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property of degenerate abstract multi-term fractional differential equations with Caputo fractional
derivatives. The obtained results are illustrated with some examples.
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1. Introduction and preliminaries

We shall work in the setting of separable, infinite-dimensional, Hausdorff, sequentially
complete locally convex spaces over the field K ∈ {R, C}. Let E be such a space. Then a
linear operator T on E is said to be hypercyclic if there exists an element x ∈ D∞(T ) ≡
⋂

n∈ND(T n) whose orbit {T nx : n ∈ N0} is dense in E; T is said to be topologically
transitive, resp. topologically mixing, if for every pair of open non-empty subsets U, V of
E, there exists n ∈ N such that T n(U) ∩ V 6= ∅, resp. if for every pair of open non-empty
subsets U, V of E, there exists n0 ∈ N such that, for every n ∈ N with n ≥ n0, one has
T n(U) ∩ V 6= ∅.

In recent years, considerable interest in fractional differential equations has been stim-
ulated due to their numerous applications in engineering, physics, chemistry, biology and
other sciences. Fairly complete information on fractional calculus and fractional differ-
ential equations can be found in [7], [16], [26]-[32] and [41]-[43]. On the other hand, in
the past decades a great number of researchers from different areas have contributed to
the field of linear dynamics. Concerning the linear dynamics of single operators, we can
recommend for the reader the monographs [6] by F. Bayart, E. Matheron and [19] by
K.-G. Grosse-Erdmann, A. Peris. The third chapter of monograph [25] contains the basic
information about hypercyclic and topologically mixing properties of various classes of
abstract Volterra integro-differential equations.

In this paper, we shall reconsider the notions of hypercyclicity and topologically mixing
property of degenerate abstract multi-term fractional differential equations ([32]). Works
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by K.-G. Grosse-Erdmann-S. G. Kim [18] and J. Bès-J. A. Conejero [8] were the moti-
vation for writing this paper. The author would also like to acknowledge several fruitful
discussions with Professor J. A. Conejero, which influenced him to write this paper. In
[18], the authors have proposed the way of computing the orbit of a pair (x, y) under
the action of a bilinear mapping B : E × E → E, with E being a separable Banach
space. After that, the notion of bihypercyclicity of mapping B has been introduced. In
the remaining part of [18], several interesting examples of bihypercyclic bilinear mappings
have been presented; it has also been shown that every separable Banach space supports
a bihypercyclic bilinear mapping and every separable Banach space E supports a bihy-
percyclic symmetric bilinear mapping whenever E supports a non-injective hypercyclic
operator. In the setting of infinite-dimensional separable Fréchet spaces, a slightly differ-
ent way of computing the orbit of a pair (x, y) under the action of bilinear mapping B has
been proposed in [8, Definition 1]. The notion of orbit of a tuple (x1, x2, · · ·, xn) ∈ EN

under the action of an N -linear operator M : En → E as well as the notion of super-
cyclicity of the operator M has been introduced in the same definition, while the notion
of N -linear Devaney chaos of M has been introduced in [8, Definition 18] (N ≥ 2). In
[8, Theorem 5, Theorem 8], it has been proved that every separable infinite-dimensional
Fréchet space E supports, for any integer N ≥ 2, an N -linear operator having a residual
set of supercyclic vectors and, for any integer N ≥ 2 there exists an N -linear operator on
the space ω = K

N (endowed with the product topology) that supports a dense N -linear
orbit. The existence of hypercyclic N -linear operators on the Fréchet space H(C) has
been investigated in [8, Section 4]. Following the approaches used in [18] and [8], we
define the orbits Orb(S; (Bi)1≤i≤l) and Orb(S; (Mi)1≤i≤l) for any non-empty subset S of
EN and any mappings Bi : (E

N )bi → EN , Mi : E
N → E (1 ≤ i ≤ l); here it is worth

noting that in our analysis these mappings need not be (separately) linear or continu-
ous. Having this done, we have an open door (after a necessary patching up with some
technicalities concerning the well-posedness of problem [(1)-(2)] below) to introduce the
notions of D-hypercyclicity and D-topologically mixing property of degenerate abstract
multi-term fractional problems (for more details, cf. Definition 2). In Theorem 1 and The-
orem 2, we reformulate [18, Theorem 2] for our context, and prove the conjugacy lemma
for abstract degenerate multi-term fractional differential equations. The main objective
in Theorem 3 is to clarify the kind of Desch-Schappacher-Webb and Banasiak-Moszyński
criteria ([15], [5], [14]) for D-topologically mixing of certain classes of abstract degenerate
higher-order differential equations with integer order derivatives (the chaotic properties of
abstract degenerate differential equations will not be considered within the framework of
this paper; cf. [32] for more details). As explained in Remark 2(iii), Theorem 3 cannot be
so easily transmitted to abstract degenerate differential equations with Caputo fractional
derivatives. Finally, it should be noticed that we provide a large amount of relevant ref-
erences on fractional calculus and fractional differential equations, degenerate differential
equations, linear dynamics, and a large number of useful comments and remarks enriches
our analysis.

Let n ∈ N\{1}, 0 = α0 < α1 < · · · < αn, f ∈ C([0,∞) : E), and let A0, A1, · · ·, An−1, B
be closed linear operators on E. The well-posedness of following multi-term fractional
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differential equation has been analyzed in a series of recent papers (cf. [26, Section 2.10]
for an extensive survey of results):

Dαn
t u(t) +

n−1
∑

i=0

AiD
αi
t u(t) = f(t), t ≥ 0; u(j)(0) = uj , j = 0, · · ·, dαne − 1.

Set mi := dαie, i ∈ N
0
n, A0 := A, An := B, Ti,Lu(t) := AiD

αi
t u(t), if t ≥ 0, i ∈ N

0
n and

αi > 0, and Ti,Ru(t) := Dαi
t Aiu(t), if t ≥ 0 and i ∈ N

0
n, where Nn := {1, · · ·, n} and N

0
n :=

Nn∪{0}. Henceforth we shall always assume that, for every t ≥ 0 and i ∈ N
0
n, Tiu(t) denotes

either Ti,Lu(t) or Ti,Ru(t). In this paper, we introduce and further analyze the notions
of D-hypercyclicity and D-topologically mixing property of the following homogeneous
degenerate abstract multi-term problem:

n
∑

i=0

Tiu(t) = 0, t ≥ 0, (1)

thus continuing our previous research studies [29]-[32]. Although the introduced notions
seem to be new even for non-degenerate abstract differential equations of first order ([40]),
we shall focus our attention almost completely on degenerate multi-term problems.

Set

Pλ := λαnB +
n−1
∑

i=0

λαiAi, λ ∈ C \ {0},

I := {i ∈ N
0
n : αi > 0 and Ti,Lu(t) appears on the left hand side of (1)}, Q := max I, if

I 6= ∅ and Q := mQ := 0, if I = ∅. We shall consider the equation (1) equipped with the
following initial conditions (cf. [32] for more details):

u(j)(0) = uj , 0 ≤ j ≤ mQ − 1 and
(

Aiu
)(j)

(0) = ui,j if mi − 1 ≥ j ≥ mQ. (2)

If Tnu(t) = Tn,Lu(t), then (2) becomes:

u(j)(0) = uj, 0 ≤ j ≤ mn − 1.

If this is not the case, then the choice (2) may be non-optimal and we cannot expect the
existence of solutions of problem [(1)-(2)] in general ([32]).

Let α be a fixed positive real number. The most important subcases of problem [(1)-
(2)] are the following fractional Sobolev degenerate equations:

(DFP)R :

{

Dα
t Bu(t) = Au(t), t ≥ 0,

(Bu)(j)(0) = Buj, 0 ≤ j ≤ m− 1,

and

(DFP)L :

{

BDα
t u(t) = Au(t), t ≥ 0,

u(j)(0) = uj , 0 ≤ j ≤ m− 1,
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where m := dαe. In [32, Subsection 2.1-Subsection 2.2], we have recently considered the
hypercyclicity and topologically mixing property of the equations (DFP)R and (DFP)L
with x0 = x and x1 = · · · = xm−1 = 0, as well as the problem

BDαn
t u(t) +

n−1
∑

i=0

Tiu(t) = 0, t ≥ 0; u(j)(0) = uj , j = 0, · · ·,mn − 1, (3)

provided that there exists an index i ∈ N
0
mn−1 such that uj = 0, j ∈ N

0
mn−1 \ {i}. In this

paper, we continue studying hypercyclicity and topologically mixing property of problems
(3) and (DFP)R by assuming that there exist two or more non-zero components of the
tuple (u0, · · ·, umn−1) (i.e., the tuple (Bu0, · · ·, Bum−1) in the case of problem (DFP)R).
The analysis of D-hypercyclicity and D-topologically mixing property of problem [(1)-
(2)] is very complicated in general case and, with the exception of some minor facts and
results concerning the existence and uniqueness of solutions, the most general abstract
form of problem [(1)-(2)] will not be further considered here. For more details concerning
the wellposedness of Sobolev first order degenerate equations, the reader may consult the
monographs by A. Favini, A. Yagi [20], S. G. Krein [34], R. W. Carroll, R. W. Showalter
[10], I. V. Melnikova, A. I. Filinkov [36] and G. A. Sviridyuk, V. E. Fedorov [46], as well as
the papers [21], [37], [39], [44] and [52]. The well-posedness of various types of degenerate
Sobolev equations of second order have been analyzed in [1], [10], [20], [22], [28], [38],
[45] and [53]. The corresponding results on degenerate Sobolev equations with integer
higher-order derivatives can be found in [2]-[3], [20, Section 5.7], [33], [46]-[50] and [53].

We use the standard terminology throughout the paper. For any p ∈ N and r ∈ Np,
we define Projr,p : Ep → E by Projr,p(x1, · · ·, xp) := xr, ~x = (x1, · · ·, xp) ∈ Ep. If A is
a linear operator acting on E, then the domain and point spectrum of A will be denoted
by D(A) and σp(A), respectively. Since no confusion seems likely, we will identify A with
its graph. By I and E∗ we denote the identity operator on E and the dual space of
E, respectively. Given s ∈ R in advance, set dse := inf{l ∈ Z : s ≤ l}. The Gamma
function is denoted by Γ(·) and the principal branch is always used to take the powers; the
convolution like mapping ∗ is given by f ∗g(t) :=

∫ t
0 f(t−s)g(s) ds. Set gζ(t) := tζ−1/Γ(ζ),

0ζ := 0 (ζ > 0, t > 0), g0(t) := the Dirac δ-distribution, C+ := {z ∈ C : <z > 0} and
L(z0, ε) := {z ∈ C : |z − z0| < ε} (z0 ∈ C, ε > 0). For a number ζ > 0 given in

advance, the Caputo fractional derivative Dζ
tu ([7], [26]) is defined for those functions

u ∈ Cdζe−1([0,∞) : E) for which gdζe−ζ ∗ (u−
∑dζe−1

j=0 u(j)(0)gj+1) ∈ Cdζe([0,∞) : E) :

Dζ
tu(t) =

ddζe

dtdζe

[

gdζe−ζ ∗

(

u−

dζe−1
∑

j=0

u(j)(0)gj+1

)]

.

For any continuous E-valued function t 7→ u(t), t ≥ 0, we define D0
tu(t) := u(t). If the

Caputo fractional derivative Dζ
tu(t) exists, then for each number ν ∈ (0, ζ) the Caputo
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fractional derivative Dν
t u(t) exists as well, and the following equality holds:

Dν
t u(t) =

(

gζ−ν ∗D
ζ
tu(·)

)

(t) +

dζe−1
∑

j=dνe

u(j)(0)gj+1−ν(t), t ≥ 0. (4)

It should be noted here that the term Dν1+ν2
t u(t) need not be defined for some functions

t 7→ u(t), t ≥ 0, for which the term Dν1
t Dν2

t u(t) is defined. Consider, for example, the
case ν1 = ν2 = 1/2, λ > 0 and u(t) = E1/2(λ

1/2t1/2), t ≥ 0 (cf. the next paragraph
for the notion of Mittag-Leffler functions). Then [7, (1.25)] implies that Dν1

t Dν2
t u(t) =

λE1/2(λ
1/2t1/2), t ≥ 0. On the other hand, D1

tu(t) is not defined for t ≥ 0 because the
function t 7→ u(t), t ≥ 0 is not continuously differentiable for t ≥ 0. Even if we accept a
slightly weaker definition of Caputo fractional derivatives from [7], when D1

tE1/2(λ
1/2t1/2)

exists and equals to
∑∞

k=1
λk/2t(k/2)−1

Γ(k/2) for t > 0, the equality D
1/2
t D

1/2
t E1/2(λ

1/2t1/2) =

D1
tE1/2(λ

1/2t1/2), t > 0 does not hold for any λ > 0 because λE1/2(λ
1/2t1/2) ∼ λ as

t → 0+ while
∑∞

k=1
λk/2t(k/2)−1

Γ(k/2) ∼ ( λ
πt)

1/2 as t → 0+ (cf. [31], Remark 2(iv) and the

equation (7) below).
The Mittag-Leffler function Eβ,γ(z) (β > 0, γ ∈ R) is defined by

Eβ,γ(z) :=
∞
∑

k=0

zk

Γ(βk + γ)
, z ∈ C.

In this place, we assume that 1/Γ(βk + γ) = 0 if βk + γ ∈ −N0. Set, for short, Eβ(z) :=
Eβ,1(z), z ∈ C. The asymptotic behaviour of the entire function Eβ,γ(z) is given in the
following auxiliary lemma (see e.g. [26, Section 1.3]):

Lemma 1. Let 0 < σ < 1
2π. Then, for every z ∈ C \ {0} and l ∈ N \ {1},

Eβ,γ(z) =
1

β

∑

s

Z1−γ
s eZs −

l−1
∑

j=1

z−j

Γ(γ − βj)
+O

(

|z|−l
)

, |z| → ∞,

where Zs is defined by Zs := z1/βe2πis/β and the first summation is taken over all those
integers s satisfying | arg(z) + 2πs| < β(π2 + σ).

The reader may consult [51] and [26] for further information concerning the Laplace
transform and analytical properties of functions with values in sequentially complete lo-
cally convex spaces (cf. [4] for the Banach space case). By L and L−1 we denote the
Laplace transform and its inverse transform, respectively.

2. D-Hypercyclic and D-topologically mixing properties of degenerate

Cauchy problems

We start this section by recalling the following definition of a strong solution of problem
[(1)-(2)] (cf. [32, Definition 2]).
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Definition 1. A function u ∈ C([0,∞) : E) is said to be a strong solution of problem
[(1)-(2)] iff the term Tiu(t) is well defined and continuous for any t ≥ 0, i ∈ N

0
n, and

[(1)-(2)] holds identically on [0,∞).

Denote by T the exact number of initial values subjected to the equation [(1)-(2)];
in other words, T is the sum of number mQ and the cardinality of set consisting of
those pairs (i, j) ∈ Nn × N

0
mn−1 for which mi − 1 ≥ j ≥ mQ. More precisely, sup-

pose that {i1, · · ·, is} = {i ∈ Nn : mi − 1 ≥ mQ} and i1 < · · · < is. Then the set
of all initial values appearing in (2) is given by {u0, · · ·, umQ−1;ui1,mQ

, · · ·, ui1,mi1
−1; · ·

·;uis,mQ
, · · ·, uis,mis−1} = {(uj)0≤j≤mQ−1; (uis′ ,j)1≤s′≤s,mQ≤j≤mi

s′
−1} so that T = mi1 +

· · · + mis + (1 − s)mQ. Denote by Z (Zuniq) the set of all tuples of initial values ~x =
((uj)0≤j≤mQ−1; (uis′ ,j)1≤s′≤s,mQ≤j≤mi

s′
−1) ∈ ET for which there exists a (unique) strong

solution of problem [(1)-(2)]. Then Z is a linear subspace of ET and Zuniq ⊆ Z. The
equality Z = Zuniq holds iff the zero function is a unique strong solution of the problem
[(1)-(2)] with the initial value ~x = ~0. For any ~x ∈ Z, we denote by S(~x) the set consisting
of all strong solutions of problem [(1)-(2)] with the initial value ~x.

In the remaining part of this paper, we shall only consider the problems (3) and
(DFP)R. Note that the problem (DFP)L is a very special case of problem (3) and that
T = mn for problem (3), and T = m for problem (DFP)R. By (P) we denote either
(3) or (DFP)R. We shall always assume henceforth that ∅ 6= W ⊆ NT, Êi is a linear
subspace of E (i ∈ W ), Ẽ, Ě are linear subspaces of ET, as well as that ~β := (β0, β1, · ·
·, βT−1) ∈ [0, αn]

T, l ∈ N, ∅ 6= S ⊆ ET, Bi : (E
T)bi → ET and Mi : E

T → E are given
mappings (bi ∈ N for 1 ≤ i ≤ l). Set B := (Ẽ, Ě, S, (Bi)1≤i≤l, {Êi : i ∈ W}, ~β) and

M := (Ẽ, Ě, S, (Mi)1≤i≤l, {Êi : i ∈ W}, ~β). Let P : Z → P (∪~x∈ZS(~x)) be a fixed mapping
satisfying ∅ 6= P(~x) ⊆ S(~x), ~x ∈ Z.

Following K.-G. Grosse-Erdmann-S. G. Kim [18, pp. 701-702], we introduce the set
Up(S) (p ∈ N0) recursively by U0(S) := S, Up+1(S) := Up(S) ∪ {Bi( ~x1, · · ·, ~xbi) : 1 ≤ i ≤
l, ~x1, · · ·, ~xbi ∈ Up(S)}. If T ≥ 2, then we introduce the set Up(S) (p ∈ N0) following
the approach of J. Bès-J. A. Conejero [8, pp. 2-3]: U0(S) =: S, Up+1(S) := Up(S) ∪
{(x2, x3, · · ·, xT,Mi(x1, x2, · · ·, xT)) : 1 ≤ i ≤ l, (x1, x2, · · ·, xT) ∈ Up(S)}. If T = 1, then
Up(S) := S, p ∈ N0. Define

Orb
(

S; (Bi)1≤i≤l

)

:=
⋃

p∈N0

Up(S), Orb
(

S; (Mi)1≤i≤l

)

:=
⋃

p∈N0

Up(S),

and denote by MB (MM) the set consisting of those tuples ~x ∈ Orb(S; (Bi)1≤i≤l) ∩ Z

(~x ∈ Orb(S; (Mi)1≤i≤l) ∩ Z) for which Proji,T(~x) ∈ Êi, i ∈ W. In the sequel, we shall
denote by Di (D) either Bi or Mi (B or M) and, in the case that l = 1, we shall also write
Orb(S;B1), Orb(S;M1) and Orb(S;D1) in place of Orb(S; (Bi)1≤i≤l), Orb(S; (Mi)1≤i≤l)
and Orb(S; (Di)1≤i≤l), respectively. A similar terminological agreement will be used in
the case where the set W is a singleton.

Motivated by some results from the theory of abstract higher-order differential equa-
tions with integer order derivatives, obtained in the usual way, i.e. converting higher-order
equations into first order matrix differential equations by introducing the first derivative,
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the second derivative, ... , the (n − 1)th derivative of the unknown E-valued function as
a part of a new enlarged unknown En-valued function (cf. [51, pp. 79-83], [20, Section
5.7], [46, Theorem 5.6.3] and Theorem 3 below for further information), we would like to
propose the following definition (concerning the abstract multi-term differential equations
with Caputo fractional derivatives, we do not yet know what the ideal option for work is).

Definition 2. The abstract Cauchy problem (3) is said to be:

(i) (D,P)-hypercyclic iff there exist a tuple ~x ∈ MD ∩ Ẽ and a function u(·; ~x) ∈ P(~x)

such that {((Dβ0
s u(s; ~x))s=t, (D

β1
s u(s; ~x))s=t, ···, (D

βT−1
s u(s; ~x))s=t) : t ≥ 0} is a dense

subset of Ě; such a vector is called a (D,P)-hypercyclic vector of problem (3).

(ii) D-hypercyclic iff it is (D,S)-hypercyclic; any (D,S)-hypercyclic vector of problem
(3) will be also called a D-hypercyclic vector of problem (3).

(iii) DP-topologically transitive iff for every pair of open non-empty subsets U and V of
ET satisfying U ∩ Ẽ 6= ∅ and V ∩ Ě 6= ∅, there exist a tuple ~x ∈ MD, a function
u(·; ~x) ∈ P(~x) and a number t ≥ 0 such that ~x ∈ U ∩ Ẽ and

((Dβ0
s u(s; ~x))s=t, (D

β1
s u(s; ~x))s=t, · · ·, (D

βT−1
s u(s; ~x))s=t) ∈ V ∩ Ě.

(iv) D-topologically transitive iff it is DS-topologically transitive.

(v) DP-topologically mixing iff for every pair of open non-empty subsets U and V of ET

satisfying U ∩Ẽ 6= ∅ and V ∩Ě 6= ∅, there exists a number t0 ≥ 0 such that, for every
number t ≥ t0, there exist a tuple ~xt ∈ MD and a function u(·; ~xt) ∈ P(~xt) such that

~xt ∈ U ∩ Ẽ and ((Dβ0
s u(s; ~xt))s=t, (D

β1
s u(s; ~xt))s=t, · · ·, (D

βT−1
s u(s; ~xt))s=t) ∈ V ∩ Ě.

(vi) D-topologically mixing iff it is DS-topologically mixing.

In our previous study [32], we have seen that there is no substantial difference in
the analysis of hypercyclic and topologically mixing properties of problems (DFP)R and
(DFP)L; the analysis carried out in this paper basically shows the same thing. If Q(~x)
is any non-empty subset consisting of solutions of problem (DFP)R with the initial value
~x, then we denote by Qs(~x) the set Q(~x) ∩ Cm−1([0,∞) : E) (~x ∈ Z). We introduce
the notions of (D,Ps)-hypercyclicity, DPs-topological transitivity and DPs-topologically
mixing property of problem (DFP)R in the same way as in Definition 2, with the sets P(~x)
and P(~xt) replaced respectively by Ps(~x) and Ps(~xt). Finally, we say that the problem
(DFP)R is D-hypercyclic (D-topologically transitive, D-topologically mixing) iff it is DSs-
hypercyclic (DSs-topologically transitive, DSs-topologically mixing).

Remark 1.

(i) We have presented only one way for the computing the orbit Orb(S; (Di)1≤i≤l), some
other possibilities will take more space than we actually have here. In the case where T ≥ 2,
the orbit Orb(S; (Di)1≤i≤l) can have a very unpleasant form and it is very difficult to say,
in general, whether there exists an element of Orb(S; (Di)1≤i≤l) that is a (D,P)-hypercyclic
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vector of problem (3). On the other hand, in the definition of MD we can take any non-
empty subset S′ of ET instead of Orb(S; (Di)1≤i≤l). But this is a very special case of our
definition with D = B, l = 1, b1 = 1 and B1 : E

T → ET being the identity mapping. It is
also worth noting that the continuous version of Herrero-Bourdon theorem [19, Theorem
7.17, pp. 190-191] suggests us to define the set MD as the union of those vectors ~x ∈
span{Orb(S; (Di)1≤i≤l)} ∩ Z for which Proji,T(~x) ∈ Êi, i ∈ W. If we define MD in such a
way, then the assertion of Theorem 2 below continues to hold, the assertion of Theorem 1
continues to hold with the mapping P′(·) = cP(·/c) replaced by P(·), while the assertion
of Theorem 3 continues to hold if we assume that { ~xλ : λ ∈ Ω} ⊆ Orb(S; (Di)1≤i≤l). Also
note that the notion introduced in [32, Definition 3, Definition 10] is a special case of the
notion introduced in Definition 2 and that of [30, Theorem 2.4] can be formulated in our
context.

(ii) Let 0 ≤ β ≤ α < 2, and let the requirements of [32, Theorem 5] hold (in (iii) and in
the sequel of (ii) of this remark, we will use almost same terminology as in [32]; the only
exception will be the notation used to denote the space Ẽ). Applying Lemma 1 (cf. also the

asymptotic expansion formulae [7, (1.26)-(1.28)]), we get limt→+∞
tα−βEα,α−β+1(λ

αtα)
Eα(λαtα) =

λβ−α, λ ∈ C+ and limt→+∞ tα−βEα,α−β+1(λ
αtα) = 0, λ ∈ Ω0,−. Using the identity

Dβ
t Eα(λ

αtα) = λαtα−βEα,α−β+1(λ
αtα), t ≥ 0, λ ∈ C \ (−∞, 0] (which can be proved di-

rectly, or by applying (4) and [7, (1.25)]) and [32, Lemma 4], we may conclude by a careful
inspection of the proof of [32, Theorem 5] that the problem (DFP)L is DP-topologically

mixing, provided that ~β = (β, β), W = {1}, Ê1 = span{f(λα) : λ ∈ Ω}, Ẽ = Ê1 × {0},
Ě = {(z, z) : z ∈ Ê1}, Ê1 × {0} ⊆ Orb(S; (Di)1≤i≤l) and P((

∑m
i=1 αif(λ

α
i ), 0)) =

{
∑m

i=1 αiEα(·
αλα

i )f(λ
α
i )} (m ∈ N, αi ∈ C, λi ∈ Ω for 1 ≤ i ≤ m). This, in turn, implies

that the problem (DFP)R is DPs-topologicially mixing (the only thing worth noticing here
is that, given y and z as in the proof of [32, Theorem 5], the vector ~xt can be chosen in
such a way that ~xt = (y +

∑m
j=1

γj

λ̃j
β
Eα(λ̃j

α
tα)

f(λ̃j
α
), 0), t > 0 is sufficiently large). This

is a slight improvement of above-mentioned result, which can be applied in the analysis
of fractional analogons of the linearized Boussinesq equation (σ2∆ − 1)utt + γ2∆u = 0
on symmetric spaces of non-compact type (cf. [35] for the notion, as well as [29, Ex-
ample 2.5(i)-(ii)] and [32, Example 7-Example 8] for some other applications). Finally,
note that Definition 2 and [32, Definition 3, Definition 10] have some advantages over
[29, Definition 2.2] and [31, Definition 2.2]. For example, an application of [32, Theo-
rem 5] shows that the abstract Cauchy problems (DFP)R and (DFP)L, with 1 < α < 2,
E = L2(R), B = I and A = Ac being the bounded perturbation of the one-dimensional
Ornstein-Uhlenbeck operator from [29, Example 2.5(iii)], are both topologically mixing in
the sense of [32, Definition 3]. The topologically mixing property of corresponding prob-
lems in the sense of [29, Definition 2.2] can be proved only in the case where 0 < α ≤ 1,
cf. [13] and [29].

(iii) Consider the situation of [32, Theorem 11] with the second equality in [32, (10)] re-
placed by

lim
t→+∞

D
βj

t Hi(λ, t) = 0, λ ∈ Ω−, 0 ≤ j ≤ T− 1,
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and with the first equality in [32, (10)] replaced by

lim
t→+∞

∣

∣F (λ, t)
∣

∣ = +∞, λ ∈ Ω+, 0 ≤ j ≤ T− 1,

where a > 0 and F : Ω+ × (a,+∞) → C is some function. Set E0 := span{f(λ) : λ ∈ Ω}.
If we suppose additionally that there exist complex numbers Gβ0 , · · ·, GβT−1

such that

lim
t→+∞

D
βj

t Hi(λ, t)

F (λ, t)
= Gβj

, λ ∈ Ω+, 0 ≤ j ≤ T− 1,

then the proof of [32, Theorem 11] shows that the abstract Cauchy problem (3) is DP-

topologically mixing, provided that W = {i}, Êi = E0, Ẽ = {~x ∈ ET : Proji,T(~x) ∈

E0 and Projj,T(~x) = 0 for j ∈ NT \ {i}}, Ě = {(Gβ0z, · · ·, GβT−1
z) : z ∈ Ê1}, Ẽ ⊆

Orb(S; (Dj)1≤j≤l) and P((
∑m

j=1 αjf(0, · · ·, λj , · · ·, 0)) = {
∑m

j=1 αjHi(λj , ·)f(λj)} (m ∈ N,
αj ∈ C, λj ∈ Ω for 1 ≤ j ≤ m), where λj appears on i-th place starting from zero
(there exists a great number of concrete examples in which the above conditions hold with
~β being the constant multiple of (1, 1, · · ·, 1), see e.g. our analysis of topologically mixing
properties of strongly damped Klein-Gordon equation [32, Example 13]; we refer the reader
to Theorem 3 and Example 1 for the case in which ~β is not of the form described above).
Also, it should be noted that the comments from (ii) and (iii) can be formulated in the light
of [29, Remark 1(iii)] and [31, Remark 1;3.], and the proof of [32, Theorem 11] implies
that

Dβl
t Hi(λ, t) = L−1

(

zαn+βl−i−1 +
∑

j∈Di

fn(λ)
fj(λ)

zαj+βl−i−1 − χDi(0)fn(λ)z
α+βl−i−1

zαn +
∑n−1

j=1
fn(λ)
fj(λ)

zαj − fn(λ)zα

)

(t),

for t ≥ 0, λ ∈ Ω, l ∈ N
0
T−1, dβle < i− 1, and

Dβl
t Hi(λ, t) = L−1

(

−
∑

j∈Nn−1\Di

fn(λ)
fj(λ)

zαj+βl−i−1 − fn(λ)z
α+βl−i−1

(

χDi(0)− 1
)

zαn +
∑n−1

j=1
fn(λ)
fj(λ)

zαj − fn(λ)zα

)

,

for t ≥ 0, λ ∈ Ω, l ∈ N
0
T−1, dβle ≥ i− 1.

(iv) As indicated in [32], it is much better to introduce the notions of D-hypercyclicity, D-
topological transitivity and D-topologically mixing property of problem (P) with the set Z
than with Zuniq (the choice of strong solutions in Definition 2 is almost inevitable; cf. [32]).
Consider now, for the sake of brevity, the abstract Cauchy problem (3). If Z = Zuniq, then

we define the operator T (t) : MD → ET by T (t)~x := ((Dβ0
s u(s; ~x))s=t, (D

β1
s u(s; ~x))s=t, · ·

·, (DβT−1
s u(s; ~x))s=t) (t ≥ 0), where u(·; ~x) denotes the unique strong solution of problem

(3) with the initial value ~x. Let (On)n∈N be an open base of the topology of ET (On 6= ∅, n ∈
N). If Ẽ = Ě = ET and if we denote by HCD the set which consists of all D-hypercyclic
vectors of problem (3), then we have the obvious equality HCD =

⋂

n∈N

⋃

t≥0 T (t)
−1(On);

cf. also [18, Theorem 1], [8, Proposition 4] and [32]. Even in the framework of Fréchet
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spaces, we cannot conclude from the above that D-topological transitivity of problem (3)
implies its D-hypercyclicity (in this place, it is worth noting that there exists a continuous
linear operator on the space ϕ =

⊕

n∈NK that is topologically transitive but not hypercyclic
[9, Theorem 2.2], so that the connections between D-hypercyclicity and D-topological tran-
sitivity seem to be more complicated in non-metrizable locally convex spaces).

It is worth noting that the assertion of [18, Theorem 2] admits an adequate refor-
mulation in our context. Before we state the corresponding theorem, it would be very
helpful to introduce the sets [(Bi)1≤i≤l]p(S) and [(Mi)1≤i≤l]p(S) (p ∈ N0) recursively
by [(Bi)1≤i≤l]0(S) := [(Mi)1≤i≤l]0(S) := S, [(Bi)1≤i≤l]p+1(S) := {Bi( ~x1, · · ·, ~xbi) : 1 ≤
i ≤ l, ~x1 ∈ [(Bi)1≤i≤l]j1(S), · · ·, ~xbi ∈ [(Bi)1≤i≤l]jbi (S) for some numbers j1, · · ·, jbi ∈
Np with j1 + · · · + jbi = p}, [(Mi)1≤i≤l]p+1(S) := Up+1(S) \ Up(S), p ∈ N0. Then
the set [(Bi)1≤i≤l]p(S) ([(Mi)1≤i≤l]p(S)) contains all the elements from Orb(S; (Bi)1≤i≤l)
(Orb(S; (Mi)1≤i≤l)) obtained by n applications of operators B1, ···, Bl (M1, ···,Ml), totally
counted, and the following holds:

Orb
(

S; (Bi)1≤i≤l

)

=
⋃

p∈N0

[

(Bi)1≤i≤l

]

p
(S), Orb

(

S; (Mi)1≤i≤l

)

=
⋃

p∈N0

[

(Mi)1≤i≤l

]

p
(S).

(5)
Suppose now that c ∈ K \ {0}, and B′

i : (E
T)bi → ET and M ′

i : E
T → E satisfy

B′
i

(

c ~x1, · · ·, c ~xbi
)

= cBi

(

~x1, · · ·, ~xbi
)

,

provided that ~x1, · · ·, ~xbi ∈ ET, 1 ≤ i ≤ l, and

(

cx2, · · ·, cxT,M
′
i(cx1, cx2, · · ·, cxT)

)

= c
(

x2, · · ·, xT,Mi(x1, x2, · · ·, xT)
)

,

provided that (x1, x2, · · ·, xT) ∈ ET, 1 ≤ i ≤ l. Define Sc := {c~x : ~x ∈ S}. Then we can
inductively prove that [(B′

i)1≤i≤l]p(Sc) = {c~x : ~x ∈ [(Bi)1≤i≤l]p(S)} and [(M ′
i)1≤i≤l]p(Sc) =

{c~x : ~x ∈ [(Mi)1≤i≤l]p(S)} for all p ∈ N0, so that (5) implies

{

c~x : ~x ∈ Orb
(

S; (Bi)1≤i≤l

)

}

= Orb
(

Sc; (B
′
i)1≤i≤l

)

and
{

c~x : ~x ∈ Orb
(

S; (Mi)1≤i≤l

)

}

= Orb
(

Sc; (M
′
i)1≤i≤l

)

.

Now it is very simple to prove the following

Theorem 1. Set D′ := (Ẽ, Ě, Sc, (D
′
i)1≤i≤l, {Êi : i ∈ W}, ~β) and P′ : Z → P (∪~x∈ZS(~x)),

by P′(~x) := cP(~x/c), ~x ∈ Z. Then the abstract Cauchy problem (3), resp. (DFP)R, is D-
hypercyclic ((D,P)-hypercyclic, DP-topologically transitive, resp. DPs-topologically tran-
sitive, D-topologically transitive, DP-topologically mixing, resp. DPs-topologically mix-
ing, D-topologically mixing) iff the abstract Cauchy problem (3), resp. (DFP)R, is D′-
hypercyclic ((D′,P′)-hypercyclic, D′

P′-topologically transitive, resp. DP′

s
-topologically tran-

sitive, D′-topologically transitive, D′
P′-topologically mixing, resp. D′

P′

s
-topologically mix-

ing, D′-topologically mixing).
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Suppose now that X is another locally convex space over the field of K and φ : X → E
is a linear topological homeomorphism. Then the mapping φT : XT → ET, defined in the
very obvious way, is a linear topological homeomorphism between the spaces XT and ET.
Define Sφ := (φT)−1(S) and the closed linear operators AX

i onX byD(AX
i ) := φ−1(D(Ai))

and AX
i x = y iff Ai(φx) = φy (0 ≤ i ≤ n). For any E-valued function t 7→ u(t), t ≥ 0

we define the X-valued function t 7→ uφ(t), t ≥ 0 by uφ(t) := φ−1(u(t)), t ≥ 0. Then it
is easily verified that the Caputo fractional derivative Dα

t u(t) is defined for t ≥ 0 iff the
Caputo fractional derivative Dα

t uφ(t) is defined for t ≥ 0. If this is the case, then we have
Dα

t uφ(t) = φ−1(Dα
t u(t)), t ≥ 0. Using this fact, we can easily prove that the function t 7→

u(t), t ≥ 0 is a strong solution of problem (P) with the initial value ~x = (x1, · · ·, xT) ∈ ET

iff the function t 7→ uφ(t), t ≥ 0 is a strong solution of problem (P)φ with the initial value
~xφ := (φ−1(x1), · · ·, φ

−1(xT)) ∈ XT, where the abstract Cauchy problem (P)φ is defined by
replacing all the operators Ai in the problem (P) with the operators AX

i (0 ≤ i ≤ n). If

we denote by Zφ (Zφ
uniq) the set consisting of those tuples ~xφ ∈ XT for which there exists

a (unique) strong solution of the problem (P)φ, then the above implies Zφ = (φT)−1Z

(Zφ
uniq = (φT)−1Zuniq).

Define the mappings Bi,φ : (XT)bi → XT and Mi,φ : XT → X by

Bi,φ

(

~x1, · · ·, ~xbi
)

:=
(

φT
)−1
(

Bi

(

φT ~x1, · · ·, φ
T ~xbi

)

)

and Mi,φ(~x) := φ−1
(

Mi(φ
T~x)
)

,

for any ~x1, · · ·, ~xbi , ~x ∈ XT, 1 ≤ i ≤ l, as well as the mappings Pφ : Zφ → P ({S(~xφ) : ~xφ ∈
Zφ}) and (Pφ)s : Zφ → P ({S(~xφ) : ~xφ ∈ Zφ}) by Pφ((φ

T)−1~x) := {uφ(·) : u(·) ∈ P(~x)}
and (Pφ)s((φ

T)−1~x) := {uφ(·) : u(·) ∈ Ps(~x)} (~x ∈ Z), respectively. Set

Dφ :=
(

(φT)−1(Ẽ), (φT)−1(Ě), Sφ, (Di,φ)1≤i≤l, {φ
−1(Êi) : i ∈ W}, ~β

)

.

Making use of the argumentation similar to that used in the proof of [18, Theorem 3], we
can show that

φT
(

Orb
(

Sφ; (Di,φ)1≤i≤l

))

= Orb
(

S; (Di)1≤i≤l

)

.

Now it is quite simple to prove the following conjugacy lemma for abstract degenerate
multi-term fractional differential equations (cf. [24, Lemma 1.4] for a pioneering result in
this direction):

Theorem 2. The abstract Cauchy problem (3), resp. (DFP)R, is D-hypercyclic ((D,P)-
hypercyclic, DP-topologically transitive, resp. DPs-topologically transitive, D-topologically
transitive, DP-topologically mixing, resp. DPs-topologically mixing, D-topologically mix-
ing) iff the abstract Cauchy problem (3)φ, resp. (DFP)R,φ, is Dφ-hypercyclic ((Dφ,Pφ)-
hypercyclic, DφPφ

-topologically transitive, resp. Dφ(Pφ)s
-topologically transitive, Dφ-topo-

logically transitive, DφPφ
-topologically mixing, resp. Dφ(Pφ)s

-topologically mixing, Dφ-

topologically mixing).

We continue by stating the following theorem.
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Theorem 3. Let αi = i for all i ∈ Nn, let Ω be an open non-empty subset of K = C

intersecting the imaginary axis, and let f : Ω → E be an analytic mapping satisfying

Pλf(λ) =

(

λαnB +

n−1
∑

i=0

λαiAi

)

f(λ) = 0, λ ∈ Ω. (6)

Set ~xλ := [f(λ) λf(λ) · · · λn−1f(λ)]T (λ ∈ Ω), E0 := span{ ~xλ : λ ∈ Ω}, Ẽ := Ě := E0,
~β := (0, 1, · · ·, n − 1), W := Nn and Êi := span{f(λ) : λ ∈ Ω}, i ∈ W. Let ∅ 6= S ⊆ En

be such that E0 ⊆ Orb(S; (Di)1≤i≤l). Then ~xλ ∈ MD, λ ∈ Ω and the abstract Cauchy
problem (3) is DP-topologically mixing provided that

∑q
j=1 e

λj ·f(λj) ∈ P(
∑q

j=1 ~xλj
) for

any
∑q

j=1 ~xλj
∈ E0 (q ∈ N; λj ∈ Ω, 1 ≤ j ≤ q).

Proof. We shall content ourselves with sketching it. Consider the operator matrices

A :=













0 I 0 · · · 0
0 0 I · · · 0
· · · · · · ·
0 0 0 · · · I

−A0 −A1 −A2 · · · −An−1













and

B :=













I 0 0 · · · 0
0 I 0 · · · 0
· · · · · · ·
0 0 0 · · I 0
0 0 0 · · · B













,

acting on En with their maximal domains. Then the operator matrix A is closable, the
operator matrix B is closed and, due to (6), A ~xλ = λB ~xλ, λ ∈ Ω. Furthermore, if we
suppose that Ω0 is an arbitrary open connected subset of Ω which admits a cluster point
in Ω, then the linear span of the set { ~xλ : λ ∈ Ω0} is dense in Ẽ. Now the statement
follows similarly as in the proof of [32, Theorem 5].J

Remark 2. (i) The assertions of [32, Theorem 5, Theorem 11] continue to hold, with
appropriate modifications, in the setting of separable sequentially complete locally
convex spaces. The conclusion of Theorem 3 remains true if we consider the equation
(3) with the same initial conditions and with the term B dn

dtnu(t) replaced by dn

dtnBu(t)
(cf. [32, Remark 12(i)]).

(ii) Suppose α1 ∈ (0, 1) and αi = iα1, i ∈ Nn. Then the argumentation used in the
proofs of Theorem 3 and [32, Theorem 5] enables one to deduce some results about
D-topologically mixing properties of the problem

B
(

Dα1
t

)n
u(t)+

n−1
∑

i=0

Ai

(

Dα1
t

)i
u(t) = 0, t ≥ 0,

(

(

Dα1
t

)j
u(t)

)

t=0
= uj , j = 0, · · ·, n − 1,

(7)
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and its analogons obtained by replacing, optionally, some of the terms B(Dα1
t )nu(t)

and Ai(D
α1
t )iu(t) by (Dα1

t )nBu(t) and (Dα1
t )iAiu(t), respectively (0 ≤ i ≤ n − 1).

The case α1 ∈ (1, 2) can be considered quite similarly.

(iii) It should be emphasized that Theorem 3 cannot be so simply reformulated in the
case where there exists an index i ∈ Nn such that αi /∈ N. Speaking matter-of-
factly, probably the only way to exploit (6) is to find analytic functions Fi : Ω → C

(0 ≤ i ≤ mn − 1) such that the equation (3), equipped with the initial conditions
u(i)(0) = Fi(λ)f(λ), 0 ≤ i ≤ mn − 1, has a strong solution of the form u(t;λ) =
G(λ, t)f(λ), t ≥ 0 (λ ∈ Ω), where

λ−αnDαn
t G(λ, t) = · · · = λ−α1Dα1

t G(λ, t) = G(λ, t), t ≥ 0 (λ ∈ Ω). (8)

By [16, Theorem 7.2], the validity of (8) would imply that for each t ≥ 0, λ ∈ Ω and
i ∈ Nn, we have:

G(λ, t) = F0(λ)Eαi

(

λαitαi
)

+

mi−1
∑

k=1

Fk(λ)

∫ t

0

(t− s)k−1

(k − 1)!
Eαi

(

λαisαi
)

ds,

i.e., that for each t ≥ 0, λ ∈ Ω and i ∈ Nn, we have:

G(λ, t) =
∞
∑

l=0

mi−1
∑

k=0

λαilFk(λ)
tαil+k

Γ(αil + k + 1)
.

The function t 7→ G(λ, t)−F0(λ), t ≥ 0 behaves asymptotically like λα1F0(λ)gα1+1(t)
as t → 0+, so the number α1 cannot be an element of the interval (0, 1) (to see
this, consider the asymptotic behaviour of function t 7→ G(λ, t) − F0(λ), t ≥ 0 as
t → 0+, with the number α1 replaced by α2). Considering the asymptotic behaviour
of function t 7→ G(λ, t) − F0(λ) − tF1(λ), t ≥ 0 (t 7→ G(λ, t) − F0(λ) − tF1(λ) −
(t2/2)F2(λ), t ≥ 0; · · ·) as t → 0+, we obtain similarly that α1 cannot be an element
of the interval (1, 2) ((2, 3); · · ·). Consequently, α1 ∈ N. Ignoring the first order α1,
and repeating the same procedure with the order α2, we get that α2 ∈ N. A similar
line of reasoning shows that α3, · · ·, αn ∈ N.

(iv) Hypercyclic and topologically mixing properties of higher-order non-degenerate dif-
ferential equations with integer order derivatives have been considered in a series of
recent papers by using the usual reduction into first order matrix differential equations
(cf. [11]-[12], [26, Section 3.2] and the references therein). To the best knowledge
of the author, Theorem 3 is new and not considered elsewhere within the framework
of the theory of abstract degenerate differential equations. It should be noted that we
can prove a slight extension of this theorem by using the analyses from [29, Remark
1(iii)] and [31, Remark 1;3.] (cf. also Remark 1(iii) and Example 1(i) below).

(v) In [32], we have recently reconsidered the well known assertion of S. El Mourchid
[17, Theorem 2.1] concerning the connection between the imaginary point spectrum
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and hypercyclicity of strongly continuous semigroups. An analogon of [17, Theorem
2.1] for abstract degenerate differential equations of first order has been formulated
in [32, Theorem 18]. On the basis of this result, we can state some new facts about
D-topologically mixing properties of problem (3) considered in Theorem 3, provided
that the equation (6) holds for all values of complex parameter λ belonging to some
subinterval of imaginary axis. Details are left to the interested reader.

We close the paper by providing some illustrative examples.

Example 1. (i) Consider the equation (3) with αi = i, i ∈ Nn and with the operator
A0 = A replaced by −A. Although it may seem contrary, Theorem 3 is not so easily
comparable to [32, Theorem 11] in this case. For example, in the situation of [32,
Example 14] with P (z) = −z and α = 1, the assumptions of [32, Theorem 11]
are satisfied with E := L2(R), c1 > c > b

2 > 0, A := (c − c1)I, B := Ac − A,
A1 := −Ac + cI, where the operator Ac is defined by D(Ac) := {u ∈ L2(R) ∩
W 2,2

loc (R) : Acu ∈ L2(R)} and Acu := u′′ + bxu′ + cu, u ∈ D(Ac), Ω := {λ ∈ C :

λ 6= 0, λ 6= c− c1, <λ < c− b
2}, f(λ) := g1(λ) := F−1(e−

ξ2

2b ξ|ξ|−(2+λ−c
b

))(·), λ ∈ Ω

or f(λ) := g2(λ) := F−1(e−
ξ2

2b |ξ|−(1+λ−c
b

))(·), λ ∈ Ω (here F−1 denotes the inverse
Fourier transform on the real line), f1(λ) := (c−c1)/(c−λ) and f2(λ) := (c−c1)/(λ−
(c− c1)) (λ ∈ Ω). In particular, there is no open connected subset Ω′ of Ω satisfying
Ω′∩ iR 6= ∅ and (λ2/(f2(λ))+λ/(f1(λ))−1)Af(λ) = 0, λ ∈ Ω′, i.e., the equation (6)
does not hold with this choice of f(λ). This is quite predictable because the equation
(6), with the set Ω and the function f(·) replaced respectively by ′Ω and ′f(·) therein
(and in our further analysis, for the sake of consistency of notation), is equivalent
to say that (λ2−λ)Ac

′f(λ) = (λ2(c− c1)−λc+(c− c1))
′f(λ), λ ∈ ′Ω. Denote by Λ

the set of all complex numbers z ∈ iR \ {0} for which there exists δ(z) > 0 such that
{0, 1}∩L(z, δ(z)) = ∅, and for each λ ∈ L(z, δ(z)) we have <(c− c1−

c1
λ−1 +

c−c1
λ2−λ

) <

c− b
2 . Recalling that {z ∈ C : <z < c− b

2} ⊆ σp(Ac), it readily follows that Theorem
3 can be also applied here with ′Ω :=

⋃

z∈Λ L(z, δ(z)) and ′fi(λ) := gi(c− c1 −
c1
λ−1 +

c−c1
λ2−λ

), λ ∈ ′Ω (i = 1, 2), producing slightly different results from those obtained by

applying [32, Theorem 11] (with Ê = Ě = span{[′fi(λ) λ ′fi(λ)]T : λ ∈ ′Ω, i = 1, 2},
the subspace of E2 whose first and second projections equal to E; cf. [13] and [29]).
On the other hand, there exists a great number of very simple (non-)degenerate
equations where we can apply Theorem 3 but not [32, Theorem 11]. Consider, for
example, the equation u′′′(t) + (c2 −Ac)u

′(t) + c1u(t) = 0, t ≥ 0, where c1 ∈ C \ {0}
and c2 ∈ C. Using the same arguments as in the analysis carried out in [31, Remark
1(vi)] (cf. also [26, Theorem 3.3.9, Remark 3.3.10(v)]), with c3 = 0, we obtain that
there do not exist an open connected subset Ω− of C and an index i ∈ {0, 1, 2} such
that the second equality in [32, (10)] holds. Contrary to this, there exist t > 0 and
ε > 0 such that the equation (6) holds with Ω = L(it, ε).

(ii) Suppose Ω is an open non-empty subset of K = C intersecting the imaginary axis,
f : Ω → E is an analytic mapping, g : Ω → C \ {0} is a scalar-valued mapping and
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Af(λ) = g(λ)f(λ), λ ∈ Ω. Let Pj(z) be non-zero complex polynomials (j ∈ N
0
n), and

let

λnPn(g(λ)) +

n−1
∑

j=0

λjPj(g(λ)) = 0, λ ∈ Ω.

Then the equation (6) holds with B := Pn(A) and Aj := Pj(A), j ∈ N
0
n−1. If,

additionally, the presumption
∑n−1

j=0 〈x
∗
j , λ

jf(λ)〉 = 0, λ ∈ Ω for some continuous

linear functionals x∗j ∈ E∗ given in advance (j ∈ N
0
n−1) implies x∗j = 0 for all

j ∈ N
0
n−1, then the space E0 from Theorem 3 equals to En (cf. [11, Theorem 3.1]

for a concrete example of this type with n = 3). Finally, note that Theorem 3 can be
sucessfully applied in the analysis of topologically mixing properties of a wide class
of partial differential equations in Fréchet function spaces (see e.g. [26, Example
3.1.29]).
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Novi Sad, Serbia
E-mail: marco.s@verat.net

Received 17 January 2015
Accepted 19 March 2015


