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On a Uniform Approximation of Entire Function
Associated with the Riemann Zeta Function

H.M. Huseynov

Abstract. In this paper, some uniform approximations of entire functions associated with the
Riemann zeta function are presented.
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For Rez > 1, the Riemann zeta function ς (z) is defined by the equality

ς (z) =
∞∑
n=1

1

nz
.

The definition implies that ς (z) is a regular function in the half-plane Rez > 1. As is
known (see, e.g., [1-4]), the function ξ (z) = 1

2z (z − 1) Γ
(
z
2

)
π−

z
2 ς (z) is an entire function

and ξ (z) = ξ (1− z), i.e. the function ς (z) is analytically continued to the whole complex
plane except z = 1, where it has a simple pole. Consequently, the entire function Ξ (z) =
ξ
(
1
2 + iz

)
is even. In 1859, Riemann proposed a hypothesis that all the zeros of the

function Ξ (z) are real, which is still not proven.
It is well known (see, e.g., [5, §3.4.4, Problem 203]) that to prove the reality of all the

zeros of some entire function, it is sufficient to show that it can be uniformly approximated
on any compact set of the complex plane by entire functions having only real zeros. This
is not difficult to deduce from the Rouche’s or the Hurwitz’s theorem (see [1, §3.45]).

In the present paper, a uniform approximation of the function Ξ (z) on any compact
set K of the complex plane C is considered.

We’ll use the following representation of the function Ξ (z) (see [2, §10.1]):

Ξ (z) = 2

∫ +∞

0
Φ (u) cosuzdu, (1)

where

Φ (u) = 2

∞∑
n=1

(
2n4π2e

9
2
u − 3n2πe

5
2
u
)
e−πn

2e2u .
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Denote

P2m (u) =
2m∑
s=0

us

s!
, P+

2m (u) =
m∑
s=0

u2s

(2s) !
, P−2m (u) =

m∑
s=1

u2s−1

(2s− 1) !
,

and transform an even function Φ (u):

2Φ (u) = Φ (u) + Φ (−u) = 2

∞∑
n=1

(
2n4π2e

9
2
u − 3n2πe

5
2
u
)
e−πn

2e2u+

+2
∞∑
n=1

(
2n4π2e−

9
2
u − 3n2πe−

5
2
u
)
e−πn

2e−2u
=

= 2

∞∑
n=1

(
2n4π2e

9
2
u − 3n2πe

5
2
u
)
e−πn

2[e2u−P2m(2u)]−n2πP2m(2u)+

+2
∞∑
n=1

(
2n4π2e−

9
2
u − 3n2πe−

5
2
u
)
e−πn

2[e−2u−P2m(−2u)]−n2πP2m(−2u) =

= Φ+
m (u) + 2Rm (u) + 2Rm (−u) , (2)

where

Φ+
m (u) =

= 4
∞∑
n=1

e−πn
2P+

2m(2u)

{
2n4π2cosh

(
πn2P−2m (2u)− 9

2
u

)
− 3πn2cosh

(
πn2P−2m (2u)− 5

2
u

)}
,

(3)

Rm (u) =

=
∞∑
n=1

(
2n4π2e

9
2
u − 3n2πe

5
2
u
) (

e−πn
2[e2u−P2m(2u)] − 1

)
e−n

2πP2m(2u). (4)

Denote

Ξm (z) =

∫ +∞

0
Φ+
m (u) cosuzdu. (5)

Theorem 1. For every compact K ⊂ C,

lim
m→∞

sup
z∈K
|Ξ (z)− Ξm (z)| = 0.
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Proof. From (1)-(5) we have

Ξ (z) = Ξm (z) + 2

∫ +∞

0
Rm (u) cosuzdu+ 2

∫ +∞

0
Rm (−u) cosuzdu.

Therefore, it suffices to prove that

lim
m→∞

sup
z∈K

∣∣∣∣ ∫ +∞

0
Rm (±u) cosuzdu

∣∣∣∣ = 0. (6)

Let K ⊂ C be any fixed compact. Then, there exists r > 0 such that K ⊂ {z : |z| ≤ r}.
If A is a sufficiently large positive fixed number, then we have

sup
z∈K

∣∣∣∣ ∫ +∞

0
Rm (u) cosuzdu

∣∣∣∣ ≤ ∫ A

0
|Rm (u)| erudu+

∫ +∞

A
|Rm (u)| erudu. (7)

If u > A, using the formula (4) and the inequalities e2u > 1 + 2u + 2u2, P2m (2u) >
1 + 2u+ 2u2, we obtain:

|Rm (u)| =

=

∣∣∣∣∣
∞∑
n=1

(
2n4π2e

9
2
u − 3n2πe

5
2
u
) (

e−πn
2e2u − e−n

2πP2m(2u)
)∣∣∣∣∣ ≤

≤
∞∑
n=1

(
2n4π2e

9
2
u + 3n2πe

5
2
u
)
· 2e−πn2(1+2u+2u2) ≤

≤

( ∞∑
n=1

8n4π2e−πn
2

)
e−πu

2
= c1e

−πu2 , c1 =

∞∑
n=1

n4e−πn
2 · 8π2.

Further, let ε be an arbitrary positive number. Let us choose A > 0 so that the following
inequality is fulfilled:∫ +∞

A
|Rm (u)| erudu ≤

∫ +∞

A
c1e
−πu2+rudu <

ε

2
. (8)

Let us estimate the first integral in the right-hand side of (7) (for chosenA). As (u ∈ (0, A))

1− e−πn2(e2u−P2m(2u)) =

∫ πn2(e2u−P2m(2u))

0
e−ξdξ ≤ πn2

(
e2u − P2m (2u)

)
,

from (4) we have:

|Rm (u)| ≤
∞∑
n=1

(
2n4π2e

9
2
u − 3n2πe

5
2
u
)
πn2

(
e2u − P2m (2u)

)
e−πn

2P2m(2u) ≤
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≤
∞∑

s=2m+1

(2A)s

s!

∞∑
n=1

4n4π2 · πn2e
9
2
u e−πn

2(1+2u) ≤

≤
∞∑

s=2m+1

(2A)s

s!

∞∑
n=1

4π3n6 e−πn
2

= c2

∞∑
s=2m+1

(2A)s

s!
,

where c2 = 4π3
∑∞

n=1 n
6e−πn

2
.

Therefore, the following estimate is valid:∫ A

0
|Rm (u)| erudu ≤ c2erAA

∞∑
s=2m+1

(2A)s

s!
. (9)

Thus, from (7) - (9) we obtain

sup
z∈K

∣∣∣∣∫ ∞
0

Rm (u) cosuz du

∣∣∣∣ ≤ c2erAA ∞∑
s=2m+1

(2A)s

s!
+
ε

2
.

Passing to the limit as m→∞, we have

lim
m→∞

sup
z∈K

∣∣∣∣∫ +∞

0
Rm (u) cosuz du

∣∣∣∣ ≤ ε

2
,

and since ε is an arbitrary positive number, we get

lim
m→∞

sup
z∈K

∣∣∣∣∫ +∞

0
Rm (u) cosuz du

∣∣∣∣ = 0.

It remains to prove the validity of the second equality of (6), i.e. the following equality:

lim
m→∞

sup
z∈K

∣∣∣∣∫ +∞

0
Rm (−u) cosuz du

∣∣∣∣ = 0. (10)

According to (4), we have:

Rm (−u) =

=

∞∑
n=1

(
2n4π2e−

9
2
u − 3n2πe−

5
2
u
) (

e−πn
2[e−2u−P2m(−2u)] − 1

)
e−n

2πP2m(−2u) =

=
∞∑
n=1

(
2n4π2e−

9
2
u − 3n2πe−

5
2
u
)
e−πn

2e−2u
(

1− e−πn2[P2m(−2u)−e−2u]
)
. (11)

We first estimate Rm (−u) as m→∞. Taking into account the equality Φ (u) = Φ (−u),
the formula (11) can be written as
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Rm (−u) =
∞∑
n=1

(
2n4π2e

9
2
u − 3n2πe

5
2
u
)
e−n

2π e2u−

−
∞∑
n=1

(
2n4π2e−

9
2
u − 3n2πe−

5
2
u
)
e−n

2π P2m(−2u).

It is obvious that there exists B1 > 0 such that for all u > B1 the inequality P2m (−2u) ≥
1 + u2 (m ≥ 1) holds. Therefore for u > B1, in view of the inequality e2u > 1 + 2u+ 2u2,
we have:

|Rm (−u)| ≤
∞∑
n=1

(
2n4π2e

9
2
u
)
e−π n

2(1+2u+2u2)+

+
∞∑
n=1

4n4π2 e−π n
2(1+u2) ≤

∞∑
n=1

6n4π2 e−π n
2
e−π u

2
= c3e

−π u2 ,

where c3 =
∑∞

n=1 6n4π2 e−π n
2
. Consequently, the following integral converges:∫ +∞

B1

|Rm (−u)| erudu ≤ c3
∫ +∞

B1

e−πu
2+rudu.

Let ε as valid,be an arbitrary positive number. Then there is a number B > B1 such that∫ +∞

B
|Rm (−u)| erudu < ε

2
. (12)

Further, let u ∈ (0, B) and m+ 1 > B. We have

P2m (−2u)− e−2u = −
∞∑

s=2m+1

(−2u)s

s!
=

(2u)2m+1

(2m+ 1)!
− (2u)2m+2

(2m+ 2)!
+

(2u)2m+3

(2m+ 3)!
−

− (2u)2m+4

(2m+ 4)!
+ ... =

(2u)2m+1

(2m+ 1)!

(
1− 2u

2m+ 2

)
+

(2u)2m+3

(2m+ 3)!

(
1− 2u

2m+ 4

)
+ ... >

>
(2u)2m+1

(2m+ 1)!

(
1− B

m+ 1

)
+

(2u)2m+3

(2m+ 3)!

(
1− B

m+ 2

)
+ ... > 0.

Therefore

1− e−πn2(P2m(−2u)−e−2u) =

∫ πn2(P2m(−2u)−e−2u)

0
e−ξdξ ≤ πn2

(
P2m (−2u)− e−2u

)
.

Then from the formula (11) we have (u ∈ (0, B)):
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|Rm (−u)| ≤
∞∑
n=1

4n6π3 e−π n
2e−2B

∞∑
s=2m+1

(2B)s

s !
= c4

∞∑
s=2m+1

(2B)s

s !
,

where

c4 =
∞∑
n=1

4n6π3 e−π n
2e−2B

.

Consequently, ∫ B

0
|Rm (−u)| erudu ≤ erBc4B

∞∑
s=2m+1

(2B)s

s !
. (13)

Thus, from (12) and (13) it follows that

sup
z∈K

∣∣∣∣∫ ∞
0

Rm (−u) cosuz du

∣∣∣∣ ≤ ∫ B

0
|Rm (−u)| eru du+

+

∫ ∞
B
|Rm (−u)| eru du ≤ c4erBB

∞∑
s=2m+1

(2B)s

s!
+
ε

2
.

Now it is not difficult to deduce the relation (10). Theorem 1 is proved. J
Let us introduce the notation

Ξ(l)
m (z) =

= 4

∫ +∞

0

l∑
n=1

e−πn
2P+

2m(2u)

{
2n4π2cosh

(
πn2P−2m (2u)− 9

2
u

)
−

−3n2πcosh

(
πn2P−2m (2u)− 5

2
u

)}
cosuzdu. (14)

Theorem 2. There exists m0 such that for any compact K ⊂ C

lim
l→∞

sup
m≥m0

sup
z∈K

∣∣∣Ξ(l)
m (z)− Ξm (z)

∣∣∣ = 0.

Proof. From the relations (3), (5) and (14) we have

Ξm (z)− Ξ(l)
m (z) = 4

∫ ∞
0

∞∑
n=l+1

F+
n (u) cosuzdu,

where

F+
n (u) =
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= e−πn
2P+

2m(2u)

{
2n4π2cosh

(
πn2P−2m (2u)− 9

2
u

)
− 3n2πcosh

(
πn2P−2m (2u)− 5

2
u

)}
.

As, for u > B1 the estimation P2m (−2u) > 1 + u2 is valid, where B1 is a sufficiently large
number, let us estimate F+

n (u) for u > B1:

F+
n (u) ≤ e−πn2P+

2m(2u)2n4π2eπn
2P−

2m(2u)+ 9
2
u =

= 2n4π2e−πn
2P2m(−2u)+ 9

2
u ≤ 2n4π2e−πn

2(1+u2)+ 9
2
u.

For 0 < u < B1, we use the inequality

P2m (−2u)− e−2u > 0 (1 +m > B1) :

F+
n (u) ≤ 2n4π2e−πn

2P2m(−2u)+ 9
2
u = 2n4π2e−πn

2(P2m(−2u)−e−2u)e−πn
2e−2u+9

2u

≤

≤ 2n4π2e−πn
2e−2u+ 9

2
u ≤ 2n4π2e−πn

2e−2B1+ 9
2
B1 .

Taking into account these estimates for F+
n (u), we can write

sup
z∈K

∣∣∣Ξm (z)− Ξ(l)
m (z)

∣∣∣ ≤ ∫ B1

0

∞∑
n=l+1

F+
n (u) erudu+

∫ +∞

B1

∞∑
n=l+1

F+
n (u) erudu ≤

≤ 2π2e(
9
2
+r)B1B1

∞∑
n=l+1

n4e−πn
2e−B1

+ 2π2
∫ ∞
B1

e−πu
2+ 9

2
u+rudu

∞∑
n=l+1

n4e−πn
2
.

Hence, we get the proof of Theorem 2. Note that we can take m0 = B1 − 1. J
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