Azerbaijan Journal of Mathematics V. 6, No 1, 2016, January ISSN 2218-6816

Generalized Statistical Convergence in the Non-Archimedean \mathcal{L} -fuzzy Normed Spaces

N. Eghbali^{*}, M. Ganji

Abstract. In this paper we define and study generalized statistical convergence in non-Archimedean \mathcal{L} -fuzzy normed space. We obtain some results concerning the generalized statistical convergence in non-Archimedean \mathcal{L} -fuzzy normed spaces. Also we introduce the notion of the generalized statistical completeness in non-Archimedean \mathcal{L} -fuzzy normed spaces and we show that the non-Archimedean \mathcal{L} -fuzzy normed space is generalized statistically complete one.

Key Words and Phrases: fuzzy number, non-Archimedean \mathcal{L} -fuzzy normed space, generalized statistical convergence.

2010 Mathematics Subject Classifications: 46S40

1. Introduction

Motivated by the theory of fuzzy notion [25, 10] and fuzzy normed linear space [1, 2, 3, 4] the notion of non-Archimedean \mathcal{L} -fuzzy normed space were developed.

Convergence was first introduced by Fast [8] as a generalization of ordinary convergence for real sequences. Since then it has been studied by many authors ([5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24]). The idea is based on the notion of natural density of subsets of \mathbb{N} . The notion of statistical convergence is a very useful functional tool for studying the convergence problem of numerical sequences and matrices.

The aim of the present paper is to investigate the generalized statistical convergence on non-Archimedean \mathcal{L} -fuzzy normed spaces. Also, we introduce the concepts of generalized statistically Cauchy sequence and completeness and obtain some main results. obtained.

2. Preliminaries

In this section we provide a collection of definitions and related results which are essential and will be used in the next discussions.

http://www.azjm.org

© 2010 AZJM All rights reserved.

 $^{^{*}}$ Corresponding author.

Definition 1. Let X be a real linear space. A function $N : X \times \mathbb{R} \to [0,1]$ is said to be a fuzzy norm on X if for all $x, y \in X$ and all $t, s \in \mathbb{R}$,

 $\begin{array}{l} (N1) \ N(x,c) = 0 \ for \ c \leq 0; \\ (N2) \ x = 0 \ if \ and \ only \ if \ N(x,c) = 1 \ for \ all \ c > 0; \\ (N3) \ N(cx,t) = N(x, \frac{t}{|c|}) \ if \ c \neq 0; \\ (N4) \ N(x+y,s+t) \geq \min\{N(x,s),N(y,t)\}; \\ (N5) \ N(x,.) \ is \ a \ non-decreasing \ function \ on \ \mathbb{R} \ and \ \lim_{t\to\infty} N(x,t) = 1; \\ (N6) \ for \ x \neq 0, \ N(x,.) \ is \ (upper \ semi) \ continuous \ on \ \mathbb{R}. \end{array}$

The pair (X, N) is called a fuzzy normed linear space.

Definition 2. A binary operation $* : [0,1] \times [0,1] \rightarrow [0,1]$ is said to be a t-norm if it satisfies the following conditions:

- (*1) * is associative,
 (*2) * is commutative,
- $(*3) \ a * 1 = a \ for \ all \ a \in [0,1] \ and$

(*4) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ for each $a, b, c, d \in [0, 1]$.

Definition 3. A complete lattice is a partially ordered set in which all subsets have both a supremum and an infimum.

Definition 4 ([10]). Let $\mathcal{L} = (L, <_L)$ be a complete lattice and let U be a non-empty set called the universe. An \mathcal{L} -fuzzy set \mathcal{A} on U is defined by a mapping $\mathcal{A} : U \to L$. For any $u \in U, \mathcal{A}(u)$ represents the degree (in L) to which U satisfies \mathcal{A} .

Definition 5 ([23]). A t-norm on \mathcal{L} is a mapping $*_L : L^2 \to L$ satisfying the following conditions:

 $\begin{array}{l} (i) \ (\forall x \in L)(x \ast_L 1_{\mathcal{L}} = x)(: \ boundary \ condition); \\ (ii) \ (\forall (x,y) \in L^2)(x \ast_L y = y \ast_L x)(: \ commutativity); \\ (iii) \ (\forall (x,y,z) \in L^3)(x \ast_L (y \ast_L z)) = ((x \ast_L y) \ast_L z)(: \ associativity); \\ (iv) \ (\forall (x,y,z,w) \in L^4)(x \leq_L x' \ and \ y \leq_L y' \Rightarrow x \ast_L y \leq_L x' \ast_L y')(: \ monotonicity). \end{array}$

A t-norm $*_L$ on \mathcal{L} is said to be continuous if, for any $x, y \in L$ and any sequences $\{x_n\}$ and $\{y_n\}$ which converge to x and y, respectively, $\lim_{n\to\infty} (x_n *_L y_n) = x *_L y$ ([22]).

Definition 6. Let \mathbb{K} be a field. A non-Archimedean absolute value on \mathbb{K} is a function $|.|: \mathbb{K} \to \mathbb{R}$ such that for any $a, b \in \mathbb{K}$ we have

- (1) $|a| \ge 0$ and equality holds if and only if a = 0,
- (2) |ab| = |a||b|,
- (3) $|a+b| \le max\{|a|, |b|\}.$

Note that $|n| \leq 1$ for each integer n. We always assume, in addition, that |.| is non-trivial, i.e., there exists an $a_0 \in \mathbb{K}$ such that $|a_0| \neq 0, 1$.

Definition 7. Let K be a field with a non-Archimedean absolute value |.|. A non-Archimedean \mathcal{L} -fuzzy normed space is a triple $(V, \mathcal{P}, *_L)$, where V is a vector space over K, $*_L$ is a continuous t-norm on \mathcal{L} and \mathcal{P} is an \mathcal{L} -fuzzy set on $V \times (0, +\infty)$ such that for all $x, y \in V$ and $t, s \in (0, \infty)$ the following conditions are satisfied:

(a) $\mathcal{P}(x,t) >_L 0_{\mathcal{L}};$ (b) $\mathcal{P}(x,t) = 1_{\mathcal{L}}$ if and only if x = 0;(c) $\mathcal{P}(\alpha x,t) = \mathcal{P}(x,\frac{t}{|\alpha|})$ for all $\alpha \neq 0;$ (d) $\mathcal{P}(x,t) *_L \mathcal{P}(y,s) \leq_L \mathcal{P}(x+y,\max\{t,s\});$ (e) $\mathcal{P}(x,.) : (0,\infty) \to L$ is continuous; (f) $\lim_{t\to 0} \mathcal{P}(x,t) = 0_{\mathcal{L}}$ and $\lim_{t\to\infty} \mathcal{P}(x,t) = 1_{\mathcal{L}}.$

Definition 8. A negator on \mathcal{L} is any decreasing mapping $\mathcal{N} : L \to L$ satisfying $\mathcal{N}(0_{\mathcal{L}}) = 1_{\mathcal{L}}$ and $\mathcal{N}(1_{\mathcal{L}}) = 0_{\mathcal{L}}$.

Definition 9. If $\mathcal{N}(\mathcal{N}(x)) = x$ for all $x \in L$, then \mathcal{N} is called an involutive negator.

In this paper, the involutive negator \mathcal{N} is fixed.

Definition 10. A sequence (x_n) in an \mathcal{L} -fuzzy normed space $(V, \mathcal{P}, *_L)$ is called a Cauchy sequence if, for each $\epsilon \in L - \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ and t > 0, there exists $n_0 \in \mathbb{N}$ such that, for all $n, m \ge n_0, \mathcal{P}(x_n - x_m, t) >_L \mathcal{N}(\epsilon)$, where \mathcal{N} is a negator on \mathcal{L} .

A sequence (x_n) is said to be convergent to $x \in V$ in the \mathcal{L} -fuzzy normed space $(V, \mathcal{P}, *_L)$, if $\mathcal{P}(x_n - x, t) \to 1_{\mathcal{L}}$, whenever $n \to +\infty$ for all t > 0.

An \mathcal{L} -fuzzy normed space $(V, \mathcal{P}, *_L)$ is said to be complete if every Cauchy sequence in V is convergent.

Definition 11. Let K be a subset of \mathbb{N} . Then the asymptotic density of K denoted by $\delta(K)$, is defined as

$$\delta(K) = \lim_{n \to \infty} \frac{1}{n} |\{k \le n : k \in K\}|,$$

where the vertical bars denote the cardinality of the enclosed set.

A number sequence (x_k) is said to be statistically convergent to the number x if for each $\epsilon > 0$, the set $K(\epsilon) = \{k \le n : |x_k - x| > \epsilon\}$ has density zero, i.e.

$$\lim_{n \to \infty} \frac{1}{n} |\{k \le n : |x_k - x| \ge \epsilon\} = 0.$$

In this case we write $st - \lim_{k \to \infty} x_k = x$. (see [8] and [9]).

Note that every convergent sequence is statistically convergent to the same limit, but the converse need not be true.

Definition 12 ([20]). Let (λ_n) be a non-decreasing sequence of positive numbers tending to ∞ such that

$$\lambda_{n+1} \le \lambda_n + 1, \qquad \lambda_1 = 0.$$

Let $K \subseteq \mathbb{N}$. The number

$$\delta_{\lambda}(K) = \lim_{n \to \infty} \frac{1}{\lambda_n} |\{k \in I_n : k \in K\}|,$$

is said to be the λ -density of K, where $I_n = [n - \lambda_n + 1, n]$.

If $\lambda_n = n$ for every n, then λ -density is reduced to the asymptotic density. A sequence (x_k) is said to be λ -statistically convergent to the number x if for $\epsilon > 0$, the set $N(\epsilon)$ has λ -density zero, where

$$N(\epsilon) = \{k \in \mathbb{N} : |x_k - x| \ge \epsilon\}.$$

In this case, we write $st_{\lambda} - \lim_{k \to \infty} x_k = x$.

3. Generalized statistical convergence in the non-Archimedean *L*-fuzzy normed spaces

Let \mathbb{K} be a non-Archimedean field and $(X, \mathcal{P}, *_L)$ be a non-Archimedean \mathcal{L} -fuzzy normed space over \mathbb{K} .

In this section we define the λ -statistical convergence with respect to \mathcal{L} -fuzzy normed space.

Definition 13. Let $(X, \mathcal{P}, *_L)$ be a non-Archimedean \mathcal{L} -fuzzy normed space over \mathbb{K} . A sequence (x_k) is said to be λ -statistically convergent to $x \in X$ with respect to the non-Archimedean \mathcal{L} -fuzzy normed space if for every $\epsilon \in L - \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ and t > 0,

$$\delta_{\lambda}(\{k \in \mathbb{N} : \mathcal{P}(x_k - x, t) >_L \mathcal{N}(\epsilon)\}) = 1,$$

or equivalently

$$\delta_{\lambda}(\{k \in \mathbb{N} : \mathcal{P}(x_k - x, t) \neq_L \mathcal{N}(\epsilon)\}) = 0.$$

In this case we write $st_{\mathcal{P}}^{\lambda} - \lim_{k \to \infty} x_k = L$.

Theorem 1. Let $(X, \mathcal{P}, *_L)$ be a non-Archimedean \mathcal{L} -fuzzy normed space over \mathbb{K} . If a sequence (x_k) is λ -statistically convergent, then $st^{\lambda}_{\mathcal{P}}$ -limit is unique.

Proof. Suppose that $st_{\mathcal{P}}^{\lambda} - lim_{k\to\infty}x_k = x_1$ and $st_{\mathcal{P}}^{\lambda} - lim_{k\to\infty}x_k = x_2$. Given $\epsilon \in L - \{0_L, 1_L\}$ for any t > 0, we have

$$\delta_{\lambda}(\{k \in \mathbb{N} : \mathcal{P}(x_k - x_1, t) \not\geq_L \mathcal{N}(\epsilon)\}) = 0,$$

and

$$\delta_{\lambda}(\{k \in \mathbb{N} : \mathcal{P}(x_k - x_2, t) \not\geq_L \mathcal{N}(\epsilon)\}) = 0.$$

Put $K_1 = \{k \in \mathbb{N} : \mathcal{P}(x_k - x_1, t) \not\geq_L \mathcal{N}(\epsilon)\}$ and $K_2 = \{k \in \mathbb{N} : \mathcal{P}(x_k - x_2, t) \not\geq_L \mathcal{N}(\epsilon)\}$. Suppose that $K = K_1 \bigcup K_2$. This implies that K^c is a nonempty set. Let $m \in K^c$. Then we have

$$\mathcal{P}(x_1 - x_2, t) >_L \mathcal{P}(x_m - x_1, t) * \mathcal{P}(x_m - x_2) >_L \mathcal{N}(\epsilon).$$

Since ϵ was selected arbitrary, therefore we have $x_1 = x_2$.

18

Theorem 2. Let $(X, \mathcal{P}, *_L)$ be a non-Archimedean \mathcal{L} -fuzzy normed space over \mathbb{K} . If $\lim_{k\to\infty} \mathcal{P}(x_k - L, t) = 1$, then $st^{\lambda}_{\mathcal{P}} - \lim_{k\to\infty} x_k = L$.

Proof. Let $\lim_{k\to\infty} \mathcal{P}(x_k - L, t) = 1$. Then for every $\epsilon > 0$ and t > 0, there is a number $k_0 \in \mathbb{N}$ such that $\mathcal{P}(x_k - x, t) >_L \mathcal{N}(\epsilon)$, for all $k \ge k_0$. Hence the set $\{k \in \mathbb{N} : \mathcal{P}(x_k - x, t) \neq_L \mathcal{N}(\epsilon)\}$ has a finite number of terms. So $\delta_{\lambda}\{k \in \mathbb{N} : \mathcal{P}(x_k - x, t) \neq_L \mathcal{N}(\epsilon)\} = 0$, that is, $st^{\lambda}_{\mathcal{P}} - \lim_{k\to\infty} x_k = x$.

Theorem 3. Let (x_k) and (y_k) be sequences in a non-Archimedean \mathcal{L} -fuzzy normed space $(X, \mathcal{P}, *_L)$ such that $st^{\lambda}_{\mathcal{P}} - \lim_{k \to \infty} x_k = x$ and $st^{\lambda}_{\mathcal{P}} - \lim_{k \to \infty} y_k = y$, where $x, y \in X$. Then we have

(i) $st_{\mathcal{P}}^{\lambda} - lim_{k \to \infty}(x_k + y_k) = x + y,$ (ii) $st_{\mathcal{P}}^{\lambda} - lim_{k \to \infty}cx_k = cx.$

Proof. (i) Assume that $st_{\mathcal{P}}^{\lambda} - \lim_{k \to \infty} x_k = x$ and $st_{\mathcal{P}}^{\lambda} - \lim_{k \to \infty} y_k = y$. Put $K_1 = \{k \in \mathbb{N} : \mathcal{P}(x_k - x, t) \neq_L \mathcal{N}(\epsilon)\}$, $K_2 = \{k \in \mathbb{N} : \mathcal{P}(y_k - y, t) \neq_L \mathcal{N}(\epsilon)\}$ and $k = k_1 \bigcup K_2$. It follows that K^c is a nonempty set. Let $m \in K^c$. We have $\mathcal{P}(x_m - x, t) >_L \mathcal{N}(\epsilon)$ and $\mathcal{P}(y_m - y, t) >_L \mathcal{N}(\epsilon)$. Now we have

$$\mathcal{P}(x_m + y_m - x - y, t) >_L \mathcal{N}(\epsilon) >_L \mathcal{P}(x_m - x, t) * \mathcal{P}(y_m - y, t) >_L \mathcal{N}(\epsilon).$$

On the other hand, we have

$$\delta_{\lambda}(\{k \in \mathbb{N} : \mathcal{P}(x_k + y_k) - (x + y), t) \not\geq_L \mathcal{N}(\epsilon)\}) = \delta_{\lambda}(K^c) \le \delta_{\lambda}(K_1^c) = 0.$$

(ii) If c = 0, we have $\{k \in \mathbb{N} : \mathcal{P}(cx_k - cx, t) \not\geq_L \mathcal{N}(\epsilon)\} = \phi$. In the other case

$$\delta_{\lambda}(\{k \in \mathbb{N} : \mathcal{P}(cx_k - cx, t) \not\geq_L \mathcal{N}(\epsilon)\}) = \delta_{\lambda}(\{\mathcal{P}(x_k - x, \frac{t}{|c|}) \not\geq_L \mathcal{N}(\epsilon)\}) = 0.\blacktriangleleft$$

Definition 14. Let $(X, \mathcal{P}, *_L)$ be a non-Archimedean \mathcal{L} -fuzzy normed space over \mathbb{K} . Then, a sequence (x_k) is said to be λ -statistically Cauchy if for every $\epsilon > 0$ and t > 0 there exists N such that for all $k, l \geq N$

$$\delta_{\lambda}(\{k \in \mathbb{N} : \mathcal{P}(x_k - x_l, t) >_L \mathcal{N}(\epsilon)\}) = 1,$$

or equivalently

$$\delta_{\lambda}(\{k \in \mathbb{N} : \mathcal{P}(x_k - x_l, t) \not\geq_L \mathcal{N}(\epsilon)\}) = 0.$$

Theorem 4. In non-Archimedean \mathcal{L} -fuzzy normed space $(X, \mathcal{P}, *_L)$ over \mathbb{K} , every Cauchy sequence with respect to \mathcal{P} is λ -statistically Cauchy.

Proof. Suppose that (x_n) is a Cauchy sequence with respect to \mathcal{P} . So for all $\epsilon \in L - \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ there exists N > 0 such that for all n > N and an arbitrary constant p we have $\mathcal{P}(x_{n+p} - x_n, t) >_L \mathcal{N}(\epsilon)$. The set $\{n \in \mathbb{N} : \mathcal{P}(x_{n+p} - x_n, t) \neq_L \mathcal{N}(\epsilon)\}$ has a finite number of terms, so

N. Eghbali, M. Ganji

$$\delta_{\lambda}(\{n \in \mathbb{N} : \mathcal{P}(x_{n+p} - x_n, t) \not\geq_L \mathcal{N}(\epsilon)\}) = 0.\blacktriangleleft$$

Theorem 5. Let $(X, \mathcal{P}, *_L)$ be a non-Archimedean \mathcal{L} -fuzzy normed space over \mathbb{K} . If a sequence is λ -statistically convergent, then it is λ -statistically Cauchy.

Proof. Suppose that $\{x_k\}$ is λ -statistically convergent to x. We have

$$\delta_{\lambda}(\{k \in \mathbb{N} : \mathcal{P}(x_k - x, t) \not\geq_L \mathcal{N}(\epsilon)\}) = 0.$$

Now we have

$$\delta_{\lambda}(\{k \in \mathbb{N} : \mathcal{P}(x_k - x_l, t) \neq_L \mathcal{N}(\epsilon)\}) = \delta_{\lambda}(\{k \in \mathbb{N} : \mathcal{P}(x_k - x, t) * \mathcal{P}(x_l - x, t) \neq_L \mathcal{N}(\epsilon)\}) = 0$$

◀

Definition 15. A non-Archimedean \mathcal{L} -fuzzy normed space $(X, \mathcal{P}, *_L)$ over \mathbb{K} is said to be λ -statistically complete if every λ -statistically Cauchy sequence with respect to \mathcal{P} is λ -statistically convergent with respect to \mathcal{P} .

Theorem 6. Every non-Archimedean \mathcal{L} -fuzzy normed space $(X, \mathcal{P}, *_L)$ over \mathbb{K} is λ -statistically complete with respect to \mathcal{P} .

Proof. Suppose that (x_k) is λ -statistically Cauchy but not λ -statistically convergent to $x \in X$. We have

$$\delta_{\lambda}(\{k \in \mathbb{N} : \mathcal{P}(x_k - x_l, t) \not\geq_L \mathcal{N}(\epsilon)\}) = \delta_{\lambda}(\{k \in \mathbb{N} : \mathcal{P}(x_k - x, t) * \mathcal{P}(x_l - x, t) \not\geq_L \mathcal{N}(\epsilon)\}) = 0,$$

which is a contradiction. \blacktriangleleft

Definition 16. Let $(X, P, *_L)$ be a non-Archimedean \mathcal{L} -fuzzy normed space over \mathbb{K} . A map $f: X \to X$ is called \mathcal{P} -continuous at a point $x \in X$, if the convergence of the sequence in the non-Archimedean \mathcal{L} -fuzzy normed space implies the convergence of $f(x_n)$ to f(x) in the non-Archimedean \mathcal{L} -fuzzy normed space.

Definition 17. Let $(X, P, *_L)$ be a non-Archimedean \mathcal{L} -fuzzy normed space over \mathbb{K} . A map $f: X \to X$ is called λ -statistically continuous at a point $x \in X$, if $st_{\mathcal{P}}^{\lambda} lim_{n \to \infty} x_n = x$ implies that $st_{\mathcal{P}}^{\lambda} lim_{n \to \infty} f(x_n) = f(x)$.

Theorem 7. Let $(X, P, *_L)$ be a non-Archimedean \mathcal{L} -fuzzy normed space over \mathbb{K} . If $f : X \to X$ is continuous with respect to \mathcal{P} , then it is λ -statistically continuous.

Proof. Let $(x_n) \in X$ and $st_{\mathcal{P}}^{\lambda} lim_{n \to \infty} x_n = x$. Then for every $\epsilon \in L - \{0_L, 1_L\}$ and $t \geq 0$, the inequality $\mathcal{P}(x_n - x, t) >_L \mathcal{N}(\epsilon)$ implies that $\mathcal{P}(f(x_n) - f(x), t) >_L \mathcal{N}(\epsilon)$, since f is continuous with respect to \mathcal{P} at $x \in X$. Thus $\{n \in \mathbb{N} : \mathcal{P}(f(x_n) - f(x), t) \neq_L \mathcal{N}(\epsilon)\} \subset \{n[in\mathbb{N} : P(x_n - x, t) \neq_L \mathcal{N}(\epsilon)\}$. Since $st_{\mathcal{P}}^{\lambda} lim_{n \to \infty} x_n = x$, we have $\delta_{\lambda}\{n \in \mathbb{N} : P(x_n - x, t) \neq_L \mathcal{N}(\epsilon)\} = 0$. This implies that $\delta_{\lambda}\{n \in \mathbb{N} : P(f(x_n) - f(x), t) \neq_L \mathcal{N}(\epsilon)\} = 0$ which means that $st_{\mathcal{P}}^{\lambda} lim_{n \to \infty} f(x_n) = f(x)$. Hence, f is λ -statistically continuous.

20

References

- T. Bag, S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151, 2005, 513–547.
- [2] B.T. Bilalov, S.M. Farahani, F.A. Guliyeva, The intuitionistic fuzzy normed space of coefficients, Abstract and Applied Analysis, 2012, 2012, 11 pages.
- [3] B.T. Bilalov, F.A. Guliyeva, On the basicity of system in the intuitionistic fuzzy metric space, Azerbaijan Journal of Mathematics, 4(1), 2014, 136–149.
- [4] B.T. Bilalov, F.A. Guliyeva, The weakly basicity of system in the intuitionistic fuzzy metric space, Advances in Fuzzy Mathematics, 9(1), 2014, 33–45.
- [5] B.T. Bilalov, T.Y. Nazarova, On statistical convergence in metric spaces, Journal of Mathematics Research, 7(1), 2015, 37–43.
- [6] B.T. Bilalov, T.Y. Nazarova, On the statistical type convergence and fundamentality in metric spaces, Caspian Journal of Applied Mathematics, Ecology and Economics, 2(1), 2014, 84–93.
- [7] B.T. Bilalov, S.R. Sadigova, On μ-statistical convergence, Proceedings of the American Society, 143(9), 2015, 3869-3878.
- [8] H. Fast, Sur la convergence statistique, Colloq. Math., 2, 1951, 241–244.
- [9] J.A. Fridy, On statistical convergence, Analysis, 5, 1985, 301–313.
- [10] J.A. Goguen, *L-fuzzy sets*, J. Math. Anal. Appl., **18**, 1967, 145–174, .
- [11] V. Karakaya, N. ŞimŞek, M. Ertürk, F. Gürsoy, Statistical convergence of sequences of functions in intuitionistic fuzzy normed spaces, Abstract and Applied Analysis, 2012, 2012, 19 pages.
- [12] V. Karakaya, N. ŞimŞek, M. Ertürk, F. Gürsoy, On ideal convergence of sequences of functions in intuitionistic fuzzy normed spaces, Appl. Math. Inf. Sci., 8(5), 2014, 2307–2313.
- [13] V. Karakaya, N. ŞimŞek, F. Gürsoy, M. Ertürk, Lacunary statistical convergence of sequences of functions in intuitionistic fuzzy normed space, Journal of Intelligent and Fuzzy Systems, 26(3), 2014, 1289–1299.
- [14] S. Karakus, K. Demirci, O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Choas, Solitons and Fractals, 35, 2008, 763–769.
- [15] A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12, 1984, 143–154.

- [16] A.K. Mirmostafaee, M.S. Moslehian, Stability of additive mappings in non-Archimedean fuzzy normed spaces, Fuzzy Sets and Systems, 160, 2009, 1643–1652.
- [17] D. Mihet, Fuzzy ψ -contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems, **159**, 2008, 739–744.
- [18] S.A. Mohiuddine, Q.M. Danish Lohani, On generalized statistical convergence in intuitionistic fuzzy normed space, Choas, Solitons and Fractals, 42, 2009, 1731–1737.
- [19] S.A. Mohiuddine, H. Şevli, M. Cancan, Statistical convergence of double sequences in fuzzy normed spaces, Filomat, 26(4), 2012, 673–681.
- [20] M. Mursaleen, λ -statistical convergence, Math. Slovaca., **50**, 2000, 111–115.
- [21] G.S. Rhie, I.A. Hwang, J.H. Kim, On the statistically complete fuzzy normed linear space, J. Chungcheomg Math. Soc., 22(3), 2009, 597–605.
- [22] J. H. Van der Walt, Oreder convergence on Archimedean vector lattices and applications, University of Pretoria, 2006.
- [23] R. Saadati, C. Park, Non-Archimedean *L*-fuzzy normed spaces and stability of functional equations, Computers and Mathematics with Applications, 60, 2010, 2488– 2496.
- [24] C. Sencimen, S. Pehlivan, Statistical convergence in fuzzy normed spaces, Fuzzy Sets and Systems, 159, 2007, 361–370.
- [25] L.A. Zadeh, *Fuzzy sets*, Inform. and Control, 8, 1965, 338–353.

Nasrin Eghbali Department of Mathematics, Facualty of Mathematical Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran E-mail: nasrineghbali@gmail.com,eghbali@uma.ac.ir

Masoud Ganji Department of Statistics, Facualty of Mathematical Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran E-mail: mganji@uma.ac.ir

Received 25 November 2014 Accepted 15 April 2015