x, t) we denote the infimum value of τ such that the
point (ϕi[u](τ ;x, t), τ) belongs to Ω−

T (or to Ω+
T ,respectively).

Using the introduced notation, we rewrite (7) in the characteristic form:



































































du1(ϕ1[u](τ ;x, t), τ)

dτ
+

a13

a11

(

ϕ1[u](τ ;x, t), τ, u(ϕ1 [u](τ ;x, t), τ)
)du3(ϕ1[u](τ ;x, t), τ)

dτ
=

= f1

(

ϕ1[u](τ ;x, t), τ, u(ϕ1 [u](τ ;x, t), τ)
)

,

du2(ϕ2[u](τ ;x, t), τ)

dτ
+

a23

a22

(

ϕ2[u](τ ;x, t), τ, u(ϕ2 [u](τ ;x, t), τ)
)du3(ϕ2[u](τ ;x, t), τ)

dτ
=

= f2

(

ϕ2[u](τ ;x, t), τ, u(ϕ2 [u](τ ;x, t), τ)
)

,

du3(x, τ)

dτ
= f3(x, τ, u(x, τ)).

(9)
Let us integrate each equation in (9) with respect to τ from χi[u](x, t) to t, where the

index i corresponds to equation number. By definition, put

χ3[u](x, t) =

{

s−1
1 (x), if (x, t) ∈ Ω−

T ,

s−1
2 (x), if (x, t) ∈ Ω+

T .

Then we obtain
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u1(x, t) = u1

(

ϕ1[u](χ1[u](x, t);x, t), χ1[u](x, t)
)

−

−

t
∫

χ1[u](x,t)

a13

a11

(

ϕ1[u](τ ;x, t), τ, u(ϕ1 [u](τ ;x, t), τ)
)du3(ϕ1[u](τ ;x, t), τ)

dτ
dτ+

+

t
∫

χ1[u](x,t)

f1

(

ϕ1[u](τ ;x, t), τ, u(ϕ1 [u](τ ;x, t), τ)
)

dτ,

u2(x, t) = u2

(

ϕ2[u](χ2[u](x, t)), χ2[u](x, t)
)

−

−

t
∫

χ2[u](x,t)

a23

a22

(

ϕ2[u](τ ;x, t), τ, u(ϕ2 [u](τ ;x, t), τ)
)du3(ϕ2[u](τ ;x, t), τ)

dτ
dτ+

+

t
∫

χ2[u](x,t)

f2

(

ϕ2[u](τ ;x, t), τ, u(ϕ2 [u](τ ;x, t), τ)
)

dτ,

u3(x, t) = u3(x, χ3[u](x, t)) +

t
∫

χ3[u](x,t)

f3(x, τ, u(x, τ))dτ.

Taking into account the boundary conditions (5) and conjugated conditions (6), we
have

u1(x, t) = J1[u](x, t)−

t
∫

χ1[u](x,t)

a13

a11

(

ϕ1[u](τ ;x, t), τ, u(ϕ1 [u](τ ;x, t), τ)
)du3(ϕ1[u](τ ;x, t), τ)

dτ
dτ+

+

t
∫

χ1[u](x,t)

f1

(

ϕ1[u](τ ;x, t), τ, u(ϕ1 [u](τ ;x, t), τ)
)

dτ, (10)

where

J1[u](x, t) =































K−
1

(

χ1[u](x, t), u1(+0, χ1[u](x, t)), u2(−0, χ1[u](x, t)),

u3(−0, χ1[u](x, t)), u3(+0, χ1[u](x, t))
)

, if (x, t) ∈ Ω−
T ,

K+
1

(

χ1[u](x, t), u1(s1(χ1[u](x, t)), χ1[u]), u2(s2(χ1[u](x, t)), χ1[u](x, t))
)

,

if (x, t) ∈ Ω+
T ;
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u2(x, t) = J2[u](x, t)−

t
∫

χ2[u](x,t)

a23

a22

(

ϕ2[u](τ ;x, t), τ, u(ϕ2 [u](τ ;x, t), τ)
)du3(ϕ2[u](τ ;x, t), τ)

dτ
dτ+

+

t
∫

χ2[u](x,t)

f2

(

ϕ2[u](τ ;x, t), τ, u(ϕ2 [u](τ ;x, t), τ)
)

dτ, (11)

where

J2[u](x, t) =



































K−
2

(

χ2[u](x, t), u1(s1(χ2[u](x, t)), χ2[u]), u2(s2(χ2[u](x, t)), χ2[u](x, t))
)

,

if (x, t) ∈ Ω−
T ,

K+
2

(

χ2[u](x, t), u1(+0, χ2[u](x, t)), u2(−0, χ2[u](x, t)),

u3(−0, χ2[u](x, t)), u3(+0, χ2[u](x, t))
)

, if (x, t) ∈ Ω+
T ;

u3(x, t) = J3[u](x, t) +

t
∫

χ3[u](x,t)

f3(x, τ, u(x, τ))dτ, (12)

where

J3[u](x, t) =































K−
3

(

χ3[u](x, t), u1(s1(χ3[u])(x, t), χ3[u]), u2(s2(χ3[u](x, t)), χ3[u](x, t))
)

,

if (x, t) ∈ Ω−
T ,

K+
3

(

χ3[u](x, t), u1(s1(χ3[u](x, t)), χ3[u]), u2(s2(χ3[u](x, t)), χ3[u](x, t))
)

,

if (x, t) ∈ Ω+
T .

Definition 1. A set of functions u = (u1, u2, u3) is called a generalized solution to the
problem (2), (3), (5), (6), if these functions are Lipschitz continuous on each of the do-
mains Ω−

T , Ω
+
T , they can be continuously extended to the closures of these domains, and

satisfy integro-differential system (10)–(12).

3.1. Local solvability of the problem

We state our main result as a theorem.

Theorem 1. Suppose the following conditions hold:

1) a11, a13, a22, a23, b1, b2, b3 are locally Lipschitz continuous on each of the domains
Ω−
T ×R

3, Ω+
T ×R

3, and can be extended by continuity to the closures of these domains;

2) K+
1 , K−

2 , K
+
3 , K−

3 are Lipschitz continuous in a neighborhood of the point (0, v−1 , v
+
2 );

K−
1 , K+

2 are Lipschitz continuous in a neighborhood of (0, v+1 , v
−
2 , v

−
3 , v

+
3 ); the Lips-

chitz constants of these functions are assumed to be sufficiently small;
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3) inequalities (4) are satisfied;

4) the following compatibility conditions are satisfied:

v+1 = K+
1 (0, v

−
1 , v

+
2 ), v−2 = K−

2 (0, v−1 , v
+
2 ),

v−3 = K−
3 (0, v

−
1 , v

+
2 ), v+3 = K+

3 (0, v−1 , v
+
2 ),

v−1 = K−
1 (0, v+1 , v

−
2 , v

−
3 , v

+
3 ), v+2 = K+

2 (0, v+1 , v
−
2 , v

−
3 , v

+
3 );

5) the following constants are sufficiently small:

∣

∣

∣

∣

a13(−0, 0, v−)

a11(−0, 0, v−)

∣

∣

∣

∣

,

∣

∣

∣

∣

a13(+0, 0, v+)

a11(+0, 0, v+)

∣

∣

∣

∣

,

∣

∣

∣

∣

a23(−0, 0, v−)

a22(−0, 0, v−)

∣

∣

∣

∣

,

∣

∣

∣

∣

a23(+0, 0, v+)

a22(+0, 0, v+)

∣

∣

∣

∣

.

Then there exists a unique generalized solution to the problem (2), (3), (5), (6) on Ω−
T0
∪Ω+

T0

with a small enough value of T0.

Proof. We introduce a metric spaceQ = Q(T0, U, L), where parameters T0 ∈ (0, T ], U ∈
(0, 1], L > 0 are to be determined, as a set of vector functions u = (u1, u2, u3) such that
u1, u2, u3 are Lipschitz continuous on each of the domains Ω−

T0
, Ω+

T0
, can be continuously

extended to the closures of these domains, and there hold the initial condition (3) along
with the following conditions:

1) for every point (x, t) ∈ Ω−
T0

we have |ui(x, t) − v−i | ≤ U, i ∈ {1, 2, 3} and, similarly,

for every (x, t) ∈ Ω+
T0

we have |ui(x, t)− v+i | ≤ U, i ∈ {1, 2, 3};

2) for every pair of points (x1, t1), (x2, t2) ∈ Ω−
T0

(or pair of points (x1, t1), (x2, t2) ∈ Ω+
T0
)

we have |ui(x
1, t1)− ui(x

2, t2)| ≤ L(|x1 − x2|+ |t1 − t2|), i ∈ {1, 2, 3}.

For any u1, u2 ∈ Q, we define the distance between these elements as

ρ(u1, u2) = max



















sup
i∈{1,2,3},

(x,t)∈Ω−

T0

|u1i (x, t)− u2i (x, t)|, sup
i∈{1,2,3},

(x,t)∈Ω+

T0

|u1i (x, t)− u2i (x, t)|



















.

Note that (Q, ρ) is a complete metric space. Further, we introduce an operator A on
Q as follows. For any u ∈ Q write A[u] = (A1[u],A2[u],A3[u]), where the elements
A1[u],A2[u],A3[u] are defined as the right-hand sides of the equalities (10)–(12).

Thus, finding a generalized solution of the problem (2), (3), (5), (6) is reduced to
finding a fixed point of the operator A on Q. Applying the Banach fixed point theorem,
we will establish the existence and uniqueness of solution. So our aim is to find a set
of parameters T0, U, L such that the operator A maps the space Q into itself and this
operator is a contraction mapping.
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Introduce notation. Choose constants A, F such that

|aii(x, t, u)| ≤ A, i ∈ {1, 2}, |fi(x, t, u)| ≤ F, i ∈ {1, 2, 3}

on D
def
= Ω−

T × {u ∈ R
3 : |ui − v−i | ≤ 1} ∪ Ω+

T × {u ∈ R
3 : |ui − v+i | ≤ 1}. Let a0 be the

Lipschitz constant of the functions (x, t, u) 7→ aii(x, t, u), i ∈ {1, 2}, ã0 be the Lipschitz
constant of (x, t, u) 7→ ai3

aii
(x, t, u), i ∈ {1, 2}, f0 be the Lipschitz constant of (x, t, u) 7→

fi(x, t, u), i ∈ {1, 2, 3} on D, and s0 be the Lipschitz constant of t 7→ si(t), i ∈ {1, 2} on
[0, T ].

Choose constants Ã, B such that
∣

∣

∣

∣

ai3

aii
(x, t, u)

∣

∣

∣

∣

≤ Ã,

∣

∣

∣

∣

1

aii(x, t, u)

∣

∣

∣

∣

≤ B, i ∈ {1, 2}

on Ω−
T0

× {u ∈ R
3 : |ui − v−i | ≤ U} ∪ Ω+

T0
× {u ∈ R

3 : |ui − v+i | ≤ U}. Suppose

k0 is the Lipschitz constant of the functions (t, u1, u2) 7→ K+
1 (t, u1, u2), (t, u1, u2) 7→

K−
2 (t, u1, u2), (t, u1, u2) 7→ K+

3 (t, u1, u2), (t, u1, u2) 7→ K−
3 (t, u1, u2) on [0, T0]×{(u1, u2) ∈

R
2 : |u1 − v−1 | ≤ U, |u2 − v+2 | ≤ U}, and also the Lipschitz constant of the func-

tions (t, u1, u2, u3, û3) 7→ K−
1 (t, u1, u2, u3, û3), (t, u1, u2, u3, û3) 7→ K+

2 (t, u1, u2, u3, û3) on
[0, T0]×{(u1, u2, u3, û3) ∈ R

4 : |u1−v+1 | ≤ U, |u2−v−2 | ≤ U, |u3−v−3 | ≤ U, |û3−v+3 | ≤ U}.
By decreasing T0, U if necessary, taking into account the conditions of Theorem 1,

we may assume that aii(x, t, u) 6= 0, i ∈ {1, 2}, and Ã, k0 are sufficiently small (their
smallness will be specified in the sequel).

Let us formulate a few auxiliary estimates as lemmas, which are similar to thus used
in [1, 2, 6].

Lemma 1. Let u, u1, u2 ∈ Q, i ∈ {1, 2}. Then the following inequalities hold:

1) |ϕi[u](τ ;x1, t)− ϕi[u](τ ;x2, t)| ≤ ea0(1+L)T0 |x1 − x2| for all (x1, t), (x2, t) ∈ Ω−
T0
;

2) |ϕi[u](τ ;x, t1)− ϕi[u](τ ;x, t2))| ≤ ea0(1+L)T0A|t1 − t2| for all (x, t1), (x, t2) ∈ Ω−
T0
;

3) |ϕi[u
1](τ ;x, t) − ϕi[u

2](τ ;x, t)| ≤ ea0(1+L)T0a0T0ρ(u
1, u2) for all (x, t) ∈ Ω−

T0
.

The same estimates are true in the domain Ω+
T0
.

Lemma 2. Let u, u1, u2 ∈ Q, i ∈ {1, 2}. Then the following inequalities hold:

1) |χi[u](x1, t)− χi[u](x2, t)| ≤ ea0(1+L)T0B|x1 − x2| for all (x1, t), (x2, t) ∈ Ω−
T0
;

2) |χi[u](x, t1)− χi[u](x, t2)| ≤ ea0(1+L)T0AB|t1 − t2| for all (x, t1), (x, t2) ∈ Ω−
T0
;

3) |χi[u
1](x, t) − χi[u

2](x, t)| ≤ ea0(1+L)T0a0BT0ρ(u
1, u2) for all (x, t) ∈ Ω−

T0
.

The same estimates are true in the domain Ω+
T0
.
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Lemma 3. Suppose that τ 7→ ϕ(τ), τ ∈ [a, b] is a smooth function and |ϕ′(τ)| ≤ A.
Moreover, assume that the function (x, t) 7→ u(x, t) is Lipschitz in both arguments with a
constant L and also the function (x, t, u) 7→ g(x, t, u) is Lipschitz in all arguments with
a constant g0. Then, on [a, b], the functions τ 7→ u(ϕ(τ), τ), τ 7→ g(ϕ(τ), τ, u(ϕ(τ), τ))
are almost everywhere differentiable, their derivatives are integrable, and the following
inequalities hold almost everywhere:

1)

∣

∣

∣

∣

du(ϕ(τ), τ)

dτ

∣

∣

∣

∣

≤ L(A+ 1);

2)

∣

∣

∣

∣

∣

dg
(

ϕ(τ), τ, u(ϕ(τ), τ)
)

dτ

∣

∣

∣

∣

∣

≤ g0(L+ 1)(A+ 1).

First let us prove that there exists a set of parameters such that the operator A maps
the space Q into itself. For any u ∈ Q, using an estimate

|J1[u](x, t) − J1[u](−0, 0)| ≤ k0(1 + 4L)T0, (x, t) ∈ Ω−
T0
,

along with an estimate

|J1[u](x, t) − J1[u](+0, 0)| ≤ k0(1 + 2L(s0 + 1))T0, (x, t) ∈ Ω+
T0
,

we obtain

|A1[u](x, t) − v−1 | = |J1[u](x, t)− J1[u](−0, 0)|+

+

∣

∣

∣

∣

∣

∣

∣

t
∫

χ1[u](x,t)

a13

a11

(

ϕ1[u](τ ;x, t), τ, u(ϕ1 [u](τ ;x, t), τ)
)du3(ϕ1[u](τ ;x, t), τ)

dτ
dτ

∣

∣

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

∣

∣

t
∫

χ1[u](x,t)

f1

(

ϕ1[u](τ ;x, t), τ, u(ϕ1 [u](τ ;x, t), τ)
)

dτ

∣

∣

∣

∣

∣

∣

∣

≤

≤
(

k0(1 + 2Ls0 + 4L) + ÃL(A+ 1) + F
)

T0, (x, t) ∈ Ω−
T0
.

Similarly, we have

|A1[u](x, t)− v+1 | ≤
(

k0(1 + 2Ls0 + 4L) + ÃL(A+ 1) + F
)

T0, (x, t) ∈ Ω+
T0
.

Thus, whenever the inequality

(

k0(1 + 2Ls0 + 4L) + ÃL(A+ 1) + F
)

T0 ≤ U (13)

holds, we derive that |A1[u](x, t)−v−1 | ≤ U for every point (x, t) ∈ Ω−
T0

and also |A1[u](x, t)−

v+1 | ≤ U for (x, t) ∈ Ω+
T0
. Reasoning as above, we obtain similar estimates for A2[u], A3[u].
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Further, let us show that A1[u] is Lipschitz in x on each of the domains Ω−
T , Ω+

T

whenever u ∈ Q. For every pair of points (x1, t), (x2, t) ∈ Ω−
T0
, using Lemma 2, we obtain

(here for brevity we write τj instead of χ1[u](xj , t) and, for any function f , we write
∆jf(xj) instead of f(x1)− f(x2))

|∆jJ1[u](xj , t)| = |∆jK
−
1 (τj , u1(+0, τj), u2(−0, τj), u3(−0, τj), u3(+0, τj))| ≤

≤ k0(1 + 4L)|τ1 − τ2| ≤ k0(1 + 4L)ea0(1+L)T0B|x1 − x2|.

Similarly, for every pair of points (x1, t), (x2, t) ∈ Ω+
T0
, we have an estimate

|∆jJ1[u](xj , t)| = |∆jK
+
1 (τj , u1(s1(τj), τj), u2(s2(τj), τj))| ≤

≤ k0(1 + 2L(s0 + 1))ea0(1+L)T0B|x1 − x2|.

For clarity, assume that χ1[u](x1, t) > χ1[u](x2, t). Using Lemmas 1, 2, 3, and integration
by parts, for every pair of points (x1, t), (x2, t) ∈ Ω−

T0
(or (x1, t), (x2, t) ∈ Ω+

T0
), we obtain

∣

∣

∣

∣

∣

∣

∣

∆j

t
∫

χ1[u](xj ,t)

a13

a11

(

ϕ1[u](τ ;xj , t), τ, u(ϕ1[u](τ ;xj , t), τ)
)du3(ϕ1[u](τ ;xj , t), τ)

dτ
dτ

∣

∣

∣

∣

∣

∣

∣

≤

≤

∣

∣

∣

∣

∣

∣

∣

t
∫

χ1[u](x1,t)

∆j

a13

a11

(

ϕ1[u](τ ;xj , t), τ, u(ϕ1[u](τ ;xj , t), τ)
)du3(ϕ1[u](τ ;x1, t), τ)

dτ
dτ

∣

∣

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

a13

a11

(

ϕ1[u](τ ;x2, t), τ, u(ϕ1[u](τ ;x2, t), τ)
)

∆ju3(ϕ1[u](τ ;xj , t), τ)

∣

∣

∣

∣

t

χ1[u](x1,t)

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

∣

∣

t
∫

χ1[u](x1,t)

da13
a11

(ϕ1[u](τ ;x2, t), τ, u(ϕ1[u](τ ;x2, t), τ))

dτ
∆ju3(ϕ1[u](τ ;xj , t), τ)dτ

∣

∣

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

∣

∣

χ1[u](x1,t)
∫

χ1[u](x2,t)

a13

a11

(

ϕ1[u](τ ;x2, t), τ, u(ϕ1[u](τ ;x2, t), τ)
)du3(ϕ1[u](τ ;x2, t), τ)

dτ
dτ

∣

∣

∣

∣

∣

∣

∣

≤

≤
(

ã0(L+ 1)ea0(1+L)T0L(A+ 1)T0 + ÃL+ ÃLea0(1+L)T0+

+ ã0(L+ 1)(A+ 1)Lea0(1+L)T0T0 + ÃL(A+ 1)ea0(1+L)T0B
)

|x1 − x2|.

Similarly, we have

∣

∣

∣

∣

∣

∣

∣

∆j

t
∫

χ1[u](xj ,t)

f1

(

ϕ1[u](τ ;xj , t), τ, u(ϕ1[u](τ ;xj , t), τ)
)

dτ

∣

∣

∣

∣

∣

∣

∣

≤



72 R.V. Andrusyak, I.V. Andrusiak, O.V. Pelyushkevych, O.V. Flyud

≤
(

f0(L+ 1)ea0(1+L)T0T0 + Fea0(1+L)T0B
)

|x1 − x2|.

Finally, using the inequalities above, we obtain an estimate

|∆jA1[u](xj , t)| ≤

(

k0(1 + 4L+ 2Ls0)e
a0(1+L)T0B+

+ ã0(L+ 1)ea0(1+L)T0L(A+ 1)T0 + ÃL+ ÃLea0(1+L)T0+

+ ã0(L+ 1)(A + 1)Lea0(1+L)T0T0 + ÃL(A+ 1)ea0(1+L)T0B+

+ f0(L+ 1)ea0(1+L)T0T0 + Fea0(1+L)T0B

)

|x1 − x2|.

Assuming that the inequality

(L2 + L)T0 ≤ 1 (14)

holds, we can rewrite the previous estimate as

|∆jA1[u](xj , t)| ≤ (C1 + L(k0C2 + ÃC3))|x1 − x2|,

where C1, C2, C3 are some positive constants, determined by initial data. Note that A2[u]
and A3[u] satisfy the same estimate.

Applying the previous inequality, we show that A1[u] is Lipschitz in t whenever u ∈ Q.

By definition, put x3
def
= ϕi[u](t1;x, t2). For every pair of points (x, t1), (x, t2) ∈ Ω−

T0
(or

(x, t1), (x, t2) ∈ Ω+
T0
), using Lemma 3, we obtain

|∆jA1[u](x, tj)| = |A1[u](x, t1)−A1[u](x3, t1)|+ |A1[u](x3, t1)−A1[u](x, t2)| ≤

≤ |A1[u](x, t1)−A1[u](x3, t1)|+

+

∣

∣

∣

∣

∣

∣

t2
∫

t1

a13

a11

(

ϕ1[u](τ ;x, t2), τ, u(ϕ1[u](τ ;x, t2), τ)
)du3(ϕ1[u](τ ;x, t2), τ)

dτ
dτ +

+

t2
∫

t1

f1(ϕ1[u](τ ;x, t2), τ, u(ϕ1[u](τ ;x, t2), τ))dτ

∣

∣

∣

∣

∣

∣

≤

≤ (C1 + L(k0C2 + ÃC3))|x− x3|+ (ÃL(A+ 1) + F )|t1 − t2| ≤

≤
(

(C1 + L(k0C2 + ÃC3))A+ ÃL(A+ 1) + F
)

|t1 − t2|.

The same estimate holds for A2[u] and A3[u].

Thus, Ai[u], i ∈ {1, 2, 3}, are Lipschitz continuous on each of the domains Ω−
T , Ω

+
T as

the inequality

|Ai[u](x1, t1)−Ai[u](x2, t2)| ≤ (C4 + L(k0C5 + ÃC6))(|x1 − x2|+ |t1 − t2|)
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holds for all (x1, t1), (x2, t2) ∈ Ω−
T0

(or (x1, t1), (x2, t2) ∈ Ω+
T0
), where constants C4, C5, C6

are determined by initial data. Consequently, for Ai[u] to satisfy the Lipschitz condition
with a constant L, it is sufficient to require that

C4 + L(k0C5 + ÃC6) ≤ L.

The last condition can be rewritten as

L ≥
C4

1− (k0C5 + ÃC6)
, (15)

provided that k0 and Ã are small enough to satisfy the following inequality:

k0C5 + ÃC6 < 1. (16)

Now let us prove that the operator A is a contraction on Q, i.e., there is some non-
negative real number 0 ≤ κ < 1 such that for all u1, u2 ∈ Q, ρ(A[u1],A[u2]) ≤ κρ(u1, u2).
Assuming that u1, u2 ∈ Q, using Lemma 2 for all (x, t) ∈ Ω−

T0
, we obtain (for short, we

write here τj instead of χ1[u
j ](x, t) and, for any functional F , we write ∆jF [uj ] instead

of F [u1]− F [u2])

|∆jJ1[u
j ](x, t)| = |∆jK

−
1 (τj , u

j
1(+0, τj), u

j
2(−0, τj), u

j
3(−0, τj), u

j
3(+0, τj))| ≤

≤ k0

(

4 + (1 + 4L)ea0(1+L)T0a0BT0

)

ρ(u1, u2).

Similarly, for all (x, t) ∈ Ω+
T0
, we have

|∆jJ1[u
j ](x, t)| = |∆jK

+
1 (τj , u

j
1(s1(τj), τj), u

j
2(s2(τj), τj))| ≤

≤ k0

(

2 + (1 + 2L(s0 + 1))ea0(1+L)T0a0BT0

)

ρ(u1, u2).

For clarity, assume that χi[u
1](x, t) > χi[u

2](x, t). Using Lemmas 1, 2, 3, and integration
by parts, for all (x, t) ∈ Ω−

T0
∪ Ω+

T0
, we obtain

∣

∣

∣

∣

∣

∣

∣

∆j

t
∫

χ1[uj ](x,t)

a13

a11

(

ϕ1[u
j](τ ;x, t), τ, uj(ϕ1[u

j](τ ;x, t), τ)
)du

j
3(ϕ1[u

j ](τ ;x, t), τ)

dτ
dτ

∣

∣

∣

∣

∣

∣

∣

≤

≤

∣

∣

∣

∣

∣

∣

∣

t
∫

χ1[u1](x,t)

∆j
a13

a11

(

ϕ1[u
j ](τ ;x, t), τ, uj(ϕ1[u

j ](τ ;x, t), τ)
)du13(ϕ1[u

1](τ ;x, t), τ)

dτ
dτ

∣

∣

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

a13

a11

(

ϕ1[u
2](τ ;x, t), τ, u2(ϕ1[u

2](τ ;x, t), τ)
)

∆ju
j
3(ϕ1[u

j ](τ ;x, t), τ)

∣

∣

∣

∣

t

χ1[u1](x,t)

∣

∣

∣

∣

∣

+
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+

∣

∣

∣

∣

∣

∣

∣

t
∫

χ1[u1](x,t)

da13
a11

(ϕ1[u
2](τ ;x, t), τ, u2(ϕ1[u

2](τ ;x, t), τ))

dτ
∆ju

j
3(ϕ1[u

j ](τ ;x, t), τ)dτ

∣

∣

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

∣

∣

χ1[u1](x,t)
∫

χ1[u2](x,t)

a13

a11

(

ϕ1[u
2](τ ;x, t), τ, u2(ϕ1[u

2](τ ;x, t), τ)
)du23(ϕ1[u

2](τ ;x, t), τ)

dτ
dτ

∣

∣

∣

∣

∣

∣

∣

≤

≤

(

ã0

(

1 + (1 + L)ea0(1+L)T0a0T0

)

L(A+ 1)T0 + Ã+ Ã
(

1 + Lea0(1+L)T0a0T0

)

+

+
(

1 + Lea0(1+L)T0a0T0

)

a0(L+ 1)(A+ 1)T0 + ÃL(A+ 1)ea0(1+L)T0a0BT0

)

ρ(u1, u2).

Similarly, we have

∣

∣

∣

∣

∣

∣

∣

∆j

t
∫

χ1[uj ](x,t)

f1

(

ϕ1[u
j ](τ ;x, t), τ, uj(ϕ1[u

j ](τ ;x, t), τ)
)

dτ

∣

∣

∣

∣

∣

∣

∣

≤

≤

(

f0

(

1 + (1 + L)ea0(1+L)T0a0T0

)

T0 + Fea0(1+L)T0a0BT0

)

ρ(u1, u2).

Finally, using the inequalities above, we obtain an estimate

|∆jA1[u
j](x, t)| ≤

(

4k0 + k0(1 + 4L(s0 + 1))ea0(1+L)T0a0BT0+

+ ã0

(

1 + (1 + L)ea0(1+L)T0a0T0

)

L(A+ 1)T0 + Ã+ Ã
(

1 + Lea0(1+L)T0a0T0

)

+

+
(

1 + Lea0(1+L)T0a0T0

)

a0(L+ 1)(A+ 1)T0 + ÃL(A+ 1)ea0(1+L)T0a0BT0+

+ f0

(

1 + (1 + L)ea0(1+L)T0a0T0

)

T0 + Fea0(1+L)T0a0BT0

)

ρ(u1, u2).

Applying assumption (14), we can rewrite the previous estimate as

|∆jA1[u
j](x, t)| ≤ (4k0 + 2Ã+ C7T0)ρ(u

1, u2),

where constants C7, C8 are determined by initial data. Reasoning as above, we obtain the
same inequalities for A2[u], A3[u]. Whence we derive an estimate

ρ(A[u1],A[u2]) ≤ (4k0 + 2Ã+ C7T0)ρ(u
1, u2).

Therefore, A is a contraction mapping if

C7T0 < 1− 4k0 − 2Ã, (17)

provided that k0 and Ã are small enough to satisfy the following inequality:

4k0 + 2Ã < 1. (18)
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Now, suppose k0 and Ã are sufficiently small to satisfy inequalities (16), (18), L is
large according to (15), and T0 is small enough to satisfy the inequalities (13), (14), (17).
Then the operator A maps the space Q into itself and, in addition, this operator is a
contraction mapping. In this case, by the Banach fixed-point theorem, the operator A
admits a unique fixed point in Q. This fixed point is a generalized solution to the problem
(2), (3), (5), (6).J
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