Structural Completeness and Unification Problem of the Logic of Chang Algebra

A. Di Nola*, R. Grigolia, G. Lenzi

Abstract

The variety generated by perfect $M V$-algebras is investigated in the paper. It is shown that for m-generated algebras from this variety to be finitely presented is equivalent to be projective. The variety generated by perfect algebras has unitary unification type and it is shown that the logic corresponding to this variety is structurally complete.

Key Words and Phrases: MV-algebras, structural completeness, unification.
2010 Mathematics Subject Classifications: 06D35

1. Introduction

$M V$-algebras are algebraic counterpart of the infinite valued Łukasiewicz sentential calculus, as Boolean algebras are with respect to the classical propositional logic. There are $M V$-algebras which are not semisimple, i.e. the intersection of their maximal ideals (the radical of A) is different from $\{0\}$. Non-zero elements from the radical of A are called infinitesimals. It is worth to stress that to the existence of infinitesimals in some $M V$-algebras is due the remarkable difference of behaviour between Boolean algebras and $M V$-algebras.

Perfect $M V$-algebras are those $M V$-algebras generated by their infinitesimal elements or, equivalently, generated by their radical [5]. They generate the smallest non locally finite subvariety of the variety, MV, of all $M V$-algebras.

Perfect $M V$-algebras do not form a variety and contain non-simple subdirectly irreducible $M V$-algebras. Any $M V$-algebra contains its greatest perfect subalgebra, called its perfect skeleton. The variety generated by all perfect $M V$-algebras is indeed generated by a single $M V$-chain, actually the $M V$-algebra C, defined by Chang in [8].

Chang's $M V$-algebra C [8], which is our main interest, is defined on the set

$$
C=\{0, c, \ldots, n c, \ldots, 1-n c, \ldots, 1-c, 1\}
$$

by the following operations (consider $0=0 c$): $x \oplus y=$

[^0]- $(m+n)) c$ if $x=n c$ and $y=m c$;
- $1-(m-n) c$ if $x=1-n c$ and $y=m c$ and $0<n<m$;
- $1-(n-m) c$ if $x=n c$ and $y=1-m c$ and $0<m<n$;
- 1 otherwise;
$\neg x=1-n c$ if $x=n c, \neg x=n c$ if $x=1-n c$.
The $M V$-algebra C is isomorphic to the algebra S_{1}^{ω} defined by Komori in [23]. In [23] the author presented the so-called Super-Eukasiewicz Logics, certain equational extensions of Lukasiewicz Propositional Logic. He also provided a characterization of irreducible generators of each of such varieties. Finite equational axiomatization of each subvariety of the variety of all $M V$-algebras is given in [12] and [32].

The $M V$-algebra C is the simplest $M V$-algebra with infinitesimals. That is, any non semisimple $M V$-algebra contains a copy of C as subalgebra. C is generated by an atom c, which we can interpret as a quasi false truth value. The negation of c is a quasi true value. Now, quasi truth or quasi falsehood are vague concepts. Hence, it is quite intriguing to explore such a logic of quasi true. About quasi truth in an $M V$-algebra, it is reasonable to accept the following propositions:

- there are quasi true values which are not 1 ;
- 0 is not quasi true;
- if x is quasi true, then x^{2} is quasi true (where x^{2} denotes the $M V$ algebraic product of x with itself).

In C, to satisfy these axioms, it is enough to say that the quasi true values are the coinfinitesimals.

By way of contrast, note that there is no notion of quasi truth in $[0,1]$ satisfying the previous axioms (there are if we replace the $M V$ product with other suitable t -norms, e.g. the product t -norm or the minimum t -norm).

Algebras from the variety generated by C will be called $M V(C)$ - algebras. Also we recall that for an $M V(C)$-algebra A, its Boolean skeleton, $B(A)$, that is the greatest Boolean subalgebra of A, is a retract of A, via the radical ideal of A, see [11]. Thus, roughly speaking, every $M V(C)$-algebra can be seen as a Boolean algebra, up to infinitesimals.

Let L_{P} be the logic corresponding to the variety generated by perfect algebras which coincides with the set of all Łukasiewicz formulas that are valid in all perfect $M V$-chains, or equivalently that are valid in the MV-algebra C. Actually, L_{P} is the logic obtained by adding to the axioms of Lukasiewicz sentential calculus the following axiom: $(x \oplus x) \odot$ $(x \oplus x) \leftrightarrow(x \odot x) \oplus(x \odot x)$, see [5]. Notice that the above axiom is used in [9] to define an interesting class of Glivenko MTL-algebras and that the Lindenbaum algebra of L_{P} is an $M V(C)$-algebra.

The importance of the class $M V(C)$-algebras and of the logic L_{P} can be percieved looking further at the role that infinitesimals play in MV-algebras and in Lukasiewicz
logic. Indeed, the pure first order Łukasiewicz predicate logic is not complete with respect to the canonical set of truth values $[0,1],[34]$. However, a completeness theorem is obtained if the truth values are allowed to vary through all linearly ordered MV-algebras, [3]. From the incompleteness theorem arises the problem of the algebraic significance of the true but unprovable formulas. In [4] it is remarked that the Lindenbaum algebra of first order Łukasiewicz logic is not semisimple and that the valid but unprovable formulas are precisely the formulas whose negations determine the radical of the Lindenbaum algebra, that is the co-infinitesimals of such algebra. Hence, the valid but unprovable formulas generate the perfect skeleton of the Lindenbaum algebra. So, perfect $M V$-algebras, the variety generated by them and their logic are intimately related with a crucial phenomenon of first order Lukasiewicz logic.

As it is well known, $M V$-algebras form a category which is equivalent to the category of abelian lattice ordered groups (ℓ-groups, for short) with strong unit [28]. Let us denote by Γ the functor implementing this equivalence. In particular, each perfect $M V$-algebra is associated with an abelian ℓ-group with a strong unit. Moreover, the category of perfect $M V$-algebras is equivalent to the category of abelian ℓ-groups, see [11]. Among perfect $M V$-algebras the algebra C plays a very important role. Indeed, it is the generator of the variety $\mathbf{M V}(\mathbf{C})$, the logic L_{P} is complete with respect to C, and C corresponds to the Behncke-Leptin C^{*}-algebra $A_{1,0}$ with a two-point dual, via the composition of the functor Γ with K_{0}, see [30].

From above it is clear that the class of $M V(C)$-algebras, far from being a quite narrow and exotic class, deserves to be explored because of its several and fruitful links with other areas of Logic and Algebra. Now we are going to focus on the logic L_{P} and especially on its derivability properties.

Derivable and admissible rules were introduced by Lorenzen [26]. A rule

$$
\varphi_{1}, \ldots, \varphi_{n} / \psi
$$

is derivable if it belongs to the consequence relation of the logic (defined semantically, or by a proof system using a set of axioms and rules); and it is admissible if the set of theorems of the logic is closed under the rule. These two notions coincide for the standard consequence relation of classical logic, but nonclassical logics often admit rules which are not derivable. A logic whose admissible rules are all derivable is called structurally complete.

Ghilardi $[17,18]$ discovered the connection of admissibility to projective formulas and unification, which provided another criteria for admissibility in certain modal and intermediate logics ($=$ extensions of intuitionistic logic), and new decision procedures for admissibility in some modal and intermediate logics.

Moreover, following Ghilardi [19] defining unification problem in terms of finitely presented algebras, and having our result that finitely generated finitely presented algebras are precisely finitely generated projective algebras, we deduce that the equational class of all $M V(C)$-algebras has unitary unification type, i. e. L_{P} has unitary unification type.

In the present paper we prove that:
(1) For m-generated $M V(C)$-algebras to be finitely presented is equivalent to be projective.
(2) The variety $\mathbf{M V}(\mathbf{C})$ of $M V(C)$-algebras has unitary unification type.
(3) There exists a one-to-one correspondence between projective formulas of L_{P} with m-variables and the m-generated projective subalgebras of the m-generated free algebras of the variety generated by perfect $M V$-algebras.
(4) L_{P} is structurally complete.

2. The quasi variety generated by Perfect $M V$-algebra C

It is worth to remark that the class of perfect algebras does not form a variety, so the problem of studying the proper subvariety of the variety of all $M V$-algebras generated by all perfect $M V$-algebras arises.

Let $\mathcal{V}(\operatorname{Per} f)$ be the variety generated by all perfect algebras, and $\mathcal{V}(C)$ be the variety generated by Chang's algebra C. Then the following theorem holds:

Theorem 1. ([11]) $\mathcal{V}(C)=\mathcal{V}(\operatorname{Perf})$.
Let K be a class of algebras. Then by $\mathcal{Q} \mathcal{V}(K)$ we denote the quasivariety of algebras generated by K.

Now we show that the quasivariety generated by Chang algebra C coincides with the variety generated by C.

Theorem 2. $\mathcal{V}(C)=\mathcal{Q} \mathcal{V}(C)$.
To prove this theorem we give some auxiliary assertions.
Lemma 1. $\Gamma\left(Z \times_{\text {lex }} Q,(1,0)\right) \in \mathcal{Q} \mathcal{V}(C)$.
Proof. Let us suppose that $A=\Gamma\left(Z \times_{l e x} Q,(1,0)\right)$. Suppose a quasi-identity $p(x)=$ $0 \rightarrow q(x)=0$ is false in A. We suppose p, q are polynomials in one variable (the case of n variables is analogous). Then there is x such that $p(x)=0$ and $q(x) \neq 0$. We can suppose $x \in \operatorname{Rad}(A)$ and $x \neq 0$. But then x generates a copy of C. So, the quasi-identity is false also in C.

Corollary 1. $\Gamma\left(Z \times_{\text {lex }} R,(1,0)\right) \in \mathcal{Q} \mathcal{V}(C)$.
Proof. This follows by the density of the rationals in R.
Corollary 2. If U_{R} is an ultrapower of the reals, then

$$
\Gamma\left(Z \times_{\text {lex }} U_{R},(1,0)\right) \in \mathcal{Q} \mathcal{V}(C)
$$

Proof. This follows from Los Theorem on ultraproducts.
Corollary 3. If G is any linearly ordered abelian group, then

$$
\Gamma\left(Z \times_{l e x} G,(1,0)\right) \in \mathcal{Q} \mathcal{V}(C)
$$

Proof. This follows because every linearly ordered abelian group embeds in an ultrpower of the reals.

Corollary 4. Every perfect $M V$ chain is in $\mathcal{Q V}(C)$.
Proof. This follows because every perfect $M V$ chain has the form $\Gamma(Z \times$ lex $G,(1,0))$.

Now let us conclude the proof of the theorem.
Clearly $\mathcal{Q V}(C) \subseteq \mathcal{V}(C)$.
Conversely, an $M V$-chain belongs to $\mathcal{V}(C)$ if and only if it is perfect, so every $M V$-chain belonging to $\mathcal{V}(C)$ belongs to $\mathcal{Q}(C)$. But every element of $\mathcal{V}(C)$ is a subdirect product of chains of $\mathcal{V}(C)$, and $\mathcal{Q} \mathcal{V}(C)$ is closed under subdirect products. So, $\mathcal{V}(C) \subseteq \mathcal{Q V}(C)$. Hence $\mathcal{V}(C)=\mathcal{Q} \mathcal{V}(C)$

3. Finitely generated projective $M V(C)$-algebras

Theorem 3. A 1-generated free $M V(C)$-algebra $F_{\operatorname{MV}(\mathbf{C})}(1)$ is isomorphic to C^{2} with free generator $(c, \neg c)$.

Proof. Firstly, let us show that C^{2} is generated by $(c, \neg c)$. Indeed, $2\left((c, \neg c)^{2}\right)=(0,1)$ and $\neg(0,1)=(1,0)$. Therefore, since c (and $\neg c$, as well) generates C, we have that $(c, \neg c)$ generates C^{2}.

Observe that if we have a perfect $M V(C)$-chain A, then 1-generated subalgebra of A is isomorphic to either $\Gamma\left(Z \times_{\text {lex }} Z,(1,0)\right)$ or the two-element Boolean algebra S_{1}.

Let \mathbf{K} be a variety. An m-generated free algebra A on the generators g_{1}, \ldots, g_{m} over the variety \mathbf{K} can be defined in the following way: the algebra A is a free m-generated algebra on the generators g_{1}, \ldots, g_{m} iff for any m-variable equation $P\left(x_{1}, \ldots, x_{m}\right)=Q\left(x_{1}, \ldots, x_{m}\right)$, the equation holds in the variety \mathbf{K} iff the equation $P\left(g_{1}, \ldots, g_{m}\right)=Q\left(g_{1}, \ldots, g_{m}\right)$ is true in the algebra A (on the generators $g_{1}, \ldots, g_{m} \in A$) [6, 21].

Now, suppose that one-variable equation $P=Q$ does not hold in the variety $\mathbf{M V}(\mathbf{C})$. It means that this equation does not hold in some 1-generated perfect $M V(C)$-algebra A on some element $a \in A$. Then A is isomorphic either to C or S_{1} (2-element Boolean algebra). Let us suppose that A is isomorphic to C. Identify isomorphic elements. Depending on the generator of A, the one belongs to either RadA or $\neg \operatorname{RadA}$. We use the projection either $\pi_{1}: C^{2} \rightarrow C$ or $\pi_{2}: C^{2} \rightarrow C$, sending the generator $(c, \neg c)$ either to $c \in C$ or to $\neg c \in C$. From here we conclude that $P=Q$ does not hold in C^{2}. Now let us suppose that A is isomorphic to S_{1}. Notice that homomorphic image of C^{2} by $\operatorname{Rad}\left(C^{2}\right)$ is isomorphic to one-generated free Boolean algebra S_{1}^{2}. So, $P=Q$ does not hold in C^{2}. Hence, C^{2} is 1-generated free $M V(C)$-algebra.

Definition 1. A subalgebra A of $F_{\mathbf{V}}(m)$ is said to be projective subalgebra if there exists an endomorphism $h: F_{\mathbf{V}}(m) \rightarrow F_{\mathbf{V}}(m)$ such that $h\left(F_{\mathbf{V}}(m)\right)=A$ and $h(x)=x$ for every $x \in A$.

Proposition 1. ([10], [27]) Let \mathbf{V} be a variety, $F_{\mathbf{V}}(m)$ be an m-generated free algebra of the variety \mathbf{V}, and g_{1}, \ldots, g_{m} be its free generators. Then an m-generated subalgebra A of $F_{\mathbf{V}}(m)$ with the generators $a_{1}, \ldots, a_{m} \in A$ is projective if and only if there exist polynomials $p_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, p_{m}\left(x_{1}, \ldots, x_{m}\right)$ such that

$$
p_{i}\left(g_{1}, \ldots, g_{m}\right)=a_{i}
$$

and

$$
p_{i}\left(p_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, p_{m}\left(x_{1}, \ldots, x_{m}\right)\right)=p_{i}\left(x_{1}, \ldots, x_{m}\right), i=1, \ldots, m,
$$

hold in \mathbf{V}.
From Proposition 1 we obtain that in $F_{\mathbf{V}}(m)$ we have

$$
p_{i}\left(p_{1}\left(g_{1}, \ldots, g_{m}\right), \ldots, p_{m}\left(g_{1}, \ldots, g_{m}\right)\right)=p_{i}\left(g_{1}, \ldots, g_{m}\right)=a_{i}
$$

$i=1, \ldots, m, \quad$ i. e. $p_{i}\left(a_{1}, \ldots, a_{m}\right)=a_{i}$ in A. This suggests to consider the free object $F_{\mathbf{V}}(m, \Omega)$ over the variety \mathbf{V} with respect to the set of equations $\Omega=\left\{p_{1}\left(x_{1}, \ldots, x_{m}\right)=\right.$ $\left.x_{1}, \ldots, p_{1}\left(x_{1}, \ldots, x_{m}\right)=x_{m}\right\}$.

Proposition 2. ([31], [10])(Lemma 2, Lemma 3) An MV-algebra A is finitely presented iff $A \cong F_{\mathbf{M V}}(m) /[u)$, where $[u)$ is a principal filter generated by some element $u \in F_{\mathbf{M V}}(m)$.

Theorem 4. Let A be an m-generated $M V(C)$-algebra. Then the following are equivalent:

1. A is projective.
2. A is finitely presented.

Proof. $1 \Rightarrow 2$. Since A is m-generated projective $M V(C)$-algebra, A is a retract of $F_{\mathbf{M V}(\mathbf{C})}(m)$, i.e. there exist homomorphisms $h: F_{\mathbf{M V}(\mathbf{C})}(m) \rightarrow A$ and $\varepsilon: A \rightarrow$ $F_{\mathrm{MV}(\mathbf{C})}(m)$ such that $h \varepsilon=I d_{A}, h\left(g_{i}\right)=a_{i}(i=1, \ldots, m)$, and moreover, according to Proposition 1, there exist m polynomials $p_{1}\left(x_{1}, \ldots, x_{m}\right)$,
$\ldots, p_{m}\left(x_{1}, \ldots, x_{m}\right)$ such that

$$
p_{i}\left(g_{1}, \ldots, g_{m}\right)=\varepsilon\left(a_{i}\right)=\varepsilon h\left(g_{i}\right)
$$

and

$$
p_{i}\left(P_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, p_{m}\left(x_{1}, \ldots, x_{m}\right)\right)=p_{i}\left(x_{1}, \ldots, x_{m}\right), i=1, \ldots, m
$$

where g_{1}, \ldots, g_{m} are free generators of $F_{\mathbf{M V}(\mathbf{C})}(m)$. Observe that $h\left(g_{1}\right), \ldots, h\left(g_{m}\right)$ are generators of A which we denote by a_{1}, \ldots, a_{m}, respectively. Let e be the endomorphism $\varepsilon h: F_{\mathbf{M V}(\mathbf{C})}(m) \rightarrow F_{\mathbf{M V}(\mathbf{C})}(m)$. This endomorphism has the properties: $e e=e$ and $e(x)=x$ for every $x \in \varepsilon(A)$.

Let us consider the set of equations $\Omega=\left\{p_{i}\left(x_{1}, \ldots, x_{m}\right) \leftrightarrow x_{i}=1: i=1, \ldots, m\right\}$ and let $u=\bigwedge_{i=1}^{n}\left(\left(p_{i}\left(g_{1}, \ldots, g_{m}\right) \leftrightarrow g_{i}\right) \in F_{\mathbf{M V}(\mathbf{C})}(m)\right.$, where $x \leftrightarrow y$ is the abbreviation of $(x \rightarrow y) \wedge(y \rightarrow x)$. Then, according to Proposition $2, F_{\mathbf{M V}(\mathbf{C})}(m) /[u) \cong F_{\mathbf{M V}(\mathbf{C})}(m, \Omega)$.

Observe that the equations from Ω are true in A on the elements $\varepsilon\left(a_{i}\right)=e\left(g_{i}\right), i=$ $1, \ldots, m$. Indeed, since e is an endomorphism, we have

$$
e(u)=\bigwedge_{i=1}^{m} e\left(g_{i}\right) \leftrightarrow p_{i}\left(e\left(g_{1}\right), \ldots, e\left(g_{m}\right)\right) .
$$

But $p_{i}\left(e\left(g_{1}\right), \ldots, e\left(g_{m}\right)\right)=p_{i}\left(p_{1}\left(g_{1}, \ldots, g_{m}\right), \ldots, p_{n}\left(g_{1}, \ldots, g_{m}\right)\right)=p_{i}\left(g_{1}, \ldots, g_{m}\right)=$ $=\varepsilon h\left(g_{i}\right)=e\left(g_{i}\right), i=1, \ldots, m$. Hence $e(u)=1$ and $u \in e^{-1}(1)$, i. e. $\quad[u) \subseteq e^{-1}(1)$. Therefore there exists a homomorphism $f: F_{\mathbf{M V}(\mathbf{C})}(m) /[u) \rightarrow \varepsilon(A)$ such that the diagram

commutes, i. e. $f r=e$, where r is a natural homomorphism sending x to $x /[u)$. Now consider the restrictions e^{\prime} and r^{\prime} on $\varepsilon(A) \subseteq F_{\mathrm{MV}(\mathbf{C})}(m)$ of e and r, respectively. Then $f r^{\prime}=e^{\prime}$. But $e^{\prime}=I d_{\varepsilon(A)}$. Therefore $f r^{\prime}=I d_{\varepsilon(A)}$. From here we conclude that r^{\prime} is an injection. Moreover, r^{\prime} is a surjection, since $r\left(\varepsilon\left(a_{i}\right)\right)=r\left(g_{i}\right)$. Indeed, $e\left(g_{i}\right)=p_{i}\left(g_{1}, \ldots, g_{n}\right)$ and $g_{i} \leftrightarrow p_{i}\left(g_{1}, \ldots, g_{n}\right)=g_{i} \leftrightarrow e\left(g_{i}\right)$, where $e\left(g_{i}\right)=\varepsilon h\left(g_{i}\right)$. So $g_{i} \leftrightarrow p_{i}\left(g_{1}, \ldots, g_{m}\right) \geq$ $\bigwedge_{i=1}^{m} g_{i} \leftrightarrow p_{i}\left(g_{1}, \ldots, g_{m}\right)$, i. e. $g_{i} \leftrightarrow p_{i}\left(g_{1}, \ldots, g_{m}\right) \in[u)$. Hence, r^{\prime} is an isomorphism between $\varepsilon(A)$ and $F_{\operatorname{MV}(\mathbf{C})}(m) /[u)$. Consequently, $A(\cong \varepsilon(A))$ is finitely presented.
$2 \Rightarrow 1$. Let A be an m-generated finitely presented $M V(C)$-algebra. Then there exists a principal filter $[u)$ of m-generated free $M V(C)$-algebra $F_{\mathbf{M V (C)}}(m)$ such that $A \cong F_{\mathbf{M V}(\mathbf{C})}(m) /[u)$ (Proposition 2). Since $F_{\mathbf{M V}(\mathbf{C})}(m)$ is a subdirect product of finitely generated chain $M V(C)$-algebras, we can represent the element $u \in F_{\operatorname{MV}(\mathbf{C})}(m)$ as a sequence $\left(u_{i}\right)_{i \in I}$. Let $J=\left\{i \in I: u_{i} \neq 1\right\}$. Let π_{J} be a natural homomorphism such that $\pi_{J}\left(\left(a_{i}\right)_{i \in I}\right)=\left(a_{i}\right)_{i \in J}$. On the other hand, the subalgebra of $F_{\mathbf{M V}(\mathbf{C})}(m)$ generated by $[u)$, which is a perfect $M V$-algebra $[u) \cup \neg[u)$, is isomorphic to $\pi_{J}\left(F_{\mathrm{MV}(\mathbf{C})}(m)\right) \cong$ $F_{\mathrm{MV}(\mathbf{C})}(m) /[u) \cong A$. Notice, that if $\left(x_{i}\right)_{i \in I} \in[u)$, then $x_{i}=1$ for $i \in I-J$; and if $\left(x_{i}\right)_{i \in I} \in \neg[u)$, then $x_{i}=0$ for $i \in I-J$. So, the set $A^{\prime}=\left\{\left(x_{i}\right)_{i \in J}:\left(x_{i}\right)_{i \in I} \in[u) \cup \neg[u)\right\}$ forms an $M V(C)$-algebra which is isomorphic to $[u) \cup \neg[u)$. Let $\varepsilon: A^{\prime} \rightarrow F_{\mathrm{MV}(\mathbf{C})}(m)$ be the embedding such that $\varepsilon\left(\left(x_{i}\right)_{i \in J}\right)=\left(x_{i}\right)_{i \in I} \in F_{\mathbf{M V (C)}}(m)$, where $x_{i}=1$ if $\left(x_{i}\right)_{i \in J}$ belongs to the maximal filter and $i \in I-J$; and $x_{i}=0$ if $\left(x_{i}\right)_{i \in J}$ belongs to the maximal ideal and $i \in I-J$. Thus we conclude that $\pi_{J} \varepsilon=I d_{A^{\prime}}$. From here we deduce that the $M V(C)$-algebra A is projective.

Observe, that for ℓ-groups, Baker [1] and Beynon [2] gave the following characterization: An ℓ-group G is finitely generated projective iff it is finitely presented. For unital ℓ-groups the (\Rightarrow)-direction holds [29] (Proposition 5).

The algebra C is isomorphic to $\Gamma\left(Z \times_{\text {lex }} Z,(1,0)\right)$, with generator $c(=(0,1))$. In another notation the algebra C is denoted by $S_{1}^{\omega}\left(=\Gamma\left(Z \times_{\text {lex }} Z,(1,0)\right)\right)$. Recall that $\mathbf{M V}(\mathbf{C})$ is the
variety generated by perfect algebras.
Theorem 5. The two-element Boolean algebra and the MV(C)-algebra C are projective.
Proof. It is obvious that the two-element Boolean algebra is projective. Indeed, as we already stressed, the Boolean skeleton $B\left(C^{2}\right)$ is a retract of $C^{2},[11]$. So, the 4 -element Boolean algebra is projective. Since the 2 -element Boolean algebra is a retract of the 4 -element Boolean algebra, we have that the 2 -element Boolean algebra is projective. As we know, C^{2} is the one-generated free $M V(C)$-algebra.

Let us consider the following partition E of the algebra C^{2} the classes of which are: for any $k \in \omega$

$$
\left\|\left(1,(\neg c)^{k}\right)\right\|=\left\{\left(n c,(\neg c)^{k}\right): n \in \omega\right\} \cup\left\{\left((\neg c)^{n},(\neg c)^{k}\right): n \in \omega\right\},
$$

$$
\|(0, k c)\|=\{(n c, k c): n \in \omega\} \cup\left\{\left((\neg c)^{n}, k c\right): n \in \omega\right\}
$$

Notice that this partition is the congruence relation corresponding to the prime filter $\|(1,1)\|=\left\{x \in C^{2}:(0,1) \leq x \leq(1,1)\right\}$, and $\|(0,0)\|$ is the prime ideal $\left\{x \in C^{2}:(0,0) \leq\right.$ $x \leq(1,0)\}$.

Let us consider the following homomorphisms: $\pi_{2}: C^{2} \rightarrow C$, where $\pi_{2}((x, y))=y$, and $\varepsilon: C \rightarrow C^{2}$, where $\varepsilon(k c)=(0, k c), \varepsilon\left((\neg c)^{k}\right)=\left(1,(\neg c)^{k}\right)$ for every $k \in \omega$. Then, it is clear that $\pi_{2} \varepsilon=I d_{C}$. From here we conclude that C is projective.

4. Projective formulas

Let us denote by \mathcal{P}_{m} a fixed set x_{1}, \ldots, x_{m} of propositional variables and by Φ_{m} the set of all propositional formulas in L_{P} with variables in \mathcal{P}_{m}. Notice that the m-generated free $M V(C)$-algebra $F_{\mathbf{M V}(\mathbf{C})}(m)$ is isomorphic to Φ_{m} / \equiv, where $\alpha \equiv \beta$ iff $\vdash(\alpha \leftrightarrow \beta)$ and $\alpha \leftrightarrow \beta=(\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha)$. Subsequently we do not distinguish between the formulas and their equivalence classes. Hence we simply write Φ_{m} for $F_{\mathrm{MV}(\mathbf{C})}(m)$, and \mathcal{P}_{m} plays the role of the set of free generators. Since Φ_{m} is a lattice, we have an order \leq on Φ_{m}. It follows from the definition of \rightarrow that for all $\alpha, \beta \in \Phi_{m}, \alpha \leq \beta$ iff $\vdash(\alpha \rightarrow \beta)$.

Let α be a formula of the logic L_{P} and consider a substitution $\sigma: \mathcal{P}_{m} \rightarrow \Phi_{m}$ and extend it to all of Φ_{m} by $\sigma\left(\alpha\left(x_{1}, \ldots, x_{m}\right)\right)=\alpha\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{m}\right)\right)$. We can consider the substitution as an endomorphism $\sigma: \Phi_{m} \rightarrow \Phi_{m}$ of the free algebra Φ_{m}.

Definition 2. A formula $\alpha \in \Phi_{m}$ is called projective if there exists a substitution σ : $\mathcal{P}_{m} \rightarrow \Phi_{m}$ such that $\vdash \sigma(\alpha)$ and $\alpha \vdash \beta \leftrightarrow \sigma(\beta)$, for all $\beta \in \Phi_{m}$.

Notice that the notion of projective formula was introduced for intuitionistic logic in [17].

Observe that we can rewrite any identity $p\left(x_{1}, \ldots, x_{m}\right)=q\left(x_{1}, \ldots, x_{m}\right)$ in the variety $\operatorname{MV}(\mathbf{C})$ into an equivalent one $p\left(x_{1}, \ldots, x_{m}\right) \leftrightarrow q\left(x_{1}, \ldots, x_{m}\right)=1$. So, for $\mathbf{M V}(\mathbf{C})$ we can replace n identities by one

$$
\bigwedge_{i=1}^{n} p_{i}\left(x_{1}, \ldots, x_{m}\right) \leftrightarrow q_{i}\left(x_{1}, \ldots, x_{m}\right)=1
$$

Now we are ready to show a close connection between projective formulas and projective subalgebras of the free algebra Φ_{m}.

Theorem 6. Let A be an m-generated projective subalgebra of the free algebra Φ_{m}. Then there exists a projective formula α of m variables, such that A is isomorphic to $\Phi_{m} /[\alpha)$, where $[\alpha)$ is the principal filter generated by $\alpha \in \Phi_{m}$.

Proof. Suppose A is an m-generated projective subalgebra of Φ_{m} with generators a_{1}, \ldots, a_{m}. Then A is a retract of Φ_{m}, and there exist homomorphisms $\varepsilon: A \rightarrow \Phi_{m}$, $h: \Phi_{m} \rightarrow A$ such that $h \varepsilon=I d_{A}$, where $\varepsilon(x)=x$ for every $x \in A \subset \Phi_{m}$. Observe that εh is an endomorphism of Φ_{m}. We will show now that $\alpha=\bigwedge_{j=1}^{m}\left(x_{j} \leftrightarrow \varepsilon h\left(x_{j}\right)\right)$ is a projective formula, namely, that $\vdash \varepsilon h(\alpha)$ and $\alpha \vdash \beta \leftrightarrow \varepsilon h(\beta)$, for all $\beta \in \Phi_{m}$.

Indeed, $\varepsilon h\left(\bigwedge_{j=1}^{m}\left(p_{j} \leftrightarrow \varepsilon h\left(p_{j}\right)\right)\right)=\bigwedge_{j=1}^{m}\left(\varepsilon h\left(x_{j}\right) \leftrightarrow \varepsilon h \varepsilon h\left(x_{j}\right)\right)$, and since $h \varepsilon=I d_{A}$, we have $\varepsilon h\left(\bigwedge_{j=1}^{m}\left(x_{j} \leftrightarrow \varepsilon h\left(x_{j}\right)\right)\right)=\bigwedge_{j=1}^{m}\left(\varepsilon h\left(x_{j}\right) \leftrightarrow \varepsilon h\left(x_{j}\right)\right)$. Thus $\vdash \varepsilon h(\alpha)$. Further, for any $\beta \in \Phi_{m}, \varepsilon h\left(\beta\left(x_{1}, \ldots, x_{m}\right)\right)=\beta\left(\varepsilon h\left(x_{1}\right), \ldots, \varepsilon h\left(x_{m}\right)\right)$, and since $\alpha \vdash x_{j} \leftrightarrow \varepsilon h\left(x_{j}\right)$, $j=1, \ldots, m$, we have $\alpha \vdash \beta \leftrightarrow \varepsilon h(\beta)$.

Since A is an m-generated projective $M V(C)$-algebra, according to the Proposition 1, there exist m polynomials $p_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, p_{m}\left(x_{1}, \ldots, x_{m}\right)$ such that

$$
p_{i}\left(x_{1}, \ldots, x_{m}\right)=\varepsilon\left(a_{i}\right)=\varepsilon h\left(x_{i}\right)
$$

and

$$
p_{i}\left(p_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, p_{m}\left(x_{1}, \ldots, x_{m}\right)\right)=p_{i}\left(x_{1}, \ldots, x_{m}\right), i=1, \ldots, m
$$

Observe that $h\left(x_{i}\right)=a_{i}$. Since the m-generated projective $M V$-algebra A is finitely presented by the equation $\bigwedge_{j=1}^{m}\left(x_{j} \leftrightarrow \varepsilon h\left(x_{j}\right)\right)=1$, we have $A \cong \Phi_{m} /[\alpha)$.

Theorem 7. If α is a projective formula of m variables, then $\Phi_{m} /[\alpha)$ is a projective algebra which is isomorphic to a projective subalgebra of Φ_{m}.

Proof. Suppose that α is a projective formula of m variables. Then there exists a substitution $\sigma: \mathcal{P}_{m} \rightarrow \Phi_{m}$ such that $\vdash \sigma(\alpha)$ and $\alpha \vdash \beta \leftrightarrow \sigma(\beta)$, for all $\beta \in \Phi_{m}$. Since σ is an endomorphism of $\Phi_{m}, \sigma\left(\Phi_{m}\right)$ is a subalgebra of Φ_{m}. Now we will show that $\sigma\left(\Phi_{m}\right)$ is a retract of Φ_{m}, i. e. $\sigma^{2}=\sigma$. Indeed, since α is a projective formula, $\sigma(\alpha)=1_{\Phi_{m}}$, and $\alpha \leq \beta \leftrightarrow \sigma(\beta)$ for all $\beta \in \Phi_{m}$. But then $\sigma(\alpha) \leq \sigma(\beta) \leftrightarrow \sigma^{2}(\beta), \sigma(\beta) \leftrightarrow \sigma^{2}(\beta)=1_{\Phi_{m}}$, $\sigma(\beta)=\sigma^{2}(\beta)$, and $\sigma^{2}=\sigma$. Hence $\sigma\left(\Phi_{m}\right)$ is a retract of Φ_{m}. So, $\sigma\left(\Phi_{m}\right)$ is isomorphic to $\Phi_{m} /[\alpha)$.

Thus we have the following correspondence between projective formulas and projective subalgebras of Φ_{m}. To each m-generated projective subalgebra of m-generated free $M V(C)$-algebra, there corresponds an m-variable projective formula, and to two nonisomorphic m-generated projective subalgebras of m-generated free $M V(C)$-algebra, there correspond non-equivalent m-variable projective formulas. And to two non-equivalent m variable projective formulas, there correspond two different m-generated projective subalgebra of m-generated free $M V(C)$-algebra (but they can be isomorphic).

Therefore we arrive at the following

Corollary 5. There exists a one-to-one correspondence between projective formulas with m variables and m-generated projective subalgebras of Φ_{m}.

5. Unification problem

Let E be an equational theory. The E-unification problem is: given two terms s, t (built from function symbols and variables), to find a unifier for them, that is, a uniform replacement of the variables occurring in s and t by other terms that makes s and t equal by modulo E. For detailed information on unification problem we refer the readers to [17, 18, 20].

Let us be more precise. Let \mathcal{F} be a set of functional symbols and let V be a set of variables. Let $T_{\mathcal{F}}(V)$ be the term algebra built from \mathcal{F} and V, and $T_{\mathcal{F}_{m}}(V)$ be the term algebra of m-variable terms. Let E be a set of identities of type $p\left(x_{1}, \ldots, x_{m}\right)=$ $q\left(x_{1}, \ldots, x_{m}\right)$, where $p, q \in T_{\mathcal{F}_{m}}(V)$.

Let \mathbf{V} be the variety of algebras over \mathcal{F} axiomatized by the equations from E.
A unification problem modulo E is a finite set of pairs

$$
\mathcal{E}=\left\{\left(s_{j}, t_{j}\right): s_{j}, t_{j} \in T_{\mathcal{F}_{m}}(V), j \in J\right\},
$$

for some finite set J. A solution to (or a unifier for) \mathcal{E} is a substitution (or an endomorphism of the term algebra $\left.T_{\mathcal{F}_{m}}(V)\right) \sigma$ (which is extension of the map $s: V_{m} \rightarrow T_{\mathcal{F}_{m}}(V)$, where $V_{m}\left(=\left\{x_{1}, \ldots, x_{m}\right\}\right)$ is the set of m variables) such that the identity $\sigma\left(s_{j}\right)=\sigma\left(t_{j}\right)$ holds in every algebra of the variety \mathbf{V}. The problem \mathcal{E} is solvable (or unifiable) if it admits at least one unifier.

Let (X, \preceq) be a quasi-ordered set (i. e. \preceq is a reflexive and transitive relation). A μ-set [18] for (X, \preceq) is a subset $M \subseteq X$ such that: (1) every $x \in X$ is less or equal to some $m \in M$; (2) all elements of M are mutually \preceq-incomparable. There might be no μ-set for (X, \preceq) (in this case we say that (X, \preceq) has type 0) or there might be many of them, due to the lack of antisymmetry. However, all μ-sets for (X, \preceq), if any, must have the same cardinality. We say that (X, \preceq) has type $1, \omega, \infty$ iff it has a μ-set of cardinality 1 , of finite (greater than 1) cardinality or of infinite cardinality, respectively.

Substitutions are compared by instantiation in the following way: we say that σ : $T_{\mathcal{F}_{m}}(V) \rightarrow T_{\mathcal{F}_{m}}(V)$) is more general than $\tau: T_{\mathcal{F}_{m}}(V) \rightarrow T_{\mathcal{F}_{m}}(V)$ (written as $\tau \preceq \sigma$) iff there is a substitution $\eta: T_{\mathcal{F}_{m}}(V) \rightarrow T_{\mathcal{F}_{m}}(V)$ such that for all $x \in V_{m}$ we have $E \vdash \eta(\sigma(x))=\tau(x)$. The relation \preceq is quasi-order.

Let $U_{E}(\mathcal{E})$ be the set of unifiers for the unification problem \mathcal{E}; then $\left(U_{E}(\mathcal{E}), \preceq\right)$ is a quasi-ordered set.

We say that an equational theory E has:

1. Unification type 1 iff for every solvable unification problem $\mathcal{E}, U_{E}(\mathcal{E})$ has type 1 ;
2. Unification type ω iff for every solvable unification problem $\mathcal{E}, U_{E}(\mathcal{E})$ has type ω;
3. Unification type ∞ iff for every solvable unification problem $\mathcal{E}, U_{E}(\mathcal{E})$ has type 1 or ω or ∞ - and there is a solvable unification problem \mathcal{E} such that $U_{E}(\mathcal{E})$ has type ∞;
4. Unification type nullary, if none of the preceding cases applies.

Following Ghilardi [17], who has introduced the relevant definitions for E-unification from an algebraic point of view, by an algebraic unification problem we mean a finitely presented algebra A of \mathbf{V}. In this context, an E-unification problem is simply a finitely presented algebra A, and a solution for it (also called a unifier for A) is a pair given by a projective algebra P and a homomorphism $u: A \rightarrow P$. The set of unifiers for A is denoted by $U_{E}(A)$. A is said to be unifiable or solvable iff $U_{E}(A)$ is not empty. Given another algebraic unifier $w: A \rightarrow Q$, we say that u is more general than w, written $w \preceq u$, if there is a homomorphism $g: P \rightarrow Q$ such that $w=g u$.

The set of all algebraic unifiers $U_{E}(A)$ of a finitely presented algebra A forms a quasiordered set with the quasi-ordering \preceq.

The algebraic unification type of an algebraically unifiable finitely presented algebra A in the variety \mathbf{V} is now defined exactly as in the symbolic case, using the quasi-ordering set $\left(U_{E}(A), \preceq\right)$. If m-generated finitely presented algebra of an equational class \mathbf{V} is projective, then $I d_{A}$ will be most general unifier for A.

Theorem 8. The unification type of the equational class $\mathbf{M V}(\mathbf{C})$ is 1, i. e. unitary.
Proof. The proof of the theorem immediately follows from Theorem 4.

6. Structural completeness

A logic L is structurally complete if every rule that is admissible (preserves the set of theorems) should also be derivable. In a logic, a rule of inference is admissible in a formal system if the set of theorems of the system does not change when that rule is added to the existing rules of the system.

A Tarski-style consequence relation is a relation \vdash between sets of formulas, and formulas, such that

- $\alpha \vdash \alpha$,
- if $\Gamma \vdash \alpha$, then $\Gamma, \triangle \vdash \alpha$.

A consequence relation such that if $\Gamma \vdash \alpha$, then $\sigma(\Gamma) \vdash \sigma(\alpha)$ for all substitutions σ is called structural.

More precisely. If L is a logic, an L-unifier of a formula φ is a substitution σ such that $\vdash_{L} \sigma(\varphi)$. A formula which has an L-unifier is called L-unifiable. An inference rule is an expression of the form Γ / φ, where φ is a formula, and Γ is a finite set of formulas. An inference rule Γ / φ is derivable in a logic L, if $\Gamma \vdash_{L} \varphi$. The rule $\Gamma \vdash_{L} \varphi$ is L-admissible, if every common L-unifier of Γ is also an L-unifier of φ.

We can identify propositional formulas in terms of $M V$-algebras in a natural way. A valuation in an $M V$-algebra A is a homomorphism v from the term algebra to A. If φ is a k-variable formula, $\left(a_{1}, \ldots, a_{k}\right) \in A^{k}$, and v is the assignment such that $v\left(p_{i}\right)=a_{i}$, we also write $\varphi\left(a_{1}, \ldots, a_{k}\right)=v(\varphi)$. A valuation v satisfies a formula φ if $v(\varphi)=1$, and it satisfies
a rule Γ / φ if $v(\varphi) \neq 1$ for some $\alpha \in \Gamma$, or $v(\varphi)=1$. A rule Γ / φ is valid in an $M V$-algebra A, written as $A \models \Gamma / \varphi$, if the rule is satisfied by every valuation in A. In other words, $A \models \Gamma / \varphi$ if and only if the open first-order formula

$$
\bigwedge_{\alpha \in \Gamma}(\alpha=1) \Rightarrow \varphi=1,
$$

is valid in A. Conversely, validity of open formulas (or equivalently, universal sentences) in A can be reduced to validity of rules. Any open formula Φ can be expressed in the conjunctive normal form as $\Phi=\bigwedge_{i<k} \Phi_{i}$, where each Φ_{i} is a clause: a disjunction of atomic formulas (i.e., equations) and their negations. Then $A \models \Phi$ iff $A \models \Phi_{i}$ for each $i<k$, and a clause

$$
\bigvee_{i<n}\left(\varphi_{i}=\psi_{i}\right) \vee \bigvee_{i<m}\left(\varphi_{i}^{\prime} \neq \psi_{i}^{\prime}\right),
$$

is valid in A iff the rule

$$
\left\{\varphi_{i}^{\prime} \leftrightarrow \psi_{i}^{\prime} \mid i<m\right\} /\left\{\varphi_{i} \leftrightarrow \psi_{i} \mid i<n\right\},
$$

is valid. Łukasiewicz logic $£$ is algebraizable, and the variety of $M V$-algebras is its equivalent algebraic semantics, using the translation between propositional formulas and identities described above. We thus have (cf. [22]):

Claim 1. ([24]) A rule Γ / φ is valid in all $M V$-algebras if and only if it is derivable in E .

As another corollary to algebraizability of E, free $M V$-algebras can be described as Lindenbaum algebras of E : the Lindenbaum algebra consists of equivalence classes of formulas using elements of generators X as propositional variables modulo the equivalence relation $\varphi \sim \psi$ iff $\vdash_{E} \varphi \leftrightarrow \psi$, with operations defined in the natural way. Note that valuations in this Lindenbaum algebra correspond to substitutions whose range consists of formulas using variables from X, and a formula φ is satisfied under a valuation given by such a substitution σ if and only if $\vdash_{E} \sigma(\varphi)$. We obtain the following characterization of admissibility:

Claim 2. ([24]) For any rule Γ / φ, the following are equivalent:
(i) Γ / φ is admissible.
(ii) Γ / φ is valid in all free $M V$-algebras.
(iii) Γ / φ is valid in all free $M V$-algebras over finite sets of generators.

Let us note that we will have the same assertions if we change the Łukasiewicz logic $£$ with $\operatorname{logic} L_{P}$. Then we can reformulate the Claim 2 in the following way:

The logic L_{P} is structurally complete iff the variety $\mathbf{M V (C)}$ coincides with the quasivariety generated by all free $M V(C)$-algebras over finite sets of generators.

Let us formulate the following property for the logic L :
$(\mathbf{S C}) \alpha \vdash \beta \in T, \Leftrightarrow(\forall \varphi: \operatorname{Form}(\mathfrak{L}) \rightarrow \operatorname{Form}(\mathfrak{L}))[\varphi(\alpha) \in T \Rightarrow \varphi(\beta) \in T]$,
where T is the set of all theorems of the logic L, φ is an endomorphism of the algebra ($F ; \rightarrow, \neg, 0,1$) which is a free algebra in the class of algebras of the type $(2,1,0,0)$. Let us note that this condition is equivalent to the notion of a structural completeness [33] in the sense of Pogorzelski, i.e. any structural admissible rule of a logic is derivable.
(SCL) $\alpha^{n} \rightarrow \beta \in T$, for some positive integer $n, \Leftrightarrow(\forall \varphi: F \rightarrow F)[\varphi(\alpha) \in T \Rightarrow \varphi(\beta) \in$ $T]$,
where T is the set of all theorems of the logic L, φ is an endomorphism of the algebra ($F ; \rightarrow, \neg, 0,1$) which is a free algebra in the class of algebras of the type ($2,1,0,0$). Let us note that, since according to deduction theorem in Lukasiewicz logic: $\alpha \vdash \beta$ if and only if $\vdash \alpha^{n} \rightarrow \beta$ for some positive integer n, the property is equivalent to the notion of a structural completeness in the sense of Pogorzelski, i.e. any structural admissible rule of a logic is derivable.

In algebraic terms the property has the following formulation:

- $\alpha^{n} \rightarrow \beta=1$, for some positive integer $n \Leftrightarrow(\forall \varphi: \operatorname{Form}(\mathfrak{L}) \rightarrow \operatorname{Form}(\mathfrak{L}))[\varphi(\alpha)=$ $1 \Rightarrow \varphi(\beta)=1$],
where φ is an endomorphism of the ω-generated free algebra $(F ; \rightarrow, \neg, 0,1)$ in the variety of $M V$-algebras.

Recall that L_{P} is a logic corresponding to variety $\mathbf{M V}(\mathbf{C})$, i. e. L_{P} is the extension of Lukasiewicz logic by the Lukasievicz formula $\neg((\neg \alpha \rightarrow \alpha) \rightarrow \neg(\neg \alpha \rightarrow \alpha)) \leftrightarrow((\alpha \rightarrow$ $\neg \alpha) \rightarrow \neg(\alpha \rightarrow \neg \alpha)$), the theorems of which coincides with formulas that are valid in all $M V(C)$-algebras.

Theorem 9. The logic L_{P} is structurally complete.
Proof. Let us suppose that $\alpha \rightarrow \beta$ is m variable term. It is evident that if $\alpha^{n} \rightarrow \beta=1$, then $(\forall \varphi: F \rightarrow F)[\varphi(\alpha)=1 \Rightarrow \varphi(\beta)=1]$.

Now suppose that $\alpha^{n} \rightarrow \beta \neq 1$ for all positive integers n and $\varphi: F \rightarrow F$ is an endomorphism such that $\varphi(\alpha)=1$. Therefore, there exist m generators of $M V(C)$ algebra C where $\alpha>\beta$ on the generators $a_{1}, \ldots, a_{m} \in C$, i. e. $\alpha\left(a_{1}, \ldots, a_{m}\right)>\beta\left(a_{1}, \ldots, a_{m}\right)$ and $\alpha\left(a_{1}, \ldots, a_{m}\right)$ belongs to a prime filter, say J, and, since $\alpha^{n}\left(a_{1}, \ldots, a_{m}\right)>\beta\left(a_{1}, \ldots, a_{m}\right)$ for all positive integers $n, \beta\left(a_{1}, \ldots, a_{m}\right)$ does not belong to J. Observe that J is either the minimal prime filter $\{1\}$ or maximal filter $\left\{(\neg c)^{k}: k \in \omega\right\}$. Then, C / J is a chain $M V(C)$-algebra such that $\alpha\left(a_{1} / J, \ldots, a_{m} / J\right)=1$ and $\beta\left(a_{1} / J, \ldots, a_{m} / J\right) \neq 1$. According to Theorem 7, C / J is projective, which is either two-element Boolean algebra or $M V(C)$ algebra C. Hence, there exist homomorphisms $h: F(m) \rightarrow C / J$ and $\varepsilon: C / J \rightarrow F(m)$ such that $h \varepsilon=I d_{C / J}$. Then $\varepsilon h: F(m) \rightarrow F(m)$ is an endomorphism such that $\varepsilon h(\alpha)=1$ and $\varepsilon h(\beta) \neq 1$.

Now we give another proof of this theorem. We show that the variety MV(C) coincides with the quasivariety generated by all free $M V(C)$-algebras over finite sets of generators. Indeed, since C is projective, C is a subalgebra of a free $M V(C)$-algebras over finite sets
of generators. But quasivariety $\mathcal{Q V}(C)$ generated by C coincides with the variety $\mathcal{V}(C)$ (Theorem 2).

Corollary 6. Among the extensions of Lukasiewicz logics, only classical logic and the logic L_{P} are structurally complete.

Proof. Let L_{0} be a logic distinct from classical logic and the logic L_{P}. The rule ($3(p \wedge$ $\neg p))^{2} / p$ is admissible. Indeed, there is no substitution σ such that $\vdash_{L_{0}}(3(\sigma(p) \wedge \neg \sigma(p)))^{2}$. Only in the case where $\sigma(p)$ has the value t, such that $t \leq 1 / 2$ and $2 t \geq 1 / 2$, the valuation of $(3(\sigma(p) \wedge \neg \sigma(p)))^{2}$ has the value 1. But there is no formula which is equivalent to constant t, since we have no constant t. So, the rule $(3(p \wedge \neg p))^{2} / p$ is admissible. But $(3(p \wedge \neg p))^{2} \rightarrow p$ is not a theorem of L_{0}, because it is not logically true. At the same time, the rule is derivable in classical logic and the $\operatorname{logic} L_{P}$.

Let us notice that the result of Corollary 6 was obtained by J. Gispert in [16]. Let us note that structural completeness for the logic of perfect algebras L_{P} was announced in $[13,14,15]$. We also mention related works on structural completeness and admissibility in $M V$-algebras/Lukasiewicz logic: [7, 24, 25, 35].

Acknowledgements

The second author is supported by the (French-Georgian) grant CNRS-SNRSF \# 09/09 and the grant SNRSF \# 31/08.

References

[1] K.A. Baker, Free vector lattices, Canadian Journal of Mathematics, 20, 1968, 58-66.
[2] W.M. Beynon, Combinatorial aspects of piecewise linear maps, Journal of the London Mathematical Society, 31(2), 1974, 719-727.
[3] L.P. Belluce, C.C. Chang, A weak completeness theorem for infinite valued predicate logic, J. of Symbolic Logic, 28, 1963, 43-50.
[4] L.P. Belluce, A. Di Nola, The MV-algebra of first order Eukasiewicz logic, Tatra Mt. Math. Publ., 27(1-2), 2007, 7-22.
[5] L.P. Belluce, A. Di Nola, B. Gerla, Perfect MV-algebras and their Logic, Applied Categorical Structures, 15(1-2), 2007, 135-151.
[6] G. Birkhoff, Lattice Theory, Providence, Rhode Island, 1967.
[7] P. Cintula, G. Metcalfe, Structural completeness in fuzzy logics, Notre Dame Journal of Formal Logic, $\mathbf{5 0 (2)}$, 2009, 153-183.
[8] C.C. Chang, Algebraic Analysis of Many-Valued Logics, Trans. Amer. Math. Soc., 88, 1958, 467-490.
[9] R. Cignoli, A. Torens, Free Algebras in Varieties of Glivenko MTL-algebras Satisfying the Equation $2\left(x^{2}\right)=(2 x)^{2}$, Studia Logica, 83, 2006, 157-181.
[10] A. Di Nola, R. Grigolia, Projective MV-Algebras and Their Automorphism Groups, J. of Mult.-Valued Logic \& Soft Computing, 9, 2003, 291-317.
[11] A. Di Nola, A. Lettieri, Perfect MV-algebras are Categorically Equivalent to Abelian Є-Groups, Studia Logica, 53, 1994, 417-432.
[12] A. Di Nola, A. Lettieri, Equational Characterization of all Varieties of MV-algebras, Journal of Algebra, 221, 1999, 463-474.
[13] A. Di Nola, R. Grigolia, L. Spada, On the logic of perfect MV-algebras: projectivity, unification, structurally completeness, Research Workshop in Duality Theory in Algebra, Logic and Computer Science Workshop II, Oxford, 15-17, August, 2012.
[14] A. Di Nola, R. Grigolia, G. Lenzi, On the Logic of Perfect MV-algebras, Logic, Algebra and Truth Degrees (LATD2014), July 1619, Vienna, Austria, 2014.
[15] J. Gispert, Quasivarieties of MV-algebras and structurally complete Łukasiewicz logics, Logic, Algebra and Truth Degrees (LATD2014), July 1619, Vienna, Austria, 2014.
[16] J. Gispert, Least V-quasivarieties of MV-algebras, Fuzzy Sets and Systems, 2014, http://dx.doi.org/10.1016/j.fss.2014.07.011.
[17] S. Ghilardi, Unification in Intuitionistic and De Morgan Logic, Journ. Symb. Logic, 1999, 859-880.
[18] S.Ghilardi, Best solving modal equations, Annals of Pure and Applied Logic, 102(3), 2000, 183-198.
[19] S. Ghilardi, Unification, finite duality and projectivity in varieties of Heyting algebras, APAL, 127, 2004, 99-115.
[20] S. Ghilardi, Unification through projectivity, Journal of Logic and Computation, 7, 1997, 733-752.
[21] Grätzer G. Universal algebra, Second Edition, Springer-Verlag, 1979.
[22] P. Hájek, Metamathematics of fuzzy logic, Kluwer, Dordrecht, 1998.
[23] Y. Komori, Super-Eukasiewicz propositional logics, Nagoya Mathematical Journal, 84, 1981, 119-133.
[24] E. Jerabek, Admissible rules of Eukasiewicz logic, Journal of Logic and Computation, 20, 2010, 425-447.
[25] E. Jerabek, Bases of admissible rules of Eukasiewicz logic, Journal of Logic and Computation, 20, 2010, 1149-1163.
[26] P. Lorenzen, Einfuhrung in die operative Logik und Mathematik, Grundlehren der mathematischen Wissenschaften, 78, Springer, 1955.
[27] R. McKenzie, An algebraic version of categorical equivalence for varieties and moe generalalgebraic categories, In Logic and algebra (Pontignano, 1994), 180, Lecture Notes in Pure and Appl. Math., Dekker, New York, 1996, 211-243.
[28] D. Mundici, Interpretation of AF C*-Algebras in Łukasiewicz Sentential Calculus, J. Funct. Analysis, 65, 1986, 15-63.
[29] D. Mundici, The Haar theorem for lattice-ordered abelian groups with order-unit, Discrete and Continuous Dynamical Systems, 21, 2008, 537-549.
[30] D. Mundici, Turing complexity of the Behncke-Leptin C^{*}-Algebras with a two-point dual, Annals of Mathematics and Artificial Intelligence, 26, 1992, 287-294.
[31] D. Mundici, Advanced Eukasiewicz calculus and MV-algebras, 35, Trends in Logic, Springer Verlag, New York, 2011.
[32] G. Panti, Varieties of MV-algebras, Journal of Applied Non-Classical Logics 9(1)(1999), 141-157.
[33] W.A. Pogorzelski, Structural completeness of the propositional calculus, Bull. Acad. Polon. Sci., Ser. Math. Astr. Phys., 19, 1971, 349-351.
[34] B. Scarpellini, Die Nichtaxiomatisierbarkeit des unendlichwertigen Pradikatenkalkulus von Eukasiewicz, J. of Symbolic Logic, 27, 1962, 159-170.
[35] P. Wojtylak, On structural completeness of many-valued logics, Studia Logica, 37, 1978, 139-147.

Antonio Di Nola
Department of Mathematics, University of Salerno
E-mail: adinola@unisa.it
Revaz Grigolia
Tbilisi State University
E-mail: revaz.grigolia@tsu.ge, revaz.grigolia359@gmail.com
Giacomo Lenzi
Department of Mathematics, University of Salerno
E-mail: gilenzi@unisa.it
Received 19 April 2015
Accepted 28 May 2015

[^0]: * Corresponding author.

