
Azerbaijan Journal of Mathematics
V. 6, No 1, 2016, January
ISSN 2218-6816

The Problem of Optimization With Control of Mobile
Sources For a Linear Parabolic Equation
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Abstract. In this paper, we consider a problem of optimal control of mobile sources for a linear
parabolic equation. The variation method is applied to this problem. The necessary conditions for
optimality are established in the form of the pointwise and integral maximum principles.
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1. Introduction

Theoretical formulation of the problem of optimal control of mobile sources for systems
with distributed parameters was first given in [1, 2] where numerous examples of systems
with mobile sources of different physical nature are given and the main features of systems
with movable control are revealed, which make it difficult or impossible to study them by
known methods. One of the main features of the systems of optimal control of mobile
sources is that they are non-linear with respect to the equation which governs the law of
the motion of the source. This is particularly clear when formulating the control problem
in terms of the moment problem where the latter becomes nonlinear. Thus, the moment
method, widely used for finding the optimal control in linear systems with distributed and
lumped parameters, is unsuitable for systems with control of mobile sources.

Optimal control problems of mobile sources have many important applications. Such
problems are encountered in the process of optimization of thermal physics, diffusion,
filtration, etc. In the study of these problems there arise a number of difficulties associated
with their ill-posedness and nonlinearity. In [3, 5-7], the problem of optimal control of
pointwise sources for parabolic equation is considered provided that the controls are only
the intensity of motionless sources. In [4], questions of controllability of linear systems with
the generalized influence are investigated. In [8-10], a variation method for solving the
problem of optimal control of mobile sources for systems described by the heat equation
and systems of ordinary differential equations is considered.
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In this paper we consider the variation method for solving the optimal control problem
for systems described by a parabolic equation. We prove existence and uniqueness theorem
for the solution of this problem, give sufficient conditions for Frechet differentiability of
the performance criterion and expression for its gradient, and necessary conditions for
optimality in the form of the pointwise and integral maximum principles.

2. Problem Statement

Let l > 0, T > 0 be the given numbers, 0 ≤ x ≤ l, 0 ≤ t ≤ T , Ωt = (0, l) × (0, t),
Ω = ΩT , L2(Ω) be the Banach space of all Lebesgue-measurable functions on Ω, with the

finite norm ‖u‖L2(Ω) =
(∫

Ω u
2dx
)1/2

. If Ω = (a, b) is a segment of the real straight line,
then we write L2(a, b) instead of L2(Ω). In what follows, we will also need the functional
spaces V 1,0

2 (Ω), W 1,0
2 (Ω), W 1,1

2 (Ω) (see, e.g., [5]).

Consider the controlled process defined by the function u(x, t) which satisfies the
parabolic equation

∂u(x, t)

∂t
− a2∂

2u(x, t)

∂x2
=

n∑
k=1

pk(t)δ(x− sk(t)), (x, t) ∈ Ω, (1)

with the boundary and initial conditions

∂u(0, t)

∂x
= 0,

∂u(l, t)

∂x
= 0, 0 < t ≤ T, (2)

u(x, o) = ϕ(x), 0 ≤ x ≤ l, (3)

where a > 0 is a given number, ϕ(x) ∈ L2(0, l) is the a function, δ(·) is the Dirac
function, and p(t) = (p1(t), p2(t), ..., pn(t)) ∈ L2(0, T ;Rn), s(t) = (s1(t), s2(t), ..., sn(t)) ∈
L2(0, T ;Rn) are the control functions.

The pair of functions ϑ = (p(t), s(t)) is called the control. The Hilbert space of the
pairs ϑ = (p(t), s(t)) with the scalar product

< ϑ1, ϑ2 >H=

∫ T

0
[p1(t)p2(t) + s1(t)s2(t)]dt

and norm ‖ϑ‖H =
√
< ϑ, ϑ >H =

√
‖p‖2L2

+ ‖s‖2L2
is denoted for brevity by

H = L2(0, T ;Rn)× L2(0, T ;Rn). In H, we introduce a set of permissible controls

V =
{
ϑ = (p, s) ∈ H : 0 ≤ pi ≤ Ai, 0 ≤ si ≤ Bi ≤ l, i = 1, n

}
, (4)

where Ai > 0, Bi > 0, i = 1, n, are the given numbers, and consider the functional

J(ϑ) =

∫ l

0

∫ T

0
[u(x, t)− ũ(x, t)]2 dxdt+

n∑
k=1

{
α1

∫ T

0
[pk(t)− p̃k(t)]2 dt+
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+α2

∫ T

0
[sk(t)− s̃k(t)]2 dt

}
(5)

where ϑ = (p(t), s(t)) ∈ H; α1, α2 ≥ 0, α1 + α2 > 0 are the given parameters, and
ũ(x, t)) ∈ L2(Ω), ω = (p̃(t), s̃(t)) ∈ H, p̃(t) = (p̃1(t), p̃2(t), ..., p̃n(t)) ∈ L2(0, T ;Rn),
s̃(t) = (s̃1(t), s̃2(t), ..., s̃n(t)) ∈ L2(0, T ;Rn) are the given functions.

We pose the following problem: given the constraints (1)-(3), determine a control
ϑ = (p(t), s(t)) from the set V and the function u(x, t) such that the functional (5)
assumes the least possible value.

3. Existence and uniqueness of the solution

To solve our problem, we will use the following known result.

Theorem 1 ([16]). Let H be a uniformly convex Banach space, V be a closed bounded set
on H, functional I(ϑ) be bounded below and lower semicontinuous on V , and α > 0, β ≥ 1
be the given numbers. Then, there exists a dense subset K of the space H such that for
any ω ∈ K functional Jα(ϑ) = I(ϑ) + α ‖ϑ− ω‖βH reaches its minimum value on the set
V . If β > 1, then the minimum value of the functional Jα(ϑ) on the set V achieved in a
single element.

Definition 1. Determination of the function u(x, t) = u(x, t;ϑ) from the conditions (1)-
(3) under the given control ϑ ∈ V is called a reduced problem. A function u(x, t) ∈ V 1,0

2 (Ω)
which satisfies the integral identity

∫ l

0

∫ T

0

[
−u∂η

∂t
+ a2∂u

∂x

∂η

∂x

]
dxdt =

∫ l

0
ϕ(x)η(x, 0)dx+

n∑
k=1

∫ T

0
pk(t)η(sk(t), t)dt, (6)

∀η = η(x, t) ∈ W 1,1
2 (Ω) with η(x, T ) = 0, is called the generalized solution of the reduced

problem (1)-(3) corresponding to the control ϑ = (p(t), s(t)) ∈ V.
It should be noted that for each control ϑ ∈ V the existence of a unique generalized

solution of the reduced problem (1)-(3) from V 1,0
2 (Ω) follows from the results of [11, p.265-

270]. In the sequel, we will use this fact throughout this paper. The purpose of this work
is to study the optimal control problem (1)-(5). Therefore we will assume in what follows
that the solution of the reduced problem exists and is unique.

Let the conditions (1)-(5) be satisfied. Then, the problem (1)-(5) has at least one
solution. Note that for αj = 0, j = 1, 2, the problem (1)-(5) is incorrect in the classical
sense [13]. However, the following theorem is valid.

Theorem 2. There exists a dense subset K of the space H such that the problem (1)-(5)
has a unique solution for any ω ∈ K and αi > 0, i = 1, 2.
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Proof. Let’s prove the continuity of the functional

J0(ϑ) = ‖u(x, t)− ũ(x, t)‖2L2(Ω) .

Let ∆ϑ = (∆p,∆s) ∈ V be the increment of control on the element ϑ = (p, s) ∈ V
such that ϑ+ ∆ϑ ∈ V . Denote

∆u ≡ ∆u(x, t) = u(x, t;ϑ+ ∆ϑ)− u(x, t, ϑ), u ≡ u(x, t;ϑ),∆sk ≡ ∆sk(t).

It follows from (1)-(3) that the function ∆u is a generalized solution of the boundary
value problem

∂∆u

∂t
= a2∂

2∆u

∂x2
+

n∑
k=1

[(pk + ∆pk)δ(x− (sk + ∆sk))− pkδ(x− sk)],

(x, t) ∈ Ω,
∂∆u(0, t)

∂x
= 0,

∂∆u(l, t)

∂x
= 0, 0 < t ≤ T, (7)

∆u(x, 0) = 0, x ∈ [0, l]. (8)

Let’s prove that the estimate

‖∆u‖
V 1,0
2 (Ω)

≤ c1 ‖∆ϑ‖H (9)

is true for the function ∆u, where c1 ≥ 0 is some constant.
By multiplying both sides of (6) by η = η(x, t) and integrating by parts, we obtain the

relation

∫ l

0

∫ T

0

[
∂∆u

∂t
η + a2∂∆u

∂x

∂η

∂x

]
dxdt =

n∑
k=1

∫ T

0
[pk + ∆pk)η(sk + ∆sk, t)− pkη(sk, t)] dt,

(10)
∀η = η(x, t) ∈W 1,1

2 (Ω) with η(x, T ) = 0.
Let t1, t2 ∈ [0, T ] be such that t1 ≤ t2. We assume in equality (10) that

η(x, t) =

{
∆u(x, t) , t ∈ (t1, t2],
0 , t ∈ [0, t1]

⋃
(t2, T ].

Then, using the method of [12, p.166-168], we obtain the following integral identity:

1

2

∫ l

0
|∆u(x, t)|2

∣∣t=t2
t=t1

dx+ a2

∫ l

0

∫ t

0

∣∣∣∣∂∆u

∂x

∣∣∣∣2 dxdt ∣∣t=t2t=t1
=

=
n∑
k=1

∫ t2

t1

[(pk + ∆pk)∆u(sk + ∆sk, t)− pk∆u(sk, t)] dt. (11)
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Using formulas of finite increments

∆u(sk + ∆sk, t) = ∆u(sk, t) +
∂∆u(s̄k, t)

∂x
∆sk, s̄k = sk + θ∆sk, θ ∈ [0, 1],

for the function ∆u(sk + ∆sk, t), we can rewrite the right-hand side of (11) as follows:

n∑
k=1

∫ t2

t1

[(pk + ∆pk)∆u(sk + ∆sk, t)− pk∆u(sk, t)] dt =

=

n∑
k=1

∫ t2

t1

[
(pk + ∆pk)(∆u(sk, t) +

∂∆u(s̄k, t)

∂x
∆sk)− pk∆u(sk, t)

]
dt =

=
n∑
k=1

∫ t2

t1

[
∂∆u(s̄k, t)

∂x
(pk + ∆pk)∆sk + ∆u(sk, t)∆pk

]
dt.

Considering this relation in (11), we obtain the energy balance equation for the problem
(6)-(8):

1

2
‖∆u(x, t)‖2L2(0,l)

∣∣t=t2
t=t1

+ a2

∥∥∥∥∂∆u(x, t)

∂x

∥∥∥∥2

L2(Ωt)

∣∣t=t2
t=t1

=

n∑
k=1

∫ t2

t1

[(pk + ∆pk)∆sk×

×∂∆u(s̄k, t)

∂x
+ ∆pk∆u(sk, t)]dt, (12)

where s̄k = sk + θ∆sk, θ ∈ [0, 1].
By applying the Cauchy-Bunyakovsky inequality to the right-hand side of (12), we

obtain

1

2
‖∆u(x, t)‖2L2(0,l)

∣∣t=t2
t=t1

+ a2

∥∥∥∥∂∆u(x, t)

∂x

∥∥∥∥2

L2(Ωt)

∣∣t=t2
t=t1
≤

≤
n∑
k=1

[(
‖pk‖L2(t1,t2) + ‖∆pk‖L2(t1,t2)

)
max
t1≤t≤t2

|∆sk(t)|
∥∥∥∥∂∆u(s̄k, t)

∂x

∥∥∥∥
L2(t1,t2)

+

+ ‖∆pk‖L2(t1,t2) ‖∆u(sk, t)‖L2(t1,t2)

]
=

=

n∑
k=1

[(
‖pk‖L2(t1,t2) + ‖∆pk‖L2(t1,t2)

)
‖∆sk(t)‖C[t1,t2]

∥∥∥∥∂∆u(s̄k, t)

∂x

∥∥∥∥
L2(t1,t2)

+

+ ‖∆pk‖L2(t1,t2) ‖∆u(sk, t)‖L2(t1,t2)

]
. (13)

Also, it is not difficult to show that the following inequalities are true:

‖∆u(sk, t)‖L2(t1,t2) ≤ c2 ‖∆u‖V 1,0
2 (Ω)

,
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∥∥∥∥∂∆u(s̄k, t)

∂x

∥∥∥∥
L2(t1,t2)

≤ c3 ‖∆u‖V 1,0
2 (Ω)

,

where c2 ≥ 0, c3 ≥ 0 are some constants. Then, the right-hand side of inequality (13) may
be bounded from above:

1

2
‖∆u(x, t)‖2L2(0,l)

∣∣t=t2
t=t1

+ a2

∥∥∥∥∂∆u(x, t)

∂x

∥∥∥∥2

L2(Ωt)

∣∣t=t2
t=t1
≤ c4 ‖∆ϑ‖L2(t1,t2) ‖∆u‖V 1,0

2 (Ω)
, (14)

for ‖∆ϑ‖L2(t1,t2) → 0, where c4 > 0 is some constant. Proceeding as in [12, p.166-168], for
an arbitrary t ∈ [0, T ], we decompose the segment [0, t] into a finite number of subsegments
on each of which inequality (14) is satisfied. By summing up the resulting inequalities for
each subsegment, we obtain

1

2
‖∆u(x, t)‖2L2(0,l) + a2

∥∥∥∥∂∆u(x, t)

∂x

∥∥∥∥2

L2(ΩT )

≤ c4 ‖∆ϑ‖H ‖∆u‖V 1,0
2 (Ω)

,

whence the inequality (9) follows. Then, ‖∆u‖
V 1,0
2 (Ω)

→ 0 for ‖∆ϑ‖H → 0. It follows by

theorem of traces [14] that ‖∆u(x, t)‖L2(Ω) → 0 for ‖∆ϑ‖H → 0.
The increment of the functional J0(ϑ) can be represented as

J0(ϑ+ ∆ϑ)− J0(ϑ) = 2

∫ l

0

∫ T

0
[u(x, t)− ũ(x, t)] ∆u(x, t)dxdt+ ‖∆u(x, t)‖2L2(Ω) .

The continuity of the functional J0(ϑ) follows from this and the fact that ‖∆u(x, t)‖L2(Ω) →
0 for ‖∆ϑ‖H → 0.

The functional J0(ϑ) is bounded from below and, by virtue of the above proven fact, is
continuous in V . Additionally, H is a uniformly convex reflexive Banach space [15]. Then,
it follows from Theorem 1 that there exists a dense subset K of the space H such that for
any ω = (p̃(t), s̃(t)) ∈ H the problem (1)-(5) has a unique solution for αi > 0, i = 1, 2 . J

4. Necessary optimality conditions

Let ψ = ψ(x, t) be the generalized solution from V 1,0
2 (Ω) of the problem conjugate to

(1)-(3):

∂ψ(x, t)

∂t
+ a2∂

2ψ(x, t)

∂x2
= −2[u(x, t)− ũ(x, t)], (x, t) ∈ Ω, (15)

∂ψ(0, t)

∂x
= 0,

∂ψ(l, t)

∂x
= 0, t ∈ [0, T ), (16)

ψ(x, T ) = 0, x ∈ [0, `]. (17)
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Definition 2. A function ψ(x, t) ∈ V 1,0
2 (Ω), which satisfies the integral identity

∫ l

0

∫ T

0

(
ψ
∂η1

∂t
+ a2∂ψ

∂x

∂η1

∂x

)
dxdt = 2

∫ l

0

∫ T

0
[u(x, t)− ũ(x, t)]η1(x, t)dxdt, (18)

∀η1 = η1(x, t) ∈W 1,1
2 (Ω) with η1(x, 0) = 0, is called the generalized solution of the problem

(15)-(17) corresponding to the control ϑ = (p(t), s(t)) ∈ V.
The conjugate problem (15)-(17) is a mixed problem for the linear parabolic equation.

Therefore it follows from the facts established for the problem (1)-(3) that for every ϑ =
(p(t), s(t)) ∈ V the problem (15)-(17) has a unique solution from V 1,0

2 (Ω) [12].
We call the function

H(t, ψ, ϑ) = −
n∑
k=1

[
ψ(sk(t), t)pk(t) + α1 (pk(t)− p̃k(t))2 + α2 (sk(t)− s̃k(t))2

]
(19)

the Hamilton-Pontryagin function of the problem (1)-(5). Now let’s find sufficient condi-
tions for Frechet differentiability of the functional (5) and the expression for its gradient.

Theorem 3. If ψ(x, t) is the solution from V 1,0
2 (Ω) of the conjugate problem (15)-(17),

then the functional (5) is Frechet-differentiable on the set V , and the following relation is
valid for its gradient:

J ′(ϑ) =

(
∂J(ϑ)

∂p
,
∂J(ϑ)

∂s

)
=

(
−∂H
∂p

,−∂H
∂s

)
, (20)

where
∂H
∂p =

(
∂H
∂p1

, ∂H∂p2 , ...,
∂H
∂pn

)
, ∂H

∂s =
(
∂H
∂s1
, ∂H∂s2 , ...,

∂H
∂sn

)
,

∂H
∂pk

= −ψ(sk(t), t)− 2α1 (pk(t)− p̃k(t)) ,

∂H
∂sk

= −∂ψ(sk(t),t)
∂x pk(t)− 2α2 (sk(t)− s̃k(t)) , k = 1, n.

Proof. Let as consider an increment of the functional

∆J(ϑ) ≡ J(ϑ+ ∆ϑ)− J(ϑ) = 2
∫ l

0

∫ T
0 [u(x, t)− ũ(x, t)] ∆u(x, t)dxdt+

+
∫ l

0

∫ T
0 |∆u(x, t)|2 dxdt+

∑n
k=1

{
2α1

∫ T
0 [pk(t)− p̃k(t)] ∆pk(t)dt+ α1

∫ T
0 |∆pk(t)|

2 dt +

+ 2α2

∫ T
0 [sk(t)− s̃k(t)] ∆sk(t)dt+ α2

∫ T
0 |∆sk(t)|

2 dt
}
,

(21)
where ϑ = (p, s) ∈ V , ϑ+ ∆ϑ ∈ V , ∆u(x, t) ≡ u(x, t;ϑ+ ∆ϑ)− u(x, t;ϑ), u ≡ u(x, t;ϑ).
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If we assume η1 = ∆u(x, t) in (18) and η = ψ(x, t) in (10), and subtract the resulting
relations, then we have

∫ l

0

∫ T

0

(
ψ
∂∆u

∂t
+ a2∂ψ

∂x

∂∆u

∂x

)
dxdt = 2

∫ l

0

∫ T

0
[u(x, t)− ũ(x, t)] ∆u(x, t)dxdt,

∫ l

0

∫ T

0

[
∂∆u

∂t
ψ + a2∂∆u

∂x

∂ψ

∂x

]
dxdt =

n∑
k=1

∫ T

0
[pk + ∆pk)η(sk + ∆sk, t)− pkη(sk, t)] dt,

2

∫ l

0

∫ T

0
[u(x, t)− ũ(x, t)] ∆u(x, t)dxdt =

=

n∑
k=1

∫ T

0
[(pk + ∆pk)ψ(sk + ∆sk, t)− pkψ(sk, t)] dt. (22)

It is clear that under the above assumptions the following Taylor expansion is valid:

ψ(sk + ∆sk, t) = ψ(sk, t) +
∂ψ(sk, t)

∂x
∆sk + o

(
‖∆sk‖L2(0,T )

)
.

In view of this fact, from (22) we obtain that

2

∫ l

0

∫ T

0
[u(x, t)− ũ(x, t)] ∆u(x, t)dxdt =

n∑
k=1

∫ T

0

[
∂ψ(sk(t), t)

∂x
pk(t)∆sk(t)+

+ψ(sk(t), t)∆pk(t)] dt+R1, (23)

where R1 =
∑n

k=1

(∫ T
0

∂ψ(sk(t),t)
∂x ∆pk(t)∆sk(t)dt) + o

(
‖∆sk‖L2(0,T )

))
.

It is clear that R1 = o (‖∆ϑ‖H) as ‖∆ϑ‖H → 0. On the other hand, from the estimate
(9) follows that

‖∆u(x, t)‖L2(Ω) ≤ c5 ‖∆ϑ‖H ,

where c5 > 0 is some constant. By substituting the resulting relations in (21), we get

∆J(ϑ) =

n∑
k=1

(J1(k) + J2(k)) + o(‖∆ϑ‖H) as ‖∆ϑ‖H → 0,

where

J1(k) =

∫ T

0
[ψ(sk(t), t) + 2α1 (pk(t)− p̃k(t))] ∆pk(t)dt,

J2(k) =

∫ T

0

[
∂ψ(sk(t), t)

∂x
pk(t) + 2α2 (sk(t)− s̃k(t))

]
∆sk(t)dt.
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Taking into account the expression for the Hamilton-Pontryagin function, we obtain

∆J =

(
−∂H
∂ϑ

,∆ϑ

)
H

+ o (‖∆ϑ‖H) for ‖∆ϑ‖H → 0,

which shows that the functional (5) is Frechet differentiable and the formula (20) is valid.
J

Theorem 4. Let the functions u∗(x, t), ψ∗(x, t) be solutions of problems (1)-(3) and (15)-
(17) , respectively, for ϑ = ϑ∗ ∈ V . Then for the control ϑ∗ to be optimal, it is necessary
that the condition

H(t, ψ∗, ϑ∗) = max
ϑ∈V

H(t, ψ∗, ϑ),∀(x, t) ∈ Ω, (24)

hold.

Proof. Inside the domain Ω, we fix the Lebesgue point (σ, θ) of all functions involved
in the conditions of problems (1)-(3) and (15)-(17). Let

Πε ≡
{

(x, t) : σ − ε

2
< x < σ +

ε

2
, θ − ε

2
< t < θ +

ε

2

}
⊂ Ω,

where ε > 0 is a sufficiently small number.

We construct the pulse variation of control

ϑε ≡ (pε, sε) =


ϑ, if (x, t) ∈ Πε,

ϑ∗, if (x, t) /∈ Πε.

where ϑ is some constant vector, and denote ∆uε ≡ uε(x, t) − u∗(x, t), where uε(x, t) =
u(x, t;ϑε). Then, the function ∆uε satisfies the identity

∫ l
0

∫ T
0

[
−∆uε

∂η
∂t + a2 ∂∆uε

∂x
∂η
∂x

]
dxdt =

=
∑n

k=1

∫ T
0 [pεk + ∆pεk)η(sεk + ∆sεk, t)− pεkη(sεk, t)] dt,

(25)

∀η = η(x, t) ∈W 1,1
2 (Ω) with η(x, T ) = 0.

Proceeding as in the proof of (9), we establish that the estimate

‖∆uε‖V 1,0
2 (ΩT )

≤ c6 ‖∆ϑε‖L2(Πε) ,

where c6 > 0 is some constant, is valid for the function ∆uε(x, t). Then, the fact that
(σ, θ) ∈ Ω is the Lebesgue point implies ∆uε → 0 in V 1,0

2 (Ω) as ε→ 0.

Let ψε = ψε(x, t) ∈ V 1,0
2 (Ω) be the solution of the integral identity
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∫ l

0

∫ T

0

(
ψ
∂η1

∂t
+ a2∂ψ

∂x

∂η1

∂x

)
dxdt = 2

∫ l

0

∫ T

0

[
uε(x, t)− ũ(x, t) +

1

2
∆uε(x, t)

]
η1(x, t)dxdt,

(26)
∀η1 = η1(x, t) ∈ W 1,1

2 (Ω) with η1(x, T ) = 0. The difference ψε − ψ∗satisfies the integral

identity similar to (26). Then, the fact that ∆uε → 0 in V 1,0
2 (Ω) as ε→ 0 implies ψε → ψ∗

in V 1,0
2 (Ω) as ε→ 0.
We calculate the increment of the functional (5):

∆J(ϑ
∗
) ≡ J(ϑ

ε
)− J(ϑ

∗
) = 2

∫ l
0

∫ T
0

[
u∗(x, t)− ũ(x, t) + 1

2∆uε(x, t)
]

∆uε(x, t)dxdt+

+
∑n

k=1

{
2α1

∫ T
0 [p∗k(t)− p̃k(t)] [pεk(t)− p∗k(t)] dt+ α1

∫ T
0 [pεk(t)− p∗k(t)]

2 dt +

+ 2α2

∫ T
0 [s∗k(t)− s̃∗k(t)] [sεk(t)− s∗k(t)] dt+ α2

∫ T
0 [sεk(t)− s∗k(t)]

2 dt
}
.

(27)
Proceeding as in the proof of (23) and using the identity (26), we obtain

2

∫ `

0

∫ T

0

[
u∗(x, t)− ũ(x, t) +

1

2
∆uε(x, t)

]
∆uε(x, t)dxdt =

=

n∑
k=1

∫
Πε

[
∂ψε(s

ε
k(t), t)

∂x
pεk(t)∆s

ε
k(t) + ψε(s

ε
k, t)∆p

ε
k

]
dt.

Considering this relation in (27), we get

∆J(ϑ∗) ≡ J(ϑε)− J(ϑ∗) =
∑n

k=1

∫
Πε

[
∂ψε(sεk(t),t)

∂x pεk(t)∆s
ε
k(t) + ψε(s

ε
k, t)∆p

ε
k

]
dt+

+
∑n

k=1

{
2α1

∫ T
0 [p∗k(t)− p̃k(t)] [pεk(t)− p∗k(t)] dt+ α1

∫ T
0 [pεk(t)− p∗k(t)]

2 dt +

+ 2α2

∫ T
0 [s∗k(t)− s̃∗k(t)] [sεk(t)− s∗k(t)] dt+ α2

∫ T
0 [sεk(t)− s∗k(t)]

2 dt
}
.

Then, we get from the expression for the Hamilton-Pontryagin function (19) that

∆J(ϑ∗) = −
∫

Πε

[H(t, ψε, ϑ
ε)−H(t, ψε, ϑ

∗] dt.

By virtue of the fact that ψε → ψ∗ in V 1,0
2 (Ω), we obtain the formula for the variation of

functional (5):

δJ(ϑ∗) = lim
ε→0

∆J(ϑ∗)

ε
= − [H(θ, ψ∗, ϑ)−H(θ, ψ∗, ϑ∗] .
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It follows from the optimality of the control ϑ ∈ V that δJ(ϑ∗) ≥ 0. From this fact
and the fact that the Lebesgue points are dense everywhere in Ω, we get the validity of
(24). J

Theorem 5. For the control ϑ∗ = (p∗(t), s∗(t)) ∈ V to be optimal, it is necessary that the
condition

< J ′(ϑ∗), ϑ− ϑ∗ >H=
n∑
k=1

∫ T

0
{[ψ∗(s∗k(t), t) + 2α1 (p∗k(t)− p̃k(t))] (pk(t)− p∗k(t)) +

+ [ψ∗x(s∗k(t), t)p
∗
k(t) + 2α2 (s∗k(t)− s̃k(t)] (sk(t)− s∗k(t))} dt ≥ 0, (28)

∀ϑ ∈ V hold. Here ψ∗(x, t) is the solution of the problem (15)-(17) for ϑ = ϑ∗ ∈ V .

Proof. By virtue of the well-known theorem of [17, p.28], for the control ϑ∗ =
(p∗(t), s∗(t)) ∈ V to be optimal, it is necessary that the inequality

< J ′(ϑ∗), ϑ− ϑ∗ >H≥ 0,∀ϑ ∈ V (29)

hold.

Using (20) and the Hamilton-Pontryagin function, we calculate the gradient of the
functional (5) and substitute it in (29) to demonstrate the validity of inequality (28). J
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