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Structural Completeness and Unification Problem of the
Logic of Chang Algebra

A. Di Nola∗, R. Grigolia, G. Lenzi

Abstract. The variety generated by perfect MV -algebras is investigated in the paper. It is
shown that for m-generated algebras from this variety to be finitely presented is equivalent to be
projective. The variety generated by perfect algebras has unitary unification type and it is shown
that the logic corresponding to this variety is structurally complete.
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1. Introduction

MV -algebras are algebraic counterpart of the infinite valued  Lukasiewicz sentential
calculus, as Boolean algebras are with respect to the classical propositional logic. There
are MV -algebras which are not semisimple, i.e. the intersection of their maximal ideals
(the radical of A) is different from {0}. Non-zero elements from the radical of A are
called infinitesimals. It is worth to stress that to the existence of infinitesimals in some
MV -algebras is due the remarkable difference of behaviour between Boolean algebras and
MV -algebras.

Perfect MV -algebras are those MV -algebras generated by their infinitesimal elements
or, equivalently, generated by their radical [5]. They generate the smallest non locally
finite subvariety of the variety, MV, of all MV -algebras.

Perfect MV -algebras do not form a variety and contain non-simple subdirectly irre-
ducible MV -algebras. Any MV -algebra contains its greatest perfect subalgebra, called its
perfect skeleton. The variety generated by all perfect MV -algebras is indeed generated by
a single MV -chain, actually the MV -algebra C, defined by Chang in [8].

Chang’s MV -algebra C [8], which is our main interest, is defined on the set

C = {0, c, ..., nc, ..., 1− nc, ..., 1− c, 1},

by the following operations (consider 0 = 0c): x⊕ y =
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• (m+ n))c if x = nc and y = mc;

• 1− (m− n)c if x = 1− nc and y = mc and 0 < n < m;

• 1− (n−m)c if x = nc and y = 1−mc and 0 < m < n;

• 1 otherwise;

¬x = 1− nc if x = nc, ¬x = nc if x = 1− nc.

The MV -algebra C is isomorphic to the algebra Sω1 defined by Komori in [23]. In [23]
the author presented the so-called Super- Lukasiewicz Logics, certain equational extensions
of  Lukasiewicz Propositional Logic. He also provided a characterization of irreducible
generators of each of such varieties. Finite equational axiomatization of each subvariety
of the variety of all MV -algebras is given in [12] and [32].

The MV -algebra C is the simplest MV -algebra with infinitesimals. That is, any non
semisimple MV -algebra contains a copy of C as subalgebra. C is generated by an atom c,
which we can interpret as a quasi false truth value. The negation of c is a quasi true value.
Now, quasi truth or quasi falsehood are vague concepts. Hence, it is quite intriguing to
explore such a logic of quasi true. About quasi truth in an MV -algebra, it is reasonable
to accept the following propositions:

• there are quasi true values which are not 1;

• 0 is not quasi true;

• if x is quasi true, then x2 is quasi true (where x2 denotes the MV algebraic product
of x with itself).

In C, to satisfy these axioms, it is enough to say that the quasi true values are the co-
infinitesimals.

By way of contrast, note that there is no notion of quasi truth in [0, 1] satisfying the
previous axioms (there are if we replace the MV product with other suitable t-norms, e.g.
the product t-norm or the minimum t-norm).

Algebras from the variety generated by C will be called MV (C) − algebras. Also
we recall that for an MV (C)-algebra A, its Boolean skeleton, B(A), that is the greatest
Boolean subalgebra of A, is a retract of A, via the radical ideal of A, see [11]. Thus, roughly
speaking, every MV (C)-algebra can be seen as a Boolean algebra, up to infinitesimals.

Let LP be the logic corresponding to the variety generated by perfect algebras which
coincides with the set of all  Lukasiewicz formulas that are valid in all perfect MV -chains,
or equivalently that are valid in the MV-algebra C. Actually, LP is the logic obtained by
adding to the axioms of  Lukasiewicz sentential calculus the following axiom: (x ⊕ x) �
(x⊕ x)↔ (x� x)⊕ (x� x), see [5]. Notice that the above axiom is used in [9] to define
an interesting class of Glivenko MTL-algebras and that the Lindenbaum algebra of LP is
an MV (C)-algebra.

The importance of the class MV (C)-algebras and of the logic LP can be percieved
looking further at the role that infinitesimals play in MV-algebras and in  Lukasiewicz
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logic. Indeed, the pure first order  Lukasiewicz predicate logic is not complete with respect
to the canonical set of truth values [0, 1], [34]. However, a completeness theorem is obtained
if the truth values are allowed to vary through all linearly ordered MV-algebras, [3]. From
the incompleteness theorem arises the problem of the algebraic significance of the true
but unprovable formulas. In [4] it is remarked that the Lindenbaum algebra of first order
 Lukasiewicz logic is not semisimple and that the valid but unprovable formulas are precisely
the formulas whose negations determine the radical of the Lindenbaum algebra, that is
the co-infinitesimals of such algebra. Hence, the valid but unprovable formulas generate
the perfect skeleton of the Lindenbaum algebra. So, perfect MV -algebras, the variety
generated by them and their logic are intimately related with a crucial phenomenon of
first order  Lukasiewicz logic.

As it is well known, MV -algebras form a category which is equivalent to the category
of abelian lattice ordered groups (`-groups, for short) with strong unit [28]. Let us denote
by Γ the functor implementing this equivalence. In particular, each perfect MV -algebra is
associated with an abelian `-group with a strong unit. Moreover, the category of perfect
MV -algebras is equivalent to the category of abelian `-groups, see [11]. Among perfect
MV -algebras the algebra C plays a very important role. Indeed, it is the generator of the
variety MV(C), the logic LP is complete with respect to C, and C corresponds to the
Behncke-Leptin C∗-algebra A1,0 with a two-point dual, via the composition of the functor
Γ with K0, see [30].

From above it is clear that the class of MV (C)-algebras, far from being a quite narrow
and exotic class, deserves to be explored because of its several and fruitful links with other
areas of Logic and Algebra. Now we are going to focus on the logic LP and especially on
its derivability properties.

Derivable and admissible rules were introduced by Lorenzen [26]. A rule

ϕ1, ..., ϕn�ψ,

is derivable if it belongs to the consequence relation of the logic (defined semantically, or by
a proof system using a set of axioms and rules); and it is admissible if the set of theorems of
the logic is closed under the rule. These two notions coincide for the standard consequence
relation of classical logic, but nonclassical logics often admit rules which are not derivable.
A logic whose admissible rules are all derivable is called structurally complete.

Ghilardi [17, 18] discovered the connection of admissibility to projective formulas and
unification, which provided another criteria for admissibility in certain modal and in-
termediate logics (= extensions of intuitionistic logic), and new decision procedures for
admissibility in some modal and intermediate logics.

Moreover, following Ghilardi [19] defining unification problem in terms of finitely pre-
sented algebras, and having our result that finitely generated finitely presented algebras
are precisely finitely generated projective algebras, we deduce that the equational class of
all MV (C)-algebras has unitary unification type, i. e. LP has unitary unification type.

In the present paper we prove that:
(1) For m-generated MV (C)-algebras to be finitely presented is equivalent to be pro-

jective.
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(2) The variety MV(C) of MV (C)-algebras has unitary unification type.
(3) There exists a one-to-one correspondence between projective formulas of LP with

m-variables and the m-generated projective subalgebras of the m-generated free algebras
of the variety generated by perfect MV -algebras.

(4) LP is structurally complete.

2. The quasi variety generated by Perfect MV -algebra C

It is worth to remark that the class of perfect algebras does not form a variety, so the
problem of studying the proper subvariety of the variety of all MV -algebras generated by
all perfect MV -algebras arises.

Let V(Perf) be the variety generated by all perfect algebras, and V(C) be the variety
generated by Chang’s algebra C. Then the following theorem holds:

Theorem 1. ([11]) V(C) = V(Perf).

Let K be a class of algebras. Then by QV(K) we denote the quasivariety of algebras
generated by K.

Now we show that the quasivariety generated by Chang algebra C coincides with the
variety generated by C.

Theorem 2. V(C) = QV(C).

To prove this theorem we give some auxiliary assertions.

Lemma 1. Γ(Z ×lex Q, (1, 0)) ∈ QV(C).

Proof. Let us suppose that A = Γ(Z ×lex Q, (1, 0)). Suppose a quasi-identity p(x) =
0→ q(x) = 0 is false in A. We suppose p, q are polynomials in one variable (the case of n
variables is analogous). Then there is x such that p(x) = 0 and q(x) 6= 0. We can suppose
x ∈ Rad(A) and x 6= 0. But then x generates a copy of C. So, the quasi-identity is false
also in C. J

Corollary 1. Γ(Z ×lex R, (1, 0)) ∈ QV(C).

Proof. This follows by the density of the rationals in R. J

Corollary 2. If UR is an ultrapower of the reals, then

Γ(Z ×lex UR, (1, 0)) ∈ QV(C).

Proof. This follows from Los Theorem on ultraproducts. J

Corollary 3. If G is any linearly ordered abelian group, then

Γ(Z ×lex G, (1, 0)) ∈ QV(C).
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Proof. This follows because every linearly ordered abelian group embeds in an ultr-
power of the reals. J

Corollary 4. Every perfect MV chain is in QV(C).

Proof. This follows because every perfect MV chain has the form Γ(Z ×lex G, (1, 0)).
J

Now let us conclude the proof of the theorem.

Clearly QV(C) ⊆ V(C).

Conversely, an MV -chain belongs to V(C) if and only if it is perfect, so everyMV -chain
belonging to V(C) belongs to QV(C). But every element of V(C) is a subdirect product
of chains of V(C), and QV(C) is closed under subdirect products. So, V(C) ⊆ QV(C).
Hence V(C) = QV(C)

3. Finitely generated projective MV (C)-algebras

Theorem 3. A 1-generated free MV (C)-algebra FMV(C)(1) is isomorphic to C2 with free
generator (c,¬c).

Proof. Firstly, let us show that C2 is generated by (c,¬c). Indeed, 2((c,¬c)2) = (0, 1)
and ¬(0, 1) = (1, 0). Therefore, since c ( and ¬c, as well) generates C, we have that (c,¬c)
generates C2.

Observe that if we have a perfect MV (C)-chain A, then 1-generated subalgebra of A
is isomorphic to either Γ(Z ×lex Z, (1, 0)) or the two-element Boolean algebra S1.

Let K be a variety. An m-generated free algebra A on the generators g1, ..., gm over the
variety K can be defined in the following way: the algebra A is a free m-generated algebra
on the generators g1, ..., gm iff for any m-variable equation P (x1, ..., xm) = Q(x1, ..., xm),
the equation holds in the variety K iff the equation P (g1, ..., gm) = Q(g1, ..., gm) is true in
the algebra A (on the generators g1, ..., gm ∈ A) [6, 21].

Now, suppose that one-variable equation P = Q does not hold in the variety MV(C).
It means that this equation does not hold in some 1-generated perfectMV (C)-algebra A on
some element a ∈ A. Then A is isomorphic either to C or S1 (2-element Boolean algebra).
Let us suppose that A is isomorphic to C. Identify isomorphic elements. Depending on
the generator of A, the one belongs to either RadA or ¬RadA. We use the projection
either π1 : C2 → C or π2 : C2 → C, sending the generator (c,¬c) either to c ∈ C or to
¬c ∈ C. From here we conclude that P = Q does not hold in C2. Now let us suppose that
A is isomorphic to S1. Notice that homomorphic image of C2 by Rad(C2) is isomorphic
to one-generated free Boolean algebra S2

1 . So, P = Q does not hold in C2. Hence, C2 is
1-generated free MV (C)-algebra. J

Definition 1. A subalgebra A of FV(m) is said to be projective subalgebra if there exists
an endomorphism h : FV(m) → FV(m) such that h(FV(m)) = A and h(x) = x for every
x ∈ A.
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Proposition 1. ([10], [27]) Let V be a variety, FV(m) be an m-generated free algebra
of the variety V, and g1, . . . , gm be its free generators. Then an m-generated subalgebra
A of FV(m) with the generators a1, . . . , am ∈ A is projective if and only if there exist
polynomials p1(x1, . . . , xm), . . . , pm(x1, . . . , xm) such that

pi(g1, . . . , gm) = ai

and
pi(p1(x1, . . . , xm), . . . , pm(x1, . . . , xm)) = pi(x1, . . . , xm), i = 1, . . . ,m,

hold in V.

From Proposition 1 we obtain that in FV(m) we have

pi(p1(g1, . . . , gm), . . . , pm(g1, . . . , gm)) = pi(g1, . . . , gm) = ai,

i = 1, . . . ,m, i. e. pi(a1, . . . , am) = ai in A. This suggests to consider the free object
FV(m,Ω) over the variety V with respect to the set of equations Ω = {p1(x1, . . . , xm) =
x1, . . . , p1(x1, . . . , xm) = xm}.

Proposition 2. ( [31], [10])(Lemma 2, Lemma 3) An MV -algebra A is finitely pre-
sented iff A ∼= FMV(m)/[u), where [u) is a principal filter generated by some element
u ∈ FMV(m).

Theorem 4. Let A be an m-generated MV (C)-algebra. Then the following are equivalent:

1. A is projective.

2. A is finitely presented.

Proof. 1 ⇒ 2. Since A is m-generated projective MV (C)-algebra, A is a retract
of FMV(C)(m), i.e. there exist homomorphisms h : FMV(C)(m) → A and ε : A →
FMV(C)(m) such that hε = IdA, h(gi) = ai (i = 1, ...,m), and moreover, according to
Proposition 1, there exist m polynomials p1(x1, . . . , xm),
. . . , pm(x1, ..., xm) such that

pi(g1, . . . , gm) = ε(ai) = εh(gi)

and
pi(P1(x1, . . . , xm), . . . , pm(x1, . . . , xm)) = pi(x1, . . . , xm), i = 1, . . . ,m,

where g1, . . . , gm are free generators of FMV(C)(m). Observe that h(g1), . . . , h(gm) are
generators of A which we denote by a1, . . . , am, respectively. Let e be the endomorphism
εh : FMV(C)(m) → FMV(C)(m). This endomorphism has the properties: ee = e and
e(x) = x for every x ∈ ε(A).

Let us consider the set of equations Ω = {pi(x1, . . . , xm) ↔ xi = 1 : i = 1, . . . ,m}
and let u =

∧n
i=1((pi(g1, . . . , gm)↔ gi) ∈ FMV(C)(m), where x↔ y is the abbreviation of

(x → y) ∧ (y → x). Then, according to Proposition 2, FMV(C)(m)/[u) ∼= FMV(C)(m,Ω).
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Observe that the equations from Ω are true in A on the elements ε(ai) = e(gi), i =
1, . . . ,m. Indeed, since e is an endomorphism, we have

e(u) =
m∧
i=1

e(gi)↔ pi(e(g1), . . . , e(gm)).

But pi(e(g1), . . . , e(gm)) = pi(p1(g1, . . . , gm), . . . , pn(g1, . . . , gm)) = pi(g1, . . . , gm) =
= εh(gi) = e(gi), i = 1, . . . ,m. Hence e(u) = 1 and u ∈ e−1(1), i. e. [u) ⊆ e−1(1).
Therefore there exists a homomorphism f : FMV(C)(m)/[u) → ε(A) such that the dia-
gram

FMV(C)(m) ε(A)

FMV(C)(m)/[u)

-

6
@
@
@
@@R

e

r

f

commutes, i. e. fr = e, where r is a natural homomorphism sending x to x/[u). Now
consider the restrictions e′ and r′ on ε(A) ⊆ FMV(C)(m) of e and r, respectively. Then
fr′ = e′. But e′ = Idε(A). Therefore fr′ = Idε(A). From here we conclude that r′ is an
injection. Moreover, r′ is a surjection, since r(ε(ai)) = r(gi). Indeed, e(gi) = pi(g1, . . . , gn)
and gi ↔ pi(g1, . . . , gn) = gi ↔ e(gi), where e(gi) = εh(gi). So gi ↔ pi(g1, . . . , gm) ≥∧m
i=1 gi ↔ pi(g1, . . . , gm), i. e. gi ↔ pi(g1, . . . , gm) ∈ [u). Hence, r′ is an isomorphism

between ε(A) and FMV(C)(m)/[u). Consequently, A(∼= ε(A)) is finitely presented.
2 ⇒ 1. Let A be an m-generated finitely presented MV (C)-algebra. Then there

exists a principal filter [u) of m-generated free MV (C)-algebra FMV(C)(m) such that
A ∼= FMV(C)(m)/[u) (Proposition 2). Since FMV(C)(m) is a subdirect product of finitely
generated chain MV (C)-algebras, we can represent the element u ∈ FMV(C)(m) as a
sequence (ui)i∈I . Let J = {i ∈ I : ui 6= 1}. Let πJ be a natural homomorphism such
that πJ((ai)i∈I) = (ai)i∈J . On the other hand, the subalgebra of FMV(C)(m) generated
by [u), which is a perfect MV -algebra [u) ∪ ¬[u), is isomorphic to πJ(FMV(C)(m)) ∼=
FMV(C)(m)/[u) ∼= A. Notice, that if (xi)i∈I ∈ [u), then xi = 1 for i ∈ I − J ; and if
(xi)i∈I ∈ ¬[u), then xi = 0 for i ∈ I − J . So, the set A′ = {(xi)i∈J : (xi)i∈I ∈ [u) ∪ ¬[u)}
forms an MV (C)-algebra which is isomorphic to [u) ∪ ¬[u). Let ε : A′ → FMV(C)(m)
be the embedding such that ε((xi)i∈J) = (xi)i∈I ∈ FMV(C)(m), where xi = 1 if (xi)i∈J
belongs to the maximal filter and i ∈ I − J ; and xi = 0 if (xi)i∈J belongs to the maximal
ideal and i ∈ I − J . Thus we conclude that πJε = IdA′ . From here we deduce that the
MV (C)-algebra A is projective. J

Observe, that for `-groups, Baker [1] and Beynon [2] gave the following characteriza-
tion: An `-group G is finitely generated projective iff it is finitely presented. For unital
`-groups the (⇒)-direction holds [29] (Proposition 5).

The algebra C is isomorphic to Γ(Z×lexZ, (1, 0)), with generator c (=(0, 1)). In another
notation the algebra C is denoted by Sω1 (= Γ(Z×lexZ, (1, 0))). Recall that MV(C) is the
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variety generated by perfect algebras.

Theorem 5. The two-element Boolean algebra and the MV (C)-algebra C are projective.

Proof. It is obvious that the two-element Boolean algebra is projective. Indeed, as we
already stressed, the Boolean skeleton B(C2) is a retract of C2, [11]. So, the 4-element
Boolean algebra is projective. Since the 2-element Boolean algebra is a retract of the
4-element Boolean algebra, we have that the 2-element Boolean algebra is projective. As
we know, C2 is the one-generated free MV (C)-algebra.

Let us consider the following partition E of the algebra C2 the classes of which are:
for any k ∈ ω
‖(1, (¬c)k)‖ = {(nc, (¬c)k) : n ∈ ω} ∪ {((¬c)n, (¬c)k) : n ∈ ω},
‖(0, kc)‖ = {(nc, kc) : n ∈ ω} ∪ {((¬c)n, kc) : n ∈ ω}.
Notice that this partition is the congruence relation corresponding to the prime filter

‖(1, 1)‖ = {x ∈ C2 : (0, 1) ≤ x ≤ (1, 1)}, and ‖(0, 0)‖ is the prime ideal {x ∈ C2 : (0, 0) ≤
x ≤ (1, 0)}.

Let us consider the following homomorphisms: π2 : C2 → C, where π2((x, y)) = y, and
ε : C → C2, where ε(kc) = (0, kc), ε((¬c)k) = (1, (¬c)k) for every k ∈ ω. Then, it is clear
that π2ε = IdC . From here we conclude that C is projective. J

4. Projective formulas

Let us denote by Pm a fixed set x1, ..., xm of propositional variables and by Φm the
set of all propositional formulas in LP with variables in Pm. Notice that the m-generated
free MV (C)-algebra FMV(C)(m) is isomorphic to Φm/ ≡, where α ≡ β iff ` (α↔ β) and
α ↔ β = (α → β) ∧ (β → α). Subsequently we do not distinguish between the formulas
and their equivalence classes. Hence we simply write Φm for FMV(C)(m), and Pm plays
the role of the set of free generators. Since Φm is a lattice, we have an order ≤ on Φm . It
follows from the definition of → that for all α, β ∈ Φm , α ≤ β iff ` (α→ β).

Let α be a formula of the logic LP and consider a substitution σ : Pm → Φm and
extend it to all of Φm by σ(α(x1, ..., xm)) = α(σ(x1), ..., σ(xm)). We can consider the
substitution as an endomorphism σ : Φm → Φm of the free algebra Φm.

Definition 2. A formula α ∈ Φm is called projective if there exists a substitution σ :
Pm → Φm such that ` σ(α) and α ` β ↔ σ(β), for all β ∈ Φm.

Notice that the notion of projective formula was introduced for intuitionistic logic in
[17].

Observe that we can rewrite any identity p(x1, ..., xm) = q(x1, ..., xm) in the variety
MV(C) into an equivalent one p(x1, ..., xm)↔ q(x1, ..., xm) = 1. So, for MV(C) we can
replace n identities by one

n∧
i=1

pi(x1, ..., xm)↔ qi(x1, ..., xm) = 1.



Structural Completeness and Unification Problem 31

Now we are ready to show a close connection between projective formulas and projec-
tive subalgebras of the free algebra Φm.

Theorem 6. Let A be an m-generated projective subalgebra of the free algebra Φm. Then
there exists a projective formula α of m variables, such that A is isomorphic to Φm/[α),
where [α) is the principal filter generated by α ∈ Φm.

Proof. Suppose A is an m-generated projective subalgebra of Φm with generators
a1, ..., am. Then A is a retract of Φm, and there exist homomorphisms ε : A → Φm,
h : Φm → A such that hε = IdA, where ε(x) = x for every x ∈ A ⊂ Φm. Observe that εh
is an endomorphism of Φm. We will show now that α =

∧m
j=1(xj ↔ εh(xj)) is a projective

formula, namely, that ` εh(α) and α ` β ↔ εh(β), for all β ∈ Φm.
Indeed, εh(

∧m
j=1(pj ↔ εh(pj))) =

∧m
j=1(εh(xj) ↔ εhεh(xj)), and since hε = IdA,

we have εh(
∧m
j=1(xj ↔ εh(xj))) =

∧m
j=1(εh(xj) ↔ εh(xj)). Thus ` εh(α). Further,

for any β ∈ Φm, εh(β(x1, ..., xm)) = β(εh(x1), ..., εh(xm)), and since α ` xj ↔ εh(xj),
j = 1, ...,m, we have α ` β ↔ εh(β).

Since A is an m-generated projective MV (C)-algebra, according to the Proposition 1,
there exist m polynomials p1(x1, ..., xm), ..., pm(x1, ..., xm) such that

pi(x1, ..., xm) = ε(ai) = εh(xi)

and
pi(p1(x1, ..., xm), ..., pm(x1, ..., xm)) = pi(x1, ..., xm), i = 1, ...,m.

Observe that h(xi) = ai. Since the m-generated projective MV -algebra A is finitely
presented by the equation

∧m
j=1(xj ↔ εh(xj)) = 1, we have A ∼= Φm/[α). J

Theorem 7. If α is a projective formula of m variables, then Φm/[α) is a projective
algebra which is isomorphic to a projective subalgebra of Φm.

Proof. Suppose that α is a projective formula of m variables. Then there exists a
substitution σ : Pm → Φm such that ` σ(α) and α ` β ↔ σ(β), for all β ∈ Φm. Since σ
is an endomorphism of Φm, σ(Φm) is a subalgebra of Φm. Now we will show that σ(Φm)
is a retract of Φm, i. e. σ2 = σ. Indeed, since α is a projective formula, σ(α) = 1Φm , and
α ≤ β ↔ σ(β) for all β ∈ Φm. But then σ(α) ≤ σ(β) ↔ σ2(β), σ(β) ↔ σ2(β) = 1Φm ,
σ(β) = σ2(β), and σ2 = σ. Hence σ(Φm) is a retract of Φm. So, σ(Φm) is isomorphic to
Φm/[α). J

Thus we have the following correspondence between projective formulas and projec-
tive subalgebras of Φm. To each m-generated projective subalgebra of m-generated free
MV (C)-algebra, there corresponds an m-variable projective formula, and to two non-
isomorphic m-generated projective subalgebras of m-generated free MV (C)-algebra, there
correspond non-equivalent m-variable projective formulas. And to two non-equivalent m-
variable projective formulas, there correspond two different m-generated projective subal-
gebra of m-generated free MV (C)-algebra (but they can be isomorphic).

Therefore we arrive at the following
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Corollary 5. There exists a one-to-one correspondence between projective formulas with
m variables and m-generated projective subalgebras of Φm.

5. Unification problem

Let E be an equational theory. The E-unification problem is: given two terms s, t
(built from function symbols and variables), to find a unifier for them, that is, a uniform
replacement of the variables occurring in s and t by other terms that makes s and t equal
by modulo E. For detailed information on unification problem we refer the readers to
[17, 18, 20].

Let us be more precise. Let F be a set of functional symbols and let V be a set
of variables. Let TF (V ) be the term algebra built from F and V , and TFm(V ) be the
term algebra of m-variable terms. Let E be a set of identities of type p(x1, ..., xm) =
q(x1, ..., xm), where p, q ∈ TFm(V ).

Let V be the variety of algebras over F axiomatized by the equations from E.
A unification problem modulo E is a finite set of pairs

E = {(sj , tj) : sj , tj ∈ TFm(V ), j ∈ J},

for some finite set J . A solution to (or a unifier for) E is a substitution (or an endomor-
phism of the term algebra TFm(V )) σ (which is extension of the map s : Vm → TFm(V ),
where Vm (= {x1, ..., xm}) is the set of m variables) such that the identity σ(sj) = σ(tj)
holds in every algebra of the variety V. The problem E is solvable (or unifiable) if it admits
at least one unifier.

Let (X,�) be a quasi-ordered set (i. e. � is a reflexive and transitive relation). A
µ-set [18] for (X,�) is a subset M ⊆ X such that: (1) every x ∈ X is less or equal to some
m ∈M ; (2) all elements of M are mutually �-incomparable. There might be no µ-set for
(X,�) (in this case we say that (X,�) has type 0) or there might be many of them, due
to the lack of antisymmetry. However, all µ-sets for (X,�), if any, must have the same
cardinality. We say that (X,�) has type 1, ω,∞ iff it has a µ-set of cardinality 1, of finite
(greater than 1) cardinality or of infinite cardinality, respectively.

Substitutions are compared by instantiation in the following way: we say that σ :
TFm(V ) → TFm(V )) is more general than τ : TFm(V ) → TFm(V ) (written as τ � σ)
iff there is a substitution η : TFm(V ) → TFm(V ) such that for all x ∈ Vm we have
E ` η(σ(x)) = τ(x). The relation � is quasi-order.

Let UE(E) be the set of unifiers for the unification problem E ; then (UE(E),�) is a
quasi-ordered set.

We say that an equational theory E has:

1. Unification type 1 iff for every solvable unification problem E , UE(E) has type 1;

2. Unification type ω iff for every solvable unification problem E , UE(E) has type ω;

3. Unification type ∞ iff for every solvable unification problem E , UE(E) has type 1 or
ω or ∞ - and there is a solvable unification problem E such that UE(E) has type ∞;
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4. Unification type nullary, if none of the preceding cases applies.

Following Ghilardi [17], who has introduced the relevant definitions for E-unification
from an algebraic point of view, by an algebraic unification problem we mean a finitely
presented algebra A of V. In this context, an E-unification problem is simply a finitely
presented algebra A, and a solution for it (also called a unifier for A) is a pair given by a
projective algebra P and a homomorphism u : A→ P . The set of unifiers for A is denoted
by UE(A). A is said to be unifiable or solvable iff UE(A) is not empty. Given another
algebraic unifier w : A→ Q, we say that u is more general than w, written w � u, if there
is a homomorphism g : P → Q such that w = gu.

The set of all algebraic unifiers UE(A) of a finitely presented algebra A forms a quasi-
ordered set with the quasi-ordering �.

The algebraic unification type of an algebraically unifiable finitely presented algebra A
in the variety V is now defined exactly as in the symbolic case, using the quasi-ordering
set (UE(A),�). If m-generated finitely presented algebra of an equational class V is
projective, then IdA will be most general unifier for A.

Theorem 8. The unification type of the equational class MV(C) is 1, i. e. unitary.

Proof. The proof of the theorem immediately follows from Theorem 4. J

6. Structural completeness

A logic L is structurally complete if every rule that is admissible (preserves the set of
theorems) should also be derivable. In a logic, a rule of inference is admissible in a formal
system if the set of theorems of the system does not change when that rule is added to
the existing rules of the system.

A Tarski-style consequence relation is a relation ` between sets of formulas, and for-
mulas, such that

• α ` α,

• if Γ ` α, then Γ,4 ` α.

A consequence relation such that if Γ ` α , then σ(Γ) ` σ(α) for all substitutions σ is
called structural.

More precisely. If L is a logic, an L-unifier of a formula ϕ is a substitution σ such
that `L σ(ϕ). A formula which has an L-unifier is called L-unifiable. An inference rule is
an expression of the form Γ/ϕ, where ϕ is a formula, and Γ is a finite set of formulas. An
inference rule Γ/ϕ is derivable in a logic L, if Γ `L ϕ. The rule Γ `L ϕ is L-admissible, if
every common L-unifier of Γ is also an L-unifier of ϕ.

We can identify propositional formulas in terms of MV -algebras in a natural way. A
valuation in an MV -algebra A is a homomorphism v from the term algebra to A. If ϕ is a
k-variable formula, (a1, ..., ak) ∈ Ak, and v is the assignment such that v(pi) = ai, we also
write ϕ(a1, ..., ak) = v(ϕ). A valuation v satisfies a formula ϕ if v(ϕ) = 1, and it satisfies
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a rule Γ/ϕ if v(ϕ) 6= 1 for some α ∈ Γ, or v(ϕ) = 1. A rule Γ/ϕ is valid in an MV -algebra
A, written as A |= Γ/ϕ, if the rule is satisfied by every valuation in A. In other words,
A |= Γ/ϕ if and only if the open first-order formula∧

α∈Γ

(α = 1)⇒ ϕ = 1,

is valid in A. Conversely, validity of open formulas (or equivalently, universal sentences)
in A can be reduced to validity of rules. Any open formula Φ can be expressed in the
conjunctive normal form as Φ =

∧
i<k Φi, where each Φi is a clause: a disjunction of atomic

formulas (i.e., equations) and their negations. Then A |= Φ iff A |= Φi for each i < k, and
a clause ∨

i<n

(ϕi = ψi) ∨
∨
i<m

(ϕ′i 6= ψ′i),

is valid in A iff the rule

{ϕ′i ↔ ψ′i | i < m}/{ϕi ↔ ψi | i < n},

is valid.  Lukasiewicz logic  L is algebraizable, and the variety of MV -algebras is its equiv-
alent algebraic semantics, using the translation between propositional formulas and iden-
tities described above. We thus have (cf. [22]):

Claim 1. ( [24]) A rule Γ/ϕ is valid in all MV -algebras if and only if it is derivable
in  L.

As another corollary to algebraizability of  L, free MV -algebras can be described as
Lindenbaum algebras of  L: the Lindenbaum algebra consists of equivalence classes of
formulas using elements of generators X as propositional variables modulo the equivalence
relation ϕ ∼ ψ iff ` L ϕ ↔ ψ, with operations defined in the natural way. Note that
valuations in this Lindenbaum algebra correspond to substitutions whose range consists
of formulas using variables from X, and a formula ϕ is satisfied under a valuation given
by such a substitution σ if and only if ` L σ(ϕ). We obtain the following characterization
of admissibility:

Claim 2. ([24]) For any rule Γ/ϕ, the following are equivalent:
(i) Γ/ϕ is admissible.
(ii) Γ/ϕ is valid in all free MV -algebras.
(iii) Γ/ϕ is valid in all free MV -algebras over finite sets of generators.

Let us note that we will have the same assertions if we change the  Lukasiewicz logic  L
with logic LP . Then we can reformulate the Claim 2 in the following way:

The logic LP is structurally complete iff the variety MV(C) coincides with the quasi-
variety generated by all free MV (C)-algebras over finite sets of generators.

Let us formulate the following property for the logic L:

(SC) α ` β ∈ T, ⇔ (∀ϕ : Form(L)→ Form(L))[ϕ(α) ∈ T ⇒ ϕ(β) ∈ T ],
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where T is the set of all theorems of the logic L, ϕ is an endomorphism of the algebra
(F ;→,¬, 0, 1) which is a free algebra in the class of algebras of the type (2,1,0,0). Let us
note that this condition is equivalent to the notion of a structural completeness [33] in the
sense of Pogorzelski, i.e. any structural admissible rule of a logic is derivable.

(SCL) αn → β ∈ T, for some positive integer n, ⇔ (∀ϕ : F → F )[ϕ(α) ∈ T ⇒ ϕ(β) ∈
T ],

where T is the set of all theorems of the logic L, ϕ is an endomorphism of the algebra
(F ;→,¬, 0, 1) which is a free algebra in the class of algebras of the type (2,1,0,0). Let us
note that, since according to deduction theorem in  Lukasiewicz logic: α ` β if and only
if ` αn → β for some positive integer n, the property is equivalent to the notion of a
structural completeness in the sense of Pogorzelski, i.e. any structural admissible rule of
a logic is derivable.

In algebraic terms the property has the following formulation:

• αn → β = 1, for some positive integer n ⇔ (∀ϕ : Form(L) → Form(L))[ϕ(α) =
1⇒ ϕ(β) = 1],

where ϕ is an endomorphism of the ω-generated free algebra (F ;→,¬, 0, 1) in the variety
of MV -algebras.

Recall that LP is a logic corresponding to variety MV(C), i. e. LP is the extension
of  Lukasiewicz logic by the Lukasievicz formula ¬((¬α → α) → ¬(¬α → α)) ↔ ((α →
¬α) → ¬(α → ¬α)), the theorems of which coincides with formulas that are valid in all
MV (C)-algebras.

Theorem 9. The logic LP is structurally complete.

Proof. Let us suppose that α→ β is m variable term. It is evident that if αn → β = 1,
then (∀ϕ : F → F )[ϕ(α) = 1⇒ ϕ(β) = 1].

Now suppose that αn → β 6= 1 for all positive integers n and ϕ : F → F is an
endomorphism such that ϕ(α) = 1. Therefore, there exist m generators of MV (C)-
algebra C where α > β on the generators a1, ..., am ∈ C, i. e. α(a1, ..., am) > β(a1, ..., am)
and α(a1, ..., am) belongs to a prime filter, say J , and, since αn(a1, ..., am) > β(a1, ..., am)
for all positive integers n, β(a1, ..., am) does not belong to J . Observe that J is either
the minimal prime filter {1} or maximal filter {(¬c)k : k ∈ ω}. Then, C/J is a chain
MV (C)-algebra such that α(a1/J, ..., am/J) = 1 and β(a1/J, ..., am/J) 6= 1. According to
Theorem 7, C/J is projective, which is either two-element Boolean algebra or MV (C)-
algebra C. Hence, there exist homomorphisms h : F (m) → C/J and ε : C/J → F (m)
such that hε = IdC/J . Then εh : F (m)→ F (m) is an endomorphism such that εh(α) = 1
and εh(β) 6= 1.

Now we give another proof of this theorem. We show that the variety MV(C) coincides
with the quasivariety generated by all free MV (C)-algebras over finite sets of generators.
Indeed, since C is projective, C is a subalgebra of a free MV (C)-algebras over finite sets
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of generators. But quasivariety QV(C) generated by C coincides with the variety V(C)
(Theorem 2). J

Corollary 6. Among the extensions of  Lukasiewicz logics, only classical logic and the
logic LP are structurally complete.

Proof. Let L0 be a logic distinct from classical logic and the logic LP . The rule (3(p∧
¬p))2/p is admissible. Indeed, there is no substitution σ such that `L0 (3(σ(p)∧¬σ(p)))2.
Only in the case where σ(p) has the value t, such that t ≤ 1/2 and 2t ≥ 1/2, the valuation
of (3(σ(p) ∧ ¬σ(p)))2 has the value 1. But there is no formula which is equivalent to
constant t, since we have no constant t. So, the rule (3(p ∧ ¬p))2/p is admissible. But
(3(p∧¬p))2 → p is not a theorem of L0, because it is not logically true. At the same time,
the rule is derivable in classical logic and the logic LP . J

Let us notice that the result of Corollary 6 was obtained by J. Gispert in [16]. Let us
note that structural completeness for the logic of perfect algebras LP was announced in
[13, 14, 15]. We also mention related works on structural completeness and admissibility
in MV -algebras/ Lukasiewicz logic: [7, 24, 25, 35].
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