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Generalized Statistical Convergence in the Non-Archimedean
L-fuzzy Normed Spaces
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Abstract. In this paper we define and study generalized statistical convergence in non-Archimedean
L-fuzzy normed space. We obtain some results concerning the generalized statistical convergence
in non-Archimedean L-fuzzy normed spaces. Also we introduce the notion of the generalized
statistical completeness in non-Archimedean L£-fuzzy normed spaces and we show that the non-
Archimedean L-fuzzy normed space is generalized statistically complete one.
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1. Introduction

Motivated by the theory of fuzzy notion [25, 10] and fuzzy normed linear space [1, 2,
3, 4] the notion of non-Archimedean £-fuzzy normed space were developed.

Convergence was first introduced by Fast [8] as a generalization of ordinary convergence
for real sequences. Since then it has been studied by many authors ([5, 6, 7, 9, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 23, 24]). The idea is based on the notion of natural density
of subsets of N. The notion of statistical convergence is a very useful functional tool for
studying the convergence problem of numerical sequences and matrices.

The aim of the present paper is to investigate the generalized statistical convergence on
non-Archimedean £-fuzzy normed spaces. Also, we introduce the concepts of generalized
statistically Cauchy sequence and completeness and obtain some main results. obtained.

2. Preliminaries

In this section we provide a collection of definitions and related results which are
essential and will be used in the next discussions.
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Definition 1. Let X be a real linear space. A function N : X x R — [0, 1] is said to be a
fuzzy norm on X if for all x,y € X and allt,s € R,

(N1) N(z,¢) =0 for ¢ <0;

(N2) x =0 if and only if N(x,c) =1 for all ¢ > 0;

(N3) N(cx,t) = N(x, |t?|) if ¢ #0;

(N4) N(x+y,s+1t) >min{N(z,s), N(y,t)};

(N5) N(z,.) is a non-decreasing function on R and lim;_ooN(z,t) = 1;

(NG) for x # 0, N(x,.) is (upper semi) continuous on R.

The pair (X, N) is called a fuzzy normed linear space.

Definition 2. A binary operation * : [0,1] x [0,1] — [0,1] is said to be a t-norm if it
satisfies the following conditions:

(x1) * is associative,

(x2) * is commutative,

(x3) a*x1=a for all a € [0,1] and

(¥4) a x b < ¢+ d whenever a < ¢ and b < d for each a,b,c,d € [0,1].

Definition 3. A complete lattice is a partially ordered set in which all subsets have both
a supremum and an infimum.

Definition 4 ([10]). Let £ = (L, <) be a complete lattice and let U be a non-empty set
called the universe. An L-fuzzy set A on U is defined by a mapping A:U — L. For any
u € U, A(u) represents the degree (in L) to which U satisfies A.

Definition 5 ([23]). A t-norm on L is a mapping *1, : L> — L satisfying the following
conditions:

(i) (Vx € L)(x *1, 1z = x)(: boundary condition);

(ii) (Y(z,y) € L?)(x*y =y * x)(: commutativity);

(iii) (V(x,y,2) € L3)(x *1 (y *1 2)) = ((x *L y) *L 2) (: associativity);

(iv) (V(x,y,z,w) € LY (z <p 2’ andy <p v = x 1y <p @’ * y')(: monotonicity).

A t-norm #7, on £ is said to be continuous if, for any x,y € L and any sequences {xy, }
and {y,} which converge to x and y, respectively, lim,—oo(Tpn *1 yn) = = *1 y ([22]).

Definition 6. Let K be a field. A non-Archimedean absolute value on K is a function
|| : K — R such that for any a,b € K we have

(1) |a| > 0 and equality holds if and only if a =0,

(2) |abl = |al[b],

(3) la+b| < max{lal, [b[}.

Note that |n| < 1 for each integer n. We always assume, in addition, that |.| is non-
trivial, i.e., there exists an ag € K such that |ag| # 0, 1.

Definition 7. Let K be a field with a non-Archimedean absolute value |.|. A non-
Archimedean L-fuzzy normed space is a triple (V,P,*r), where V is a vector space over
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K, %1, is a continuous t-norm on L and P is an L-fuzzy set on V x (0,400) such that for
all z,y € V and t,s € (0,00) the following conditions are satisfied:

(a) P(z,t) >1 0f;

(b) P(x,t) =1z if and only if x = 0;

(c) Plaz,t) = P(z, ﬁ) for all o # 0;

(d) P(z,t) *r, P(y,s) <p P(x +y,maz{t,s});

(e) P(z,.): (0,00) = L is continuous;

(f) limi—oP(x,t) = 0z and limi—ooP(x,t) = 1.

Definition 8. A negator on L is any decreasing mapping N : L — L satisfying N (0z) =
1z and N(1z) = 0.

Definition 9. If N(N(z)) =z for all z € L, then N is called an involutive negator.
In this paper, the involutive negator N is fixed.

Definition 10. A sequence (xy,) in an L-fuzzy normed space (V, P, *r) is called a Cauchy
sequence if, for each € € L —{0z,12} and t > 0, there exists ng € N such that, for all
n,m > ng, P(xn — xm,t) >5 N(€), where N is a negator on L.

A sequence (xy) is said to be convergent to x € V in the L-fuzzy normed space
(V,P,x1), if P(xy, — x,t) = 1z, whenever n — +oo for all t > 0.

An L-fuzzy normed space (V,P,xp) is said to be complete if every Cauchy sequence in
V' is convergent.

Definition 11. Let K be a subset of N. Then the asymptotic density of K denoted by
d(K), is defined as

§(K) = limpoot|{k <n:k e K}

where the vertical bars denote the cardinality of the enclosed set.
A number sequence (xy) is said to be statistically convergent to the number x if for
each € > 0, the set K(e) ={k <n: |z — x| > €} has density zero, i.e.

limp oot |{k < n: |z, — ) > €} = 0.

In this case we write st — limg_ooxr, = . (see [8] and [9]).
Note that every convergent sequence is statistically convergent to the same limit, but
the converse need not be true.

Definition 12 ([20]). Let (A,) be a non-decreasing sequence of positive numbers tending
to 0o such that

A1 <A +1, A =0.

Let K C N. The number

OA(K) = limn ooy |{k € I, : k € K},
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is said to be the \-density of K, where I, = [n — A, + 1,n].

If A\, = n for every n, then A-density is reduced to the asymptotic density. A sequence
(zx) is said to be \-statistically convergent to the number x if for € > 0, the set N(e) has
A-density zero, where

N(e) ={k e N: |z — x| > €}.
In this case, we write sty — liMmp_ooTkp = T.

3. Generalized statistical convergence in the non-Archimedean L-fuzzy
normed spaces

Let K be a non-Archimedean field and (X, P,*1) be a non-Archimedean L-fuzzy
normed space over K.

In this section we define the A-statistical convergence with respect to L-fuzzy normed
space.

Definition 13. Let (X,P,*y) be a non-Archimedean L-fuzzy normed space over K. A
sequence (x) is said to be A-statistically convergent to x € X with respect to the non-
Archimedean L-fuzzy normed space if for every e € L —{0z,1,2} and t > 0,

W({keN: Pz —z,t) > N(e)}) =1,
or equivalently
Wk eN:P(xg —x,t) L. N(e)}) = 0.
In this case we write st% —limp—eoxr = L.

Theorem 1. Let (X, P,*r) be a non-Archimedean L-fuzzy normed space over K. If a
sequence () is A-statistically convergent, then st%‘;-limit 1S UNLQUE.

Proof. Suppose that sti‘, — limp— ook = x1 and st% — limpg_oorr, = 9. Given € €
L —{0g,11} for any ¢t > 0, we have

N({k eN:P(ay —x1,t) #L N(e)}) =0,
and
(5)\({]€ € N: P(:pk — J}Q,t) ?éL N(G)}) =0.

Put K1 ={k € N: Pz —x1,t) #1L N(e)} and Ky = {k € N: P(ap —x2,t) #1 N(€)}.
Suppose that K = Kj|J K2. This implies that K€ is a nonempty set. Let m € K¢. Then
we have

P(x1 — x2,t) > P(Tm — x1,1) * P2y, — 12) >1 N(e).

Since € was selected arbitrary, therefore we have r1 = 4. «
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Theorem 2. Let (X, P,x1) be a non-Archimedean L-fuzzy normed space over K. If
limp—ooP(z, — L, t) = 1, then st%‘) —limp—ooTr = L.

Proof. Let limy_ooP(xr — L,t) = 1. Then for every ¢ > 0 and ¢ > 0, there is a number
ko € N such that P(zy — x,t) > N(e), for all k > ko. Hence the set {k € N : P(z) —
x,t) #1 N(€)} has a finite number of terms. So dy\{k € N : P(xp — xz,t) #5 N(e)} =0,
that is, st?‘; —limg_oor) = .4

Theorem 3. Let (zx) and (yx) be sequences in a non-Archimedean L-fuzzy normed space
(X, P,*r) such that stg\;. —liMmp—ooTr = T and st% —limg_ooyr = vy, where x,y € X. Then
we have

(i) st — limg oo (T + y) = T + ¥,
(ii) st?‘j — iMoo CTL = CT.

Proof. (i) Assume that st?‘; — limp_ ook = = and stg\p —limp—ooyrs = y. Put K7 =
{keN: Pz —x,t) Y N(e)}, Ko ={k € N: P(yr, — y,t) #1 N(e)} and k = k1 |J Ka.
It follows that K€ is a nonempty set. Let m € K¢. We have P(z,, — z,t) > N(e) and
P(ym — y,t) > N(e). Now we have

P(zm + ym — & =y t) >LN(€) > Pam — 2,8) * P(ym — y, ) >1 N (e).
On the other hand, we have
N({k € N:Play +yr) — (+y),t) AL N(e)}) = 0A(K) < r(KT) =0.
(ii) If ¢ = 0, we have {k € N : P(cxy — cz,t) #1 N(€)} = . In the other case
o\({k € N: P(cxy, — cx,t) FL N(€)}) = A({P(ax — z, 15) AL N(€)}) = 0.«

el

Definition 14. Let (X, P, 1) be a non-Archimedean L-fuzzy normed space over K. Then,
a sequence (xy) is said to be A-statistically Cauchy if for every e > 0 and t > 0 there exists
N such that for all k,1 > N

(5)\({]{ eN: P(.%'k - xl,t) > N(G)}) =1,
or equivalently
W({keN:P(xy —a,t) #L N(e)}) =0.

Theorem 4. In non-Archimedean L-fuzzy normed space (X, P,xr) over K, every Cauchy
sequence with respect to P is A-statistically Cauchy.

Proof. Suppose that (x,) is a Cauchy sequence with respect to P. So for all € €
L —{0g,1,} there exists N > 0 such that for all n > N and an arbitrary constant p we
have P(n+p — n,t) > N(€). The set {n € N : P(zpip — zp,t) #r N(€)} has a finite

number of terms, so
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({1 €N : P(2nsp — 2n,t) 1 N(€)}) = 0.4

Theorem 5. Let (X, P,*r) be a non-Archimedean L-fuzzy normed space over K. If a
sequence is A-statistically convergent, then it is A-statistically Cauchy.

Proof. Suppose that {x} is A-statistically convergent to z. We have
({k € N:P(z), — z,t) #L N(€)}) =0.
Now we have
A({k € N: Plap—ai,t) L N(€)}) = \({k € N: P(ap—w,t)«P(x1—x,1) #L N(e)}) = 0.
<

Definition 15. A non-Archimedean L-fuzzy normed space (X, P, 1) over K is said to
be A-statistically complete if every X-statistically Cauchy sequence with respect to P is
A-statistically convergent with respect to P.

Theorem 6. Every mnon-Archimedean L-fuzzy normed space (X, P,*r) over K is
A-statistically complete with respect to P.

Proof. Suppose that (zj) is A-statistically Cauchy but not A-statistically convergent
to x € X. We have

(5)\({]{ < N : P(xk—xl,t) }L ./\/(6)}) = (5)\({]{3 c N : P(mk—x,t)*P(ml—x,t) ?‘L N(G)}) = 0,
which is a contradiction. <«

Definition 16. Let (X, P,*1) be a non-Archimedean L-fuzzy normed space over K. A
map f : X — X is called P-continuous at a point x € X, if the convergence of the sequence
in the non-Archimedean L-fuzzy normed space implies the convergence of f(xy) to f(z)
in the non-Archimedean L-fuzzy normed space.

Definition 17. Let (X, P, ) be a non-Archimedean L-fuzzy normed space over K. A
map f: X — X is called A-statistically continuous at a point x € X, if st;\Dlimn_)ooxn =z
implies that stplimn oo f(zs) = f(z).

Theorem 7. Let (X, P,*r) be a non-Archimedean L-fuzzy normed space over K. If f :
X — X is continuous with respect to P, then it is A-statistically continuous.

Proof. Let (z,) € X and st%limnﬁooxn = z. Then for every e € L — {0,11} and
t > 0, the inequality P(z,, — z,t) > N(e) implies that P(f(xy,) — f(z),t) >5 N(e),
since f is continuous with respect to P at € X. Thus {n € N: P(f(z,) — f(z),t) 4L
N(e)} C {n[inN : P(z, — z,t) 1 N(€)}. Since stplimp_oorn = x, we have 63{n € N :
P(x, —x,t) #1 N(€)} = 0. This implies that 5y{n € N: P(f(zn) — f(2),t) #1L N(e)} =0
which means that stplimy, oo f(2,) = f(z). Hence, f is A-statistically continuous.«
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