Riesz's Equality for the Hilbert Transform of the Finite Complex Measures

R.A. Aliev

Abstract

In the present paper using the notion of Q^{\prime}-integration introduced by E.Titchmarsh we prove the analogue of Riesz's equality for the Hilbert transform of the finite complex measures. Key Words and Phrases: Riesz's equality, Hilbert transform, finite complex measure, Q integral, Q^{\prime}-integral, analytic functions, nontangential boundary values. 2010 Mathematics Subject Classifications: 44A15, 26A39, 30E25

1. Introduction

Let ν be a complex Borel measure on the real axis R and the integral $\int_{R} \frac{d \nu(\tau)}{1+|\tau|}$ exist. The function

$$
(H \nu)(t)=\frac{1}{\pi} \int_{R} \frac{d \nu(\tau)}{t-\tau}, t \in R
$$

is called the Hilbert transform of the measure ν. In particular, if a measure ν is absolutely continuous: $d \nu(t)=f(t) d t$, then $(H \nu)(t)$ is called the Hilbert transform of the function f and is denoted by $(H f)(t)$. It is known (see [9, 15]) that $(H \nu)(t)$ exists for almost all $t \in R$, and for any $\lambda>0$ the inequality

$$
\begin{equation*}
m\{t \in R:|(H \nu)(t)|>\lambda\} \leq c_{0} \frac{\|\nu\|}{\lambda} \tag{1}
\end{equation*}
$$

holds, where m stands for the Lebesgue measure, $\|\nu\|$ is the total variation of the measure ν, and c_{0} is an absolute constant. M.Riesz (see, for example, [9, 11, 14]) proved that if a measure ν is absolutely continuous: $d \nu(t)=f(t) d t$ and $f \in L_{p}(R), p>1$, then $H f \in L_{p}(R)$ and for any $g \in L_{q}(R)$ the following equation holds:

$$
\int_{R} g(t)(H f)(t) d t=-\int_{R}(H g)(t) f(t) d t
$$

where $q=\frac{p}{p-1}$. If $f \in L_{1}(R)$ and $f \notin L_{p}(R)$ for any $p>1$, then the function $H f$ doesn't even belong to the class of functions $L_{1}^{(l o c)}(R)$. In this case, using the notion of A-integration, Anter Ali Alsayad (see [8]) proved the following theorem.

Theorem A [8]. If $g \in L_{p}(R), p \geq 1$ is a bounded function, its Hilbert's transform is also a bounded function, and $f \in L_{1}(R)$, then the function $g(t)(H f)(t)$ is A-integrable on R and the following equation holds:

$$
\begin{equation*}
(A) \int_{R} g(t)(H f)(t) d t=-\int_{R}(H g)(t) f(t) d t \tag{2}
\end{equation*}
$$

In the case where the measure ν is not absolutely continuous, the function $(H \nu)(t)$ does not satisfy the condition $\lambda m\{t \in R:|(H \nu)(t)|>\lambda\}=o(1)$ as $\lambda \rightarrow+\infty$, and therefore the formula (2) fails to hold. In [5], using the notion of Q^{\prime}-integration introduced by E.Titchmarsh [20], the author proved that the Hilbert transform of the finite complex measure ν is Q^{\prime}-integrable on the real axis R, and the Q^{\prime}-integral of the function $H \nu$ is equal to zero.

In the present paper we prove that, if ν is a finite complex Borel measure on the real axis R, the function $g \in L_{p}(R), p \geq 1$ is Hőlder continuous and $g(t) \ln (e+|t|)$ is bounded on R, then the function $g(t)(H f)(t)$ is Q^{\prime}-integrable on R and the following equation holds:

$$
\left(Q^{\prime}\right) \int_{R} g(t)(H f)(t) d t=-\int_{R}(H g)(t) f(t) d t
$$

2. On the properties of Q - and Q^{\prime}-integrals of the function measurable on the real axis

For a measurable complex function f on an interval $[a, b] \subset R$ we set
$[f(x)]_{n}=[f(x)]^{n}=f(x)$ for $|f(x)| \leq n$,
$[f(x)]_{n}=n \cdot \operatorname{sgnf}(x),[f(x)]^{n}=0$ for $|f(x)|>n, n \in N$,
where $\operatorname{sgn} z=\frac{z}{|z|}$ for $z \neq 0$ and $\operatorname{sgn} 0=0$.
In 1929, E.Titchmarsh [20] introduced the notions of Q - and Q^{\prime}-integrals.
Definition 1. If a finite limit $\lim _{n \rightarrow \infty} \int_{a}^{b}[f(x)]_{n} d x\left(\lim _{n \rightarrow \infty} \int_{a}^{b}[f(x)]^{n} d x\right.$, respectively) exists, then f is said to be Q-integrable (Q^{\prime}-integrable, respectively) on $[a, b]$, that is $f \in Q[a, b]$ $\left(f \in Q^{\prime}[a, b]\right)$, and the value of this limit is referred to as the Q-integral (Q^{\prime}-integral) of this function and is denoted by

$$
(Q) \int_{a}^{b} f(x) d x\left(\left(Q^{\prime}\right) \int_{a}^{b} f(x) d x\right)
$$

In the same paper, E.Titchmarsh established that, when studying the properties of trigonometric series conjugate to Fourier series of Lebesgue integrable functions, Q integration leads to a series of natural results. A very uncomfortable fact impeding the application of Q-integrals and Q^{\prime}-integrals when studying diverse problems of function theory is the absence of the additivity property, that is, the Q-integrability (Q^{\prime}-integrability) of two functions does not imply the Q-integrability (Q^{\prime}-integrability) of their sum. If one adds the condition

$$
\begin{equation*}
\lambda m\{x \in[a, b]:|f(x)|>\lambda\}=o(1), \lambda \rightarrow+\infty \tag{3}
\end{equation*}
$$

where m stands for the Lebesgue measure, to the definition of Q-integrability $\left(Q^{\prime}-\right.$ integrability) of a function f on the interval $[a, b]$, then the Q-integral and Q^{\prime}-integral coincide $\left(Q[a, b]=Q^{\prime}[a, b]\right)$, and these integrals become additive.
Definition 2. If $f \in Q^{\prime}[a, b]$ (or $f \in Q[a, b]$) and condition (3) holds, then f is said to be A-integrable on $[a, b], f \in A[a, b]$, and the limit $\lim _{n \rightarrow \infty} \int_{a}^{b}[f(x)]^{n} d x$ (or the limit $\left.\lim _{n \rightarrow \infty} \int_{a}^{b}[f(x)]_{n} d x\right)$ is denoted in this case by $(A) \int_{a}^{b} f(x) d x$.

As we noted above, the Q-integral and the Q^{\prime}-integral do not have the additivity property. E.Titchmarsh in [20] for real functions and the author in [2] for complex functions established that, if $f \in Q[a, b]$ and $g \in L[a, b]$ (that is, g is Lebesgue integrable on the interval $[a, b])$, then $f+g \in Q[a, b]$ and the Q-integral of this sum is equal to the sum of the Q-integral of f and the Lebesgue integral of g. In [2], the author found a class of functions $M([a, b], C)$ such that, on this class, the Q^{\prime}-integral coincides with the Q-integral, and proved that the Q^{\prime}-integrability (Q-integrability) of a function $f \in M([a, b], C)$ and the A-integrability of a function g imply the Q^{\prime}-integrability (Q-integrability) of their sum $f+g$, and the Q^{\prime}-integral (Q-integral) of this sum is equal to the sum of the Q^{\prime} integral (Q-integral) of f and the A-integral of g. He also found a class of functions $S M([0,2 \pi], C) \subset M([0,2 \pi], C)$ such that the Q^{\prime}-integral and the Q-integral have the additivity property on this class. The properties of Q - and Q^{\prime}-integrals were investigated in $[2,10,20]$, and for the applications of $A-, Q$ - and Q^{\prime}-integrals in the theory of functions of real and complex variables we refer the reader to $[1,2,3,4,5,6,7,8,17,18,19,21,22,23]$.

For a complex function f measurable on the real axis R we assume $[f(x)]_{\delta, \lambda}=[f(x)]^{\delta, \lambda}=f(x)$ for $\delta \leq|f(x)| \leq \lambda,[f(x)]_{\delta, \lambda}=[f(x)]^{\delta, \lambda}=0$ for $|f(x)|<\delta$, $[f(x)]_{\delta, \lambda}=\lambda \operatorname{sgn} f(x),[f(x)]^{\delta, \lambda}=0$ for $|f(x)|>\lambda, 0<\delta<\lambda$.
Definition 3. If a finite limit $\lim _{\substack{\delta \rightarrow 0+\\ \lambda \rightarrow+\infty}} \int_{R}[f(x)]_{\delta, \lambda} d x\left(\lim _{\substack{\delta \rightarrow 0+\\ \lambda \rightarrow+\infty}} \int_{R}[f(x)]^{\delta, \lambda} d x\right.$ respectively) exists, then f is said to be Q-integrable (Q^{\prime}-integrable) on R, that is $f \in Q(R)\left(f \in Q^{\prime}(R)\right)$, and the value of this limit is referred to as the Q-integral (Q^{\prime}-integral) of this function and is denoted by

$$
(Q) \int_{R} f(x) d x\left(\left(Q^{\prime}\right) \int_{R} f(x) d x\right)
$$

Remark 1. Let $h>0$ be any positive number. From the equalities

$$
\begin{gather*}
\lim _{\substack{\delta \rightarrow 0+\\
\lambda \rightarrow+\infty}} \int_{R}[f(x)]_{\delta, \lambda} d x=\lim _{\delta \rightarrow 0+} \int_{\{x \in R: \delta \leq|f(x)| \leq h\}} f(x) d x+ \\
+\lim _{\lambda \rightarrow+\infty} \int_{\{x \in R:|f(x)|>h\}}[f(x)]_{\lambda} d x, \tag{4}\\
\lim _{\substack{\delta \rightarrow 0+\\
\lambda \rightarrow+\infty}} \int_{R}[f(x)]^{\delta, \lambda} d x=\lim _{\delta \rightarrow 0+} \int_{\{x \in R: \delta \leq|f(x)| \leq h\}} f(x) d x+
\end{gather*}
$$

$$
\begin{equation*}
+\lim _{\lambda \rightarrow+\infty} \int_{\{x \in R:|f(x)|>h\}}[f(x)]^{\lambda} d x \tag{5}
\end{equation*}
$$

it follows that if for some $h>0$ there exists the integral $\int_{\{x \in R:|f(x)| \leq h\}} f(x) d x$, then Q and Q^{\prime}-integrals of the function f can be determined as follows

$$
\text { (Q) } \int_{R} f(x) d x=\lim _{\lambda \rightarrow+\infty} \int_{R}[f(x)]_{\lambda} d x,\left(Q^{\prime}\right) \int_{R} f(x) d x=\lim _{\lambda \rightarrow+\infty} \int_{R}[f(x)]^{\lambda} d x
$$

where $[f(x)]_{\lambda}$ and $[f(x)]^{\lambda}$ are determined as in Definition 1, and if there exists the integral $\int_{\{x \in R:|f(x)|>h\}} f(x) d x$, then Q - and Q^{\prime}-integrals of the function f can be determined as follows

$$
\text { (Q) } \int_{R} f(x) d x=\left(Q^{\prime}\right) \int_{R} f(x) d x=\lim _{\delta \rightarrow 0+} \int_{\{x \in R:|f(x)| \geq \delta\}} f(x) d x \text {. }
$$

Note that, as in case of an interval, Q - and Q^{\prime}-integrals of the functions measurable on the real axis do not satisfy the additivity property, that is the Q-integrability (Q^{\prime} integrability) of two functions does not imply the Q-integrability (Q^{\prime}-integrability) of their sum. If one adds the conditions

$$
\begin{gather*}
\delta m\{x \in R:|f(x)|>\delta\}=o(1), \delta \rightarrow 0+ \tag{6}\\
\lambda m\{x \in R:|f(x)|>\lambda\}=o(1), \lambda \rightarrow+\infty \tag{7}
\end{gather*}
$$

to the definition of Q-integrability (Q^{\prime}-integrability) of a function f on R, then Q-integral and Q^{\prime}-integral coincide $\left(Q(R)=Q^{\prime}(R)\right)$ and these integrals become additive (see [1]).
Definition 4. If $f \in Q^{\prime}(R)$ (or $f \in Q(R)$) and the conditions (6) and (7) hold, then f is said to be A-integrable on $R, f \in A(R)$ and the limit $\lim _{\substack{\delta \rightarrow 0+\\ \lambda \rightarrow+\infty}} \int_{R}[f(x)]^{\delta, \lambda} d x$ (or the limit $\left.\lim _{\substack{\delta \rightarrow 0+\\ \lambda \rightarrow+\infty}} \int_{R}[f(x)]_{\delta, \lambda} d x\right)$ is denoted in this case by $(A) \int_{R} f(x) d x$.

For the real function f measurable on R we assume

$$
\begin{gathered}
(f>\lambda)=\{t \in R: f(t)>\lambda\},(f<\lambda)=\{t \in R: f(t)<\lambda\}, \\
(f \geq \lambda)=\{t \in R: f(t) \geq \lambda\},(f \leq \lambda)=\{t \in R: f(t) \leq \lambda\}, \\
(\delta \leq f \leq \lambda)=\{t \in R: \delta \leq f(t) \leq \lambda\} .
\end{gathered}
$$

Definition 5. We denote by $M(R ; C)$ the class of measurable complex-valued functions f on R for which the finite limits $\lim _{\lambda \rightarrow+\infty} \lambda m(|f|>\lambda)$ and $\lim _{\delta \rightarrow 0+} \delta m(|f|>\delta)$ exist.

It is known that the distribution function $m\{t \in R:|(H \nu)(t)|>\lambda\}$ of Hilbert transform of the complex measure ν satisfies the following equality (see [12, 16]):

$$
\begin{equation*}
\lim _{\lambda \rightarrow+\infty} \lambda m\{t \in R:|(H \nu)(t)|>\lambda\}=\frac{2}{\pi}\left\|\nu_{s}\right\|, \tag{8}
\end{equation*}
$$

where ν_{s} stands for the singular part of the measure ν. In the paper [5] it is proved that the equality

$$
\begin{equation*}
\lim _{\delta \rightarrow 0+} \delta m\{t \in R:|(H \nu)(t)|>\delta\}=\frac{2}{\pi}|\nu(R)|, \tag{9}
\end{equation*}
$$

holds.
The equalities (8) and (9) show that the Hilbert transform of the finite complex measure belongs to the class $M(R ; C)$.
Theorem 1. The Q-integral and the Q^{\prime}-integral coincide in the function class $M(R ; C)$, that is, if $f \in M(R ; C)$, then for the existence of the integral $(Q) \int_{R} f(x) d x$ it is necessary and sufficient that the integral $\left(Q^{\prime}\right) \int_{R} f(x) d x$ exist, and in that case the following equation holds:

$$
\begin{equation*}
(Q) \int_{R} f(x) d x=\left(Q^{\prime}\right) \int_{R} f(x) d x \tag{10}
\end{equation*}
$$

Proof of Theorem 1. Let $h>0$ be any positive number. If $f \in Q^{\prime}(R)$, then from (5) it follows that there exist finite limits $\lim _{\delta \rightarrow 0+} \int_{(\delta \leq|f| \leq h)} f(x) d x$ and $\lim _{\lambda \rightarrow+\infty} \int_{(|f|>h)}[f(x)]^{\lambda} d x$. Similar to the proof of Theorem 1 in [2], one can prove that the existence of the limit $\lim _{\lambda \rightarrow+\infty} \int_{(|f|>h)}[f(x)]^{\lambda} d x$ implies the existence of the limit $\lim _{\lambda \rightarrow+\infty} \int_{(|f|>h)}[f(x)]_{\lambda} d x$ and their equality. Hence, from (4) it follows that the function f is Q-integrable and equation (10) holds.

It remains to prove that, in the function class $M(R ; C)$, it follows from $f \in Q(R)$ that $f \in Q^{\prime}(R)$. From (4) we obtain that if $f \in Q(R)$ and $f \in M(R ; C)$, then there exist finite limits $\lim _{\delta \rightarrow 0+} \int_{(\delta \leq|f| \leq h)} f(x) d x, \lim _{\lambda \rightarrow+\infty} \int_{(|f|>h)}[f(x)]_{\lambda} d x$ and $\lim _{\lambda \rightarrow+\infty} \lambda m(|f|>\lambda)$. Similar to the proof of Theorem 2 in [2], one can prove that the existence of the limit $\lim _{\lambda \rightarrow+\infty} \int_{(|f|>h)}[f(x)]_{\lambda} d x$ implies the existence of the limit $\lim _{\lambda \rightarrow+\infty} \int_{(|f|>h)}[f(x)]^{\lambda} d x$. Hence, from (5) it follows that the function f is Q^{\prime}-integrable and the equation (10) holds. This completes the proof of Theorem 1.

We need the following theorems proved by the author in [4] and [5].
Theorem B [4, Theorem 2.3]. If a function $f \in M(R ; C)$ is Q^{\prime}-integrable on R and a function g is A-integrable on R, then their sum $f+g \in M(R ; C)$ is Q^{\prime}-integrable on R, and the following equation holds:

$$
\left(Q^{\prime}\right) \int_{R}[f(x)+g(x)] d x=\left(Q^{\prime}\right) \int_{R} f(x) d x+(A) \int_{R} g(x) d x \text {. }
$$

Theorem C [5, Theorem 4]. Let ν be a finite complex measure on the real axis R. Then the equation

$$
\left(Q^{\prime}\right) \int_{R}(H \nu)(t) d t=0
$$

holds.

3. Riesz's equality for the Hilbert transform of the finite complex measures

Theorem 2. Let ν be a finite complex measure on the real axis R, the function $g \in L_{p}(R)$, $p \geq 1$ be Hölder continuous and $g(t) \ln (e+|t|)$ be bounded on R. Then the function $g(t)(H \nu)(t)$ is Q^{\prime}-integrable on R and the following equation holds:

$$
\begin{equation*}
\left(Q^{\prime}\right) \int_{R} g(t)(H \nu)(t) d t=-\int_{R}(H g)(t) d \nu(t) . \tag{11}
\end{equation*}
$$

Remark 2. Note that from the conditions of the theorem it follows that the function $(H g)(t)$ is bounded on R and therefore the integral on the right-hand side of (11) exists.

Proof of Theorem 2. Let us consider the measure $d \mu(t)=g(t) d \nu(t)$. Then

$$
\begin{gather*}
(H \mu)(t)=\frac{1}{\pi} \int_{R} \frac{g(\tau) d \nu(\tau)}{t-\tau}=\frac{1}{\pi} \int_{R} \frac{g(\tau)-g(t)}{t-\tau} d \nu(\tau)+g(t)(H \nu)(t)= \\
=J(t)+g(t)(H \nu)(t) \tag{12}
\end{gather*}
$$

where

$$
\begin{gather*}
J(t)=\frac{1}{\pi} \int_{R} \frac{g(\tau)-g(t)}{t-\tau} d \nu(\tau)=\frac{1}{\pi} \int_{(|t-\tau| \leq 1)} \frac{g(\tau)-g(t)}{t-\tau} d \nu(\tau)+\frac{1}{\pi} \int_{(|t-\tau|>1)} \frac{g(\tau) d \nu(\tau)}{t-\tau}- \\
-\frac{1}{\pi} \int_{(|t-\tau|>1)} \frac{g(t) d \nu(\tau)}{t-\tau}=J_{1}(t)+J_{2}(t)-J_{3}(t) . \tag{13}
\end{gather*}
$$

At first consider the case of $\mu(R)=0$. In this case, for every $t \neq 0$ we have the equality

$$
\begin{gather*}
J_{2}(t)=\frac{1}{\pi} \int_{(|t-\tau|>1)} \frac{g(\tau) d \nu(\tau)}{t-\tau}-\frac{1}{\pi} \int_{R} \frac{g(\tau) d \nu(\tau)}{t+\operatorname{sgnt}}= \\
=\frac{1}{\pi} \int_{(|t-\tau|>1)} \frac{\tau+\operatorname{sgnt}}{(t-\tau)(t+\operatorname{sgnt})} g(\tau) d \nu(\tau)-\frac{1}{\pi} \int_{(|t-\tau| \leq 1)} \frac{g(\tau) d \nu(\tau)}{t+\operatorname{sgnt}} . \tag{14}
\end{gather*}
$$

Then, by the conditions of the theorem, it follows that the integrals

$$
\begin{gathered}
\int_{R}\left(\int_{(|t-\tau| \leq 1)}\left|\frac{g(\tau)-g(t)}{t-\tau}\right| d t\right) d \nu(\tau), \int_{R}\left(\int_{(|t-\tau|>1)}\left|\frac{\tau+s g n t}{(t-\tau)(t+s g n t)}\right| d t\right) g(\tau) d \nu(\tau), \\
\int_{R}\left(\int_{(|t-\tau| \leq 1)}\left|\frac{1}{t+s g n t}\right| d t\right) g(\tau) d \nu(\tau), \int_{R}\left(\int_{(|t-\tau|>1)}\left|\frac{g(t)}{t-\tau}\right| d t\right) d \nu(\tau),
\end{gathered}
$$

exist. Therefore it follows from Fubini's theorem (see, for example, [13], Ch.5, §6) and from (14) that the functions $J_{1}(t), J_{2}(t)$ and $J_{3}(t)$ are Lebesgue integrable. Hence we obtain that the function $J(t)$ in (13) is also Lebesgue integrable on R. It follows from the
equality (12) and Theorems B and C that the function $g(t)(H \nu)(t)$ is Q^{\prime}-integrable on R and

$$
\begin{gathered}
\left(Q^{\prime}\right) \int_{R} g(t)(H \nu)(t) d t=\left(Q^{\prime}\right) \int_{R}(H \mu)(t) d t-\int_{R} J(t) d t=-\int_{R} J(t) d t= \\
=-\int_{R} J_{1}(t) d t-\int_{R} J_{2}(t) d t+\int_{R} J_{3}(t) d t
\end{gathered}
$$

Then from the equations

$$
\begin{gathered}
\int_{R} J_{1}(t) d t=\frac{1}{\pi} \int_{R}\left(\int_{(|t-\tau| \leq 1)} \frac{g(\tau)-g(t)}{t-\tau} d \nu(\tau)\right) d t= \\
=\frac{1}{\pi} \int_{R}\left(\int_{(|t-\tau| \leq 1)} \frac{g(\tau)-g(t)}{t-\tau} d t\right) d \nu(\tau) \\
\int_{R} J_{2}(t) d t=\frac{1}{\pi} \int_{R}\left(\int_{(|t-\tau|>1)} \frac{\tau+\operatorname{sgnt}}{(t-\tau)(t+\operatorname{sgnt})} g(\tau) d \nu(\tau)-\int_{(|t-\tau| \leq 1)} \frac{g(\tau) d \nu(\tau)}{t+s g n t}\right) d t= \\
=\frac{1}{\pi} \int_{R}\left(\int_{(|t-\tau|>1)} \frac{\tau+\operatorname{sgnt}}{(t-\tau)(t+\operatorname{sgnt})} d t-\int_{(|t-\tau| \leq 1)} \frac{d t}{t+\operatorname{sgnt}}\right) g(\tau) d \nu(\tau) \\
\int_{R} J_{3}(t) d t=\frac{1}{\pi} \int_{R}\left(\int_{(|t-\tau|>1)} \frac{g(t)}{t-\tau} d \nu(\tau)\right) d t=\frac{1}{\pi} \int_{R}\left(\int_{(|t-\tau|>1)} \frac{g(t)}{t-\tau} d t\right) d \nu(\tau)
\end{gathered}
$$

we have

$$
\begin{gathered}
\left(Q^{\prime}\right) \int_{R} g(t)(H \nu)(t) d t=-\frac{1}{\pi} \int_{R}\left(\int_{(|t-\tau| \leq 1)} \frac{g(\tau)-g(t)}{t-\tau} d t\right) d \nu(\tau)- \\
-\frac{1}{\pi} \int_{R}\left(\int_{(|t-\tau|>1)} \frac{\tau+s g n t}{(t-\tau)(t+s g n t)} d t-\int_{(|t-\tau| \leq 1)} \frac{d t}{t+s g n t}\right) g(\tau) d \nu(\tau)+ \\
\quad+\frac{1}{\pi} \int_{R}\left(\int_{(|t-\tau|>1)} \frac{g(t)}{t-\tau} d t\right) d \nu(\tau)=-\int_{R}(H g)(t) d \nu(t)
\end{gathered}
$$

That is, the equation (11) holds in case $\mu(R)=0$.
Now let's consider the case $\mu(R)=d_{0} \neq 0$. Denote by ν_{1} the absolutely continuous measure satisfying the condition $\int_{R} g(t) d \nu_{1}(t)=d_{0}$, and by ν_{2} the difference $\nu_{2}=\nu-\nu_{1}$. Let $d \mu_{i}(t)=g(t) d \nu_{i}(t), i=\overline{1,2}$. Then $\mu_{2}(R)=0$ and, according to the above case, we have the equation

$$
\begin{equation*}
\left(Q^{\prime}\right) \int_{R} g(t)\left(H \nu_{2}\right)(t) d t=-\int_{R}(H g)(t) d \nu_{2}(t) \tag{15}
\end{equation*}
$$

As the measure ν_{1} is absolutely continuous, then by Theorem A the equation

$$
\begin{equation*}
(A) \int_{R} g(t)\left(H \nu_{1}\right)(t) d t=-\int_{R}(H g)(t) d \nu_{1}(t), \tag{16}
\end{equation*}
$$

holds. From the equations (15), (16) and by Theorem C it follows that

$$
\begin{gathered}
\left(Q^{\prime}\right) \int_{R} g(t)(H \nu)(t) d t=(A) \int_{R} g(t)\left(H \nu_{1}\right)(t) d t+\left(Q^{\prime}\right) \int_{R} g(t)\left(H \nu_{2}\right)(t) d t= \\
\quad=-\int_{R}(H g)(t) d \nu_{1}(t)-\int_{R}(H g)(t) d \nu_{2}(t)=-\int_{R}(H g)(t) d \nu(t) .
\end{gathered}
$$

This completes the proof of Theorem 2.
Theorem 3. Let ν be a finite complex measure on the real axis R, and the function $g \in L_{p}(R), p \geq 1$ be Hőlder continuous on R. Then the integral $\int_{(|g \cdot H \nu| \leq 1)} g(t)(H \nu)(t) d t$ exists.

Proof of Theorem 3. Denote

$$
I_{1}=\int_{(|g \cdot H \nu| \leq 1) \cap(|H \nu|>1)} g(t)(H \nu)(t) d t, I_{2}=\int_{(|g \cdot H \nu| \leq 1) \cap(|H \nu| \leq 1)} g(t)(H \nu)(t) d t .
$$

Then it follows from the inequality (1) that

$$
\left|I_{1}\right| \leq m(|H \nu|>1) \leq c_{0} \cdot\|\nu\|<\infty .
$$

If $g \in L_{1}(R)$, then

$$
\left|I_{2}\right| \leq \int_{(|g \cdot H \nu| \leq 1) \cap(|H \nu| \leq 1)}|g(t)| d t \leq\|g\|_{1}<\infty
$$

and if $g \in L_{p}(R), p>1$, then it follows from the Hőlder's inequality and the inequality (1) that

$$
\begin{gathered}
\left|I_{2}\right| \leq \int_{(|g \cdot H \nu| \leq 1) \cap(|H \nu| \leq 1)}|g(t)| \cdot|(H \nu)(t)| d t \leq\left(\int_{(|H \nu| \leq 1)}|(H \nu)(t)|^{p^{\prime}} d t\right)^{\frac{1}{p^{\prime}}}\|g\|_{p} \\
=\left(\sum_{k=0}^{\infty} \int_{\left(2^{-k-1}<|H \nu| \leq 2^{-k}\right)}|(H \nu)(t)|^{p^{\prime}} d t\right)^{\frac{1}{p^{\prime}}}\|g\|_{p} \leq\left(\sum_{k=0}^{\infty} 2^{-k p^{\prime}} m\left(|H \nu|>2^{-k-1}\right)\right)^{\frac{1}{p^{\prime}}}\|g\|_{p} \\
\leq\left(2 c_{0}\|\nu\| \sum_{k=0}^{\infty} 2^{-k\left(p^{\prime}-1\right)}\right)^{\frac{1}{p^{\prime}}}\|g\|_{p}<\infty .
\end{gathered}
$$

It follows from these estimates that the integral $\int_{(|g \cdot H \nu| \leq 1)} g(t)(H \nu)(t) d t$ exists. This completes the proof of Theorem 3.
Remark 3. It follows from Theorem 3 and Remark 1 that the equation (11) in Theorem 2 can be rewritten in the following way:

$$
\lim _{\lambda \rightarrow+\infty} \int_{(|g \cdot H \nu| \leq \lambda)} g(t)(H \nu)(t) d t=-\int_{R}(H g)(t) d \nu(t)
$$

Remark 4. In the class $M(R ; C)$, the Q^{\prime}-integral coincides with the Q-integral (see Theorem 1). Then, under conditions of Theorem 2, the function $g(t)(H \nu)(t)$ is Q integrable on R and the following equation holds:

$$
(Q) \int_{R} g(t)(H \nu)(t) d t=-\int_{R}(H g)(t) d \nu(t)
$$

References

[1] A.B. Aleksandrov, A-integrability of the boundary values of harmonic functions, Math. Notes, 30(1), 1981, 515-523.
[2] R.A. Aliev, $N^{ \pm}$-integrals and boundary values of Cauchy-type integrals of finite measures, Sbornik Mathematics, 205(7), 2014, 913-935.
[3] R.A. Aliyev (Aliev), Existence of angular boundary values and Cauchy-Green formula, Journal of Mathematical Physics Analysis Geometry, 7(1), 2011, 3-18.
[4] R.A. Aliev, On the properties of Q - and Q^{\prime}-integrals of the function measurable on the real axis, Proceedings of the Institute of Mathematics and Mechanics, NAS of Azerbaijan, 41(1), 2015, 56-62.
[5] R.A. Aliev, On properties of Hilbert transform of finite complex measures, Complex Analysis and Operator Theory, 2015, DOI 10.1007/s11785-015-0480-9, 1-15, in press.
[6] R.A. Aliev, On Taylor coefficients of Cauchy type integrals of finite complex measures, Complex Variables and Elliptic Equations, 2015, http://dx.doi.org/10.1080/17476933.2015.1047833, in press.
[7] R.A. Aliev, Representability of analytic functions in terms of their boundary values, Math. Notes, 73(1-2), 2003, 8-20.
[8] A.A. Alsayad, Hilbert's transform and A-integral, Fundamental and Applied Mathematics, 8(4), 2002, 1239-1243. (in Russian)
[9] J.A. Cima, A.L. Matheson, W.T. Ross, The Cauchy transform, American Mathematical Society, 2006.
[10] M.P. Efimova, On the properties of the Q-integral, Math. Notes, 90(3-4), 2011, 322332.
[11] J. Garnett, Bounded analytic functions, 2nd ed., Springer, 2007.
[12] S.V. Hruscev (Khrushchev), S.A. Vinogradov, Free interpolation in the space of uniformly convergent Taylor series, Complex Analysis and Spectral Theory (Leningrad 1979/1980), Lecture Notes in Math. 864, 1981, 171 -213.
[13] A. Kolmogorov, S. Fomin, Introductory real analysis, Dover Publ., New York, 1975.
[14] P. Koosis, Introduction to H^{p} spaces, 2nd ed., Cambridge Univ. Press, 1998.
[15] L.H. Loomis, A note on the Hilbert transform, Bull. Amer. Math. Soc., 52(12), 1946, 1082-1086.
[16] A. Poltoratski, B. Simon, M. Zinchenko, The Hilbert transform of a measure, Journal d'Analyse Mathematique, 111, 2010, 247-265.
[17] T.S. Salimov, The A-integral and boundary values of analytic functions, Mathematics of the USSR-Sbornik, 64(1), 1989, 23-40.
[18] T.S. Salimov, On E. Titchmarsh's theorem on the conjugate function, Proc. A. Razmadze Math. Inst., 102, 1993, 99-114. (in Russian)
[19] V.A. Skvortsov, A-integrable martingale sequences and Walsh series, Izvestia: Mathematics, 65(3), 2001, 607-616.
[20] E.C. Titchmarsh, On conjugate functions, Proc. of the London Math. Soc., 9, 1929, 49-80.
[21] P.L. Ul'yanov, Application of A-integration to a class of trigonometric series, Mathematics of the USSR-Sbornik, 35:3(77), 1954, 469-490. (in Russian)
[22] P.L. Ul'yanov, Cauchy A-integral, I, Russian Mathematical Surveys, 11:5(71), 1956, 223-229. (in Russian)
[23] P.L. Ul'yanov, Integrals of Cauchy type, Twelve Papers on Approximations and Integrals, Amer. Math. Soc., Trans., 2(44), 1965, 129-150.

Rashid A. Aliev
Baku State University
23, Z. Khalilov Str., AZ1148, Baku, Azerbaijan
Institute of Mathematics and Mechanics of NAS of Azerbaijan
9, B. Vahabzadeh Str., AZ1141, Baku, Azerbaijan
E-mail: aliyevrashid@mail.ru
Received 29 July 2015
Accepted 01 November 2015

