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Non-differentiability Sets for Cantor Functions with
respect to Various Expansions

K. Ikeda

Abstract. We propose here three expansions of real numbers in [0, 1). By using these expan-
sions, we define three functions of Cantor type. We then determine the non-differentiability set
of these functions and then we show that the dimension of these sets is all 0.
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1. Introduction

The Cantor function, named after Georg Cantor, is an example of a function which
has a remarkable property: Its derivative vanishes almost everywhere. Sometimes the
Cantor function is referred to as the Devil’s staircase. We refer to [3] for a detailed
account of the Cantor function. Let us recall the definition: For a ∈ [0, 1), there exist
a1, a2, . . . , aN , . . . ∈ {0, 1, 2} such that

a =
a1
3

+
a2
32

+ · · ·+ aN
3N

+ · · · .

Denote by N0 the smallest N ∈ N such that aN = 1 when it exists. Otherwise N0 =∞.
Then the Cantor function, f : [0, 1)→ R is defined as

f(a) =
a1

2 · 21
+

a2
2 · 22

+ · · ·+ aN0−1
2 · 2N0−1 +

1

2N0
.

If there is no such N0, then define

f(a) =
a1

2 · 21
+

a2
2 · 22

+ · · ·+ an
2 · 2n

+ · · · .

Denote by C the set of all points at which the Cantor function is non-differentiable.
Then we know that the (box) dimension (see Definition 9, below) is (log3 2)2 =
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(0.699 · · · )2. More precisely, Darst established that the dimension of C is (log3 2)2 =
(0.699 · · · )2, where C is defined to be

C =

{
x ∈ [0, 1] : 0 ≤ lim inf

h→0

f(x+ h)− f(x)

h
< lim sup

h→0

f(x+ h)− f(x)

h
≤ ∞

}
.

See [1, 2] for the precise proof of this fact.

The key idea of defining the Cantor function is to use both the binary expansion
and the ternary expansion. If we use similar expansions such as the p-adic expansion,
the dimension of the non-differentiability set is positive. However, in this paper, we
shall show that the dimension of the non-differentiability set can be zero by the use of
a new expansion.

In this paper, we propose new expansions and we show, for the case of continuous
increasing functions, that the dimension of the non-differentiability set can be zero.

In this paper, we are concerned with the set

K =

{
x ∈ [0, 1] : 0 ≤ lim inf

h→0

f(x+ h)− f(x)

h
< lim sup

h→0

f(x+ h)− f(x)

h
≤ ∞

}
∪
{
x ∈ [0, 1] : lim inf

h→0

f(x+ h)− f(x)

h
= lim sup

h→0

f(x+ h)− f(x)

h
=∞

}
and we call K the non-differentiability set.

Let us recall one more definition, the integer part of a real number.

The integer part [a] of the real number a is the largest integer that does not exceed
a, for example [

√
3] = [1] = 1 and [−

√
3] = −2. Furthermore, an integer b is the integer

part of the real number a if b ≤ a < b+ 1.

The organization of the present paper is as follows: In Section 2 we propose three
types of expansions. We define three types of Cantor functions in Section 3, and we
propose the notion of uniformly continuous functions of type (an, bn). In Section 4, we
approximate these functions. In Section 5, we specify the non-differentiability set K
for each of these functions. Section 6 considers the dimension of such sets.

2. Expansions

2.1. Factorial-type expansions

We introduce expansions that are generated from factorials below. The proof is
elementary and it is omitted.

Proposition 1.

(1)
∞∑
n=2

n− 1

n!
= 1.
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(2) For all k ∈ N,

∞∑
n=k

n− 1

n!
=

1

(k − 1)!
.

On the basis of Proposition 1, we prove the following proposition.

Proposition 2. For all a ∈ [0, 1], there exists a sequence {an}n≥2 of non-negative
integers such that an ≤ n− 1, and that

a =
∞∑
n=2

an
n!
.

Proof. When a = 1, we may take an = n − 1, by Proposition 1. Otherwise define
natural numbers a2, a3, . . . , an, . . . in the following manner:

(i) When 0 ≤ a < 1

2
, define a2 = 0. In this case, we have

0 ≤ 6
(
a− a2

2!

)
= 6a < 3. (1)

(ii) When
1

2
≤ a < 1, define a2 = 1. In this case, we have

0 ≤ 6
(
a− a2

2!

)
= 6a− 3 < 3. (2)

Suppose that we have defined a2, a3, . . . , an for n ≥ 2. Then define Sn =

n∑
k=2

ak
k!

, and

an+1 = [(n+ 1)!(a− Sn)]. Then, obviously 0 ≤ an+1 ≤ (n+ 1)!(a− Sn) < an+1 + 1. J

Claim 1. For all n ≥ 2,

0 ≤ a− Sn <
1

n!
, (3)

and

0 ≤ an+1 ≤ n. (4)

Proof. [Proof of the claim] We prove the claim by induction. When n = 2, (3) is
true by (1) and (2).

Suppose that (3) is true for n. Then we have

a− Sn+1 = a− Sn −
[(n+ 1)!(a− Sn)]

(n+ 1)!

=
(n+ 1)!(a− Sn)− [(n+ 1)!(a− Sn)]

(n+ 1)!
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<
1

(n+ 1)!
.

Once (3) is proved, (4) follows easily;

0 ≤ a− Sn ≤
1

n!
and 0 ≤ an+1 ≤ (n+ 1)!(a− Sn),

which implies

0 ≤ an+1 <
(n+ 1)!

n!
= n+ 1,

and an+1 ∈ N , which implies 0 ≤ an+1 ≤ n. It follows from the sandwich theorem
that:

lim
n→∞

(
a− a2

2!
− a3

3!
− · · · − an

n!

)
= 0.

In other words, we conclude

a =
∞∑
n=2

an
n!
. J

It can happen that two different pairs of integers may yield the same real number.

Proposition 3. Let a ∈ [0, 1] have expansion:

a =
∞∑
n=2

an
n!

=
∞∑
n=2

bn
n!
,

as in Proposition 2. Then one of the following is satisfied:

(1) an = bn, for all n.

(2) a2 = b2, a3 = b3, . . . , an = bn, an+1 = bn+1 + 1, an+2 = 0, bn+2 = n+ 1, an+3 = 0,
bn+3 = n+ 2, an+4 = 0, bn+4 = n+ 3, . . .. In other words, we have

a =
n+1∑
k=2

ak
k!

+
1

(n+ 1)!
=

n∑
m=2

bm
m!

+
bn+1

(n+ 1)!
+
∞∑
l=1

n+ l

(n+ l + 1)!
.

(3) a2 = b2, a3 = b3, . . . , an = bn, an+1 = bn+1 − 1, an+2 = n + 1, bn+2 = 0, an+3 =
n+ 2, bn+3 = 0, an+4 = n+ 3, bn+4 = 0, . . .. In other words, we have

a =

n+1∑
k=2

ak
k!

=

n∑
m=2

bm
m!

+
bn+1 − 1

(n+ 1)!
+

∞∑
l=1

n+ l

(n+ l + 1)!
.

Proof. Let a ∈ [0, 1] have expansion:

a =
∞∑
n=2

an
n!

=
∞∑
n=2

bn
n!
,
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as in Proposition 2, and, suppose that an − bn 6= 0 for some k ≥ 2; we let n0 be the
smallest one among such n. Then

|an0 − bn0 |
n0!

≥ 1

n0!
=

∞∑
n=n0+1

n− 1

n!
≥

∞∑
n=n0+1

|an − bn|
n!

≥ |an0 − bn0 |
n0!

.

Here, we used |an − bn| ≤ n− 1 for the second inequality, the minimality of n0 for the

second inequality, and the triangle inequality as well as

∞∑
n=2

an − bn
n!

= 0 for the last

inequality. In order that we have equality, the an − bn must satisfy either

an0 − bn0 = 1, an0+1 − bn0+1 = n0, an0+2 − bn0+2 = n0 + 1, . . . (5)

or

an0 − bn0 = −1, an0+1 − bn0+1 = −n0, an0+2 − bn0+2 = −n0 − 1, . . . . (6)

Note that (5) and (6) correspond to (2) and (3), respectively. Thus, we obtain the
desired result. J

2.2. Odd factorial-type expansions

For n = 1, 3, 5, 7, . . ., recall that:

n!! =

{
1, n = 1,

n · (n− 2) · · · 3 · 1, n ≥ 3.

In analogy with Proposition 1, we have

Proposition 4.

(1)
∑
n:odd

n− 1

n!!
= 1.

(2) For an odd integer k ∈ [−1,∞),
∑

n:odd,n≥k+2

n− 1

n!!
=

1

k!!
.

(1) corresponds to the case when k = −1 of (2).

Based on Proposition 4, we propose an expansion method of a real number a ∈ [0, 1].

Proposition 5. For all a ∈ [0, 1], there exists a sequence {a2m−1}m≥1 of non-negative
integers such that a2m−1 < 2m− 1 and that

a =

∞∑
m=1

a2m−1
(2m− 1)!!

.
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Proof. The proof is almost the same as that of Proposition 2: we content ourselves
with outlining the proof. When a = 1, define a2m−1 = 2m−2. Otherwise, define a1 = 0
first and then define a3, a5, . . . together with S3, S5, . . . by the following recurrence
formula:

S2m−1 =

m∑
k=2

a2k−1
(2k − 1)!!

, a2m+1 = [(2m+ 1)!!(a− S2m−1)]. J

As before, it can happen that two different pairs of integers may yield the same real
number.

Proposition 6. Let a ∈ [0, 1] have expansion:

a =

∞∑
m=1

a2m+1

(2m+ 1)!!
=

∞∑
m=1

b2m+1

(2m+ 1)!!
,

as in Proposition 5, then one of the following is satisfied.

(1) an = bn, ∀n.

(2) a1 = b1, a3 = b3, . . . , an = bn, an+2 = bn+2 + 1, an+4 = 0, bn+4 = n+ 3, an+6 = 0,
bn+6 = n+ 5, an+8 = 0, bn+8 = n+ 7, . . .. In other words, we have

a =

n+1
2∑

m=1

a2m−1
(2m− 1)!!

+
bn+2 + 1

(n+ 2)!!

=

n+1
2∑

m=1

b2m−1
(2m− 1)!!

+
bn+2

(n+ 2)!!
+

∞∑
m=1

n+ 2m+ 1

(n+ 2m+ 2)!!
.

(3) a1 = b1, a3 = b3, . . . , an = bn, an+2 = bn+2 − 1, an+4 = n + 3, bn+4 = 0, an+6 =
n+ 5, bn+6 = 0, an+8 = n+ 7, bn+8 = 0, . . .. In other words, we have

a =

n+1
2

+1∑
m=1

a2m−1
(2m− 1)!!

+
b2m−1

(n+ 2)!!

=

n+1
2∑

m=1

b2m−1
(2m− 1)!!

+
bn+2 − 1

(n+ 2)!!
+
∞∑
m=1

n+ 2m+ 1

(n+ 2m+ 2)!!
.

Proof. Go through the same argument as Proposition 3. J

2.3. Even factorial-type expansions

For n = 0, 2, 4, 6, . . ., recall that:

n!! =

{
1, n = 1,

n · (n− 2) · · · 4 · 2, n ≥ 2.

Again similar to Proposition 1, we have
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Proposition 7.

(1)
∑
n:even

n− 1

n!!
= 1.

(2) For an even number k,
∑

n:even,n≥k+2

n− 1

n!!
=

1

k!!
.

(1) corresponds to the case when k = 0 of (2).

Based on Proposition 7, we have

Proposition 8. For all a ∈ [0, 1], there exists a sequence {a2m}m≥1 of non-negative
integers such that a2m < 2m and that

a =
∞∑
m=1

a2m
(2m)!!

.

Proof. Again the proof is almost the same as Proposition 2. When a = 1, we
may take an = n − 1, by Proposition 4. When 0 ≤ a < 1, define the natural number
a2, a4, . . . , an, . . . in the following manner: Define a2 = 0. Note that

0 ≤ 8
(
a− a2

2!!

)
= 8a < 4. (7)

For each odd integer n ≥ 3, define

Sn =
∑

k:odd,3≥k≥n

ak
k!!
,

and an+2 = [(n + 2)!!(a − Sn)]. We can check that a2, a4, . . ., defined above does the
job. J

As before, it can happen that two different pairs of integers may yield the same real
number.

Proposition 9. Let a ∈ [0, 1] have expansion :

a =
∞∑
m=1

a2m
(2m)!!

=
∞∑
m=1

b2m
(2m)!!

,

as in Proposition 8, then one of the following is satisfied.

(1) an = bn, for all even integers n.

(2) a2 = b2, a4 = b4, . . . , an = bn, an+2 = bn+2 + 1, an+4 = 0, bn+4 = n+ 3, an+6 = 0,
bn+6 = n+ 5, an+8 = 0, bn+8 = n+ 7, . . .. In other words, we have

a =

n/2∑
m=1

a2m
(2m)!!

+
bn+2 + 1

(n+ 2)!!
=

n/2∑
m=1

b2m
(2m)!!

+
bn+2

(n+ 2)!!
+

∞∑
m=2

n+ 2m− 1

(n+ 2m)!!
.
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(3) a2 = b2, a4 = b4, . . . , an = bn, an+2 = bn+2 − 1, an+4 = n + 3, bn+4 = 0, an+6 =
n+ 5, bn+6 = 0, an+8 = n+ 7, bn+8 = 0, . . .. In other words, we have

a =

n/2∑
m=1

a2m
(2m)!!

+
bn+2

(n+ 2)!!
=

n/2∑
m=1

b2m
(2m)!!

+
bn+2 − 1

(n+ 2)!!
+
∞∑
m=2

n+ 2m− 1

(n+ 2m)!!
.

Proof. Go through the same argument as Proposition 3. J

3. On Cantor functions that are generated from the factorial

3.1. Uniformly continuous function of type (an, bn)

For a function f : [0, 1]→ R and δ > 0, x ∈ [0, 1], x+ h ∈ [0, 1] :

ω1(f, δ) = sup
x,|h|<δ

|f(x+ h)− f(x)|,

is called the continuous degree of f .

Proposition 10. A function f : [0, 1]→ R satisfies

ω1(f, δ)→ 0 (δ → 0),

if and only if f is uniformly continuous.

Proof. If f is uniformly continuous, then for all ε > 0 there exists δ0 > 0 such that
|f(x) − f(y)| < ε whenever x, y ∈ [0, 1] satisfy |x − y| < δ0. Thus, ω1(f, δ0) < ε. If
0 < δ < δ0, then ω1(f, δ) < ω1(f, δ0) < ε, then ω1(f, δ)→ 0 as δ → 0.

Suppose conversely, ω1(f, δ) → 0 as δ → 0. Then for all ε > 0, there exists δ0 > 0

such that ω1(f, δ) < ε for all 0 < δ < δ0. Thus, if x, y ∈ [0, 1] satisfy |x− y| ≤ δ0
2

, then

|f(x)− f(y)| < ε, which implies that f is uniformly continuous. J

Definition 1. Suppose that {an}∞n=1 and {bn}∞n=1 are sequences decreasing to 0. A
function f defined on [0, 1] is said to be of uniformly continuous function of type (an, bn)
if |f(x)− f(y)| ≤ an for all x, y ∈ [0, 1] with |x− y| ≤ bn.

Remark 1. The notion of continuity of type (an, bn), which is defined below, turns out
to be equivalent to the inequality ω1(f, bn) ≤ an for all n ∈ N.

3.2. Cantor function with respect to factorial-type expansion

To begin with, we give two kinds of rules below.
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Definition 2. Let a ∈ [0, 1]. Suppose that a has an expression:

0 ≤ an ≤ n− 1 (n = 2, 3, . . .), a =
∞∑
n=2

an
n!
.

Define the sequence {a∗n}∞n=1 in the following manner:

Rule 1 If there is no number n such that 1 ≤ an ≤ n−2, that is, if an = 0 or an = n−1,

then define a∗n =
1

n− 1
an. (a∗ assumes only the value 0 or 1.)

Rule 2 If there is a number n such that 1 ≤ an ≤ n− 2, then define n0 as the minimum

of such numbers. When n < n0, define a∗n =
1

n− 1
an. When n = n0, define

a∗n0
= 1. When n > n0, define a∗n = 0. (Again a∗n =

1

n− 1
an ∈ {0, 1})

For a∗2, a
∗
3, . . . determined in this way, define a∗ as

a∗ =
a∗2
22

+
a∗3
23

+ · · ·+ a∗n
2n

+ · · · =
∞∑
n=2

a∗n
2n
.

Lemma 1. The definition of a∗ does not depend on the expression of a.

Proof. By virtue of Proposition 1(2), when a has two different expressions, we have

a =
n−1∑
m=2

am + 1

m!
+
an + 1

n!
+
∞∑
l=1

0

(n+ l)!
=

n∑
m=2

an
n!

+
∞∑
l=1

n+ l − 1

(n+ l)!
.

Suppose that we have two different expressions as above. We suppose an < n− 1. We
write

(b2, b3, b4, . . . , bn−1, bn, . . .) = (a2, a3, a4, . . . , an−1, an + 1, 0, 0, 0, . . .),

(c2, c3, c4, . . . , cn−1, cn, . . .) = (a2, a3, a4, . . . , an−1, an, n, n+ 1, n+ 2, . . .).

(1) Suppose 1 ≤ ai ≤ i − 2 for some i = 3, 4 . . . , n − 1. Then, among such i, choose
the smallest one i0. By applying Rule 2, we obtain

(b∗2, b
∗
3, b
∗
4, . . . , b

∗
n, . . .) = (a2, a3/2, a4/3, . . . , ai0−1/(i0 − 2), 1, 0, 0, 0, . . .),

and so

(c∗2, c
∗
3, c
∗
4, . . . , c

∗
n, . . .) = (a2, a3/2, a4/3, . . . , ai0−1/(i0 − 2), 1, 0, 0, 0, . . .).

Thus, the definition of a∗ does not depend on the expression of a; no matter
which expression we start from, we have

a∗ =

n0−1∑
m=2

a∗m
2m

+
1

2n0
.
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(2) Suppose ai = 0, i − 1 for all i = 2, 3, . . . , n − 1 and an = 0. Apply Rule 2 more
than n times to get

(b∗2, b
∗
3, b
∗
4, . . . , b

∗
n, . . .) = (a2, a3/2, a4/3, . . . , an−1/(n− 2), 1, 0, 0, 0, . . .),

(c∗1, c
∗
3, c
∗
5, . . . , c

∗
n, . . .) = (a2, a3/2, a4/3, . . . , an−1/(n− 2), 0, 1, 1, 1, . . .).

Thus, the definition of a∗ does not depend on the expression of a. In fact, we
have

a =
n−1∑
k=2

b∗k
2k

+
1

2n
,

if we start with a =

∞∑
n=2

bn
n!

and we have

n−1∑
k=2

b∗k
2k

+
0

2n
+
∞∑
k=1

1

2n+k
,

if we start with a =

∞∑
n=2

cn
n!

. Since

∞∑
k=1

1

2n+k
=

1

2n
, we see that the definition of

a∗ does not depend on the expression of a.

(3) Suppose ai = 0, i− 1 for all i = 2, 3, . . . , n− 1 and 1 ≤ an ≤ n− 3. Then

(b∗2, b
∗
3, b
∗
4, . . . , b

∗
n, . . .) = (a2, a3/2, a4/3, . . . , an−1/(n− 2), 1, 0, 0, 0, . . .),

(c∗1, c
∗
3, c
∗
5, . . . , c

∗
n, . . .) = (a2, a3/2, a4/3, . . . , an−1/(n− 2), 1, 0, 0, 0, . . .).

Thus, the definition of a∗ does not depend on the expression of a.

(4) Suppose ai = 0, i− 1 for all i = 2, 3, . . . , n− 1 and an = n− 2. Then

(b∗2, b
∗
3, b
∗
4, . . . , b

∗
n, . . .) = (a2, a3/2, a4/3, . . . , an−1/(n− 2), 1, 0, 0, 0, . . .).

So

(c∗2, c
∗
3, c
∗
4, . . . , c

∗
n, . . .) = (a2, a3/2, a4/3, . . . , an−1/(n− 2), 1, 0, 0, 0, . . .).

Thus, the definition of a∗ does not depend on the expression of a. J

Let the Cantor function with respect to the factorial expansion be the function
f : [0, 1]→ [0, 1] such that f(a) = a∗.

Lemma 2. f is an increasing function: Whenenver 0 ≤ b ≤ c ≤ 1, b∗ ≤ c∗.

Proof. We may assume b 6= c; otherwise the assertion is trivial. We use the factorial
expansions of b and c by using the algorithm obtained in Proposition 2:

b =

∞∑
n=2

bn
n!
, c =

∞∑
n=2

cn
n!
.

Assuming b < c, we have b2 = c2, b3 = c3, b4 = c4, . . . , bn−1 = cn−1, bn < cn for some
n ≥ 2.
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(1) Suppose

b2 = c2 ∈ {0, 1}, b3 = c3 ∈ {0, 2}, . . . , bn−1 = cn−1 ∈ {0, n− 2}

fails. Denote by n0 the smallest integer i such that bi = ci ∈ {1, 2, . . . , n− 2}. In
this case we have b∗ = c∗.

(2) Suppose that b2 = c2 ∈ {0, 1}, b3 = c3 ∈ {0, 2}, . . . , bn−1 = cn−1 ∈ {0, n− 2}, and
that bn = 0. Then, b∗n = 0. Therefore, we have

b∗ =

∞∑
n=2

b∗n
2n
≤

n−1∑
n=2

b∗n
2n

+
0

2n
+

∞∑
l=n+1

1

2l
=

n−1∑
n=2

b∗n
2n

+
1

2n
.

On the other hand, we have c∗n = 1. Thus, we obtain

c∗ =
∞∑
n=2

c∗n
2n
≥

n∑
n=2

c∗n
2n

=
n−1∑
n=2

c∗n
2n

+
1

2n
=

n−1∑
n=2

b∗n
2n

+
1

2n
.

Thus, we conclude b∗ ≤
n−1∑
n=2

b∗n−1
2n−1

+
1

2n
≤ c∗.

(3) Suppose that b2 = c2 ∈ {0, 1}, b3 = c3 ∈ {0, 2}, . . . , bn−1 = cn−1 ∈ {0, n− 2} and
bn ≥ 1. Then bn < cn ≤ n − 1. In this case, we have b∗n = 1, b∗n+1 = 0, b∗n+2 =

0, b∗n+3 = 0, . . .. Thus, we have b∗ =
n−1∑
n=2

b∗n
2n

+
1

2n
≤ c∗.

Therefore, in all cases b∗ ≤ c∗. J

The following theorem is one of the main theorems of this paper:

Theorem 2. Let a 7→ a∗ be the Cantor function with respect to the factorial expansion.
Then it is a uniformly continuous function of type (2−n, 1/n!).

Proof. The proof is made up of three large steps. The first step is a setup. Since
a 7→ a∗ is increasing, it suffices to show that(

a+
1

n!

)∗
− a∗ ≤ 1

2n
, (8)

for 0 ≤ a ≤ 1− 1/n!. Representing a as

a =

∞∑
n=2

an
n!
,

where 0 ≤ an ≤ n− 2 for all n ≥ 2, in the next two large steps, we consider two cases:
when

ai ∈ {0, i− 1} (i = 2, 3, . . . , n− 1) (9)

holds and when (9) fails. J

Proof. [Case 1] We suppose that (9) holds.
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(1) Suppose first an = 0. Then

a =

n−1∑
n=2

an
n!

+
0

n!
+

∞∑
l=n+1

al
l!

and a+
1

n!
=

n−1∑
n=2

an
n!

+
1

n!
+

∞∑
l=n+1

al
l!
,

so

a∗ =

n−1∑
k=2

a∗k
2k

+
0

2n
+

∞∑
l=n+1

a∗l
2l

and

(
a+

1

n!

)∗
=

n−1∑
k=2

a∗k
2k

+
1

2n
.

Hence, we have that(
a+

1

n!

)∗
− a∗ =

n−1∑
k=2

a∗k
2k

+
1

2n
−
n−1∑
k=2

a∗k
2k
− 0

2n
−

∞∑
l=n+1

a∗l
2l
≤ 1

2n
.

Consequently, we have (8).

(2) Suppose, next, that 1 ≤ an < n− 2. As we did in Lemma 1(1), we have

a =
∞∑
k=2

ak
k!

and a+
1

n!
=
∞∑
k=2

ak + 1

k!
,

so

a∗ =
n−1∑
k=2

a∗k
2k

+
1

2n
and

(
a+

1

n!

)∗
=

n−1∑
k=2

a∗k
2k

+
1

2n
.

As a result,

(
a+

1

n!

)∗
= a∗.

(3) Next, we suppose an = n− 2. Then

a =

n−1∑
k=2

ak
k!

+
n− 2

n!
+

∞∑
l=n+1

al
l!

and a+
1

n!
=

n−1∑
k=2

ak
k!

+
n− 1

n!
+

∞∑
l=n+1

al
l!
.

Hence, we have

a∗ =

n−1∑
k=2

a∗k
2k

+
1

2n
and

(
a+

1

n!

)∗
=

n−1∑
k=2

a∗k
2k

+
1

2n
+

∞∑
l=n+1

a∗l
2l
,

so (
a+

1

n!

)∗
− a∗ =

∞∑
l=n+1

a∗n
2l
≤

∞∑
l=n+1

1

2l
=

1

2n
.

Consequently, we have (8).

(4) Finally, suppose an = n− 1. Observe that the restriction 0 ≤ a ≤ 1− 1/n! forces

an+1 = an+2 = · · · = 0,

if a2 = 1, a3 = 2, . . . , an = n− 1.
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(a) If a2 = 1, a3 = 2, . . ., an−1 = n− 2, then an+1 = an+2 = · · · = 0. Thus,

a∗ =
n∑
k=2

1

2k
=

1

22
· 1− 2−n+1

1− 2−1
=

1

2
− 1

2n
,

(
a+

1

n!

)∗
=

1

2
.

Consequently,

(
a+

1

n!

)∗
− a∗ = 2−n.

(b) If

(a2, a3, . . . , an−1) ∈ {0, 1} × {0, 2} × · · · × {0, n− 2} \ {(1, 2, . . . , n− 2)},

take n0 so that an−1 = n− 2, an−2 = n− 3, . . ., an0+1 = n0, an0 = 0. Using
this number n0, we have

a∗ =

n0−1∑
l=2

a∗l
2l

+
0

2n0
+

n∑
l=n0+1

1

2l
+

∞∑
l=n+1

a∗l
2l

and (
a+

1

n!

)∗
=

n0−1∑
l=2

a∗l
2l

+
0

2n0
+

1

2n0
.

Consequently(
a+

1

n!

)∗
− a∗ =

1

2n0
− 1

2n0+1
− 1

2n0+2
− · · · − 1

2n
−
a∗n+1

2n+1
−
a∗n+2

2n+2
− · · ·

=
1

2n
−

∞∑
l=n+1

a∗l
2l
≤ 1

2n
.

Thus, if we assume (9), then (8) is true. J

Proof. [Case 2] Assume, instead, that (9) fails. Then, choose the smallest number
n0 such that 1 ≤ an0 ≤ n0 − 2. Let n1 be the largest integer such that an1 ≤ n1 − 2.

(1) Suppose, first, an < n−1, So that n0 is the smallest number such that 0 < an0 <
n0 − 1. Then we have

a∗ =

n0−1∑
k=2

a∗k
2k

+
1

2n0
,

(
a+

1

n!

)∗
=

n0−1∑
k=2

a∗k
2k

+
1

2n0
+

∞∑
k=n0+1

a∗k
2k
.

Consequently,

(
a+

1

n!

)∗
= a∗.

(2) Next, suppose an = n− 1 and n0 < n1. Then in the same manner as Step 3 (1),

we can prove

(
a+

1

n!

)∗
= a∗.
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(3) Next, suppose an = n− 1 and n1 = n0. Then, we have ak ∈ {0, 1, . . . , k − 1} for
2 ≤ k ≤ n0 − 1, an0 ≤ n0 − 2 and an0+k = n0 + k − 1 for all k = 1, 2, . . . , n− n0.

(a) Assume an0 = 0. Then we have

a∗ ≥
n0−1∑
k=2

a∗k
2k

+
0

2n0
+

n∑
l=n0+1

1

2l
+

1

2n
and

(
a+

1

n!

)∗
=

n0−1∑
k=2

a∗k
2k

+
1

2n0
.

Hence, we have

(
a+

1

n!

)∗
− a∗ ≤ 1

2n
.

(b) Assume 1 ≤ an0 < n0 − 2. Then

a∗ =

n0−1∑
k=2

a∗k
2k

+
1

2n0
and

(
a+

1

n!

)∗
=

n0−1∑
k=2

a∗k
2k

+
1

2n0
.

Consequently,

(
a+

1

n!

)∗
= a∗.

(c) Assume an0 = n0 − 2. Then

a∗ =

n0−1∑
k=2

a∗k
2k

+
1

2n0
and

(
a+

1

n!

)∗
=

n0−1∑
k=2

a∗k
2k

+
1

2n0
+

∞∑
l=n+1

a∗l
2l
.

Thus (
a+

1

n!

)∗
− a∗ =

∞∑
l=n+1

a∗n
2n
≤

∞∑
l=n+1

1

2n
=

1

2n
. J

If we reexamine the proof above, we have:

Proposition 11. Let a ∈ [0, 1− 1/n!] be such that n!a is an integer. Write

a =

n∑
k=2

ak
k!
,

where 0 ≤ a2 ≤ 1, 0 ≤ a3 ≤ 2, · · · , 0 ≤ an−1 ≤ n − 2. Then

(
a+

1

n!

)∗
= a∗ +

1

2n
, if

and only if a2 = 0, 1, a3 = 0, 2, . . ., an−1 = 0, n− 2.

3.3. Cantor function with respect to odd factorial-type expansion

As in the case of factorial, we define a∗ for a ∈ [0, 1] as follows:

Definition 3. Let a ∈ [0, 1]. Suppose that a has an expression below:

0 ≤ an ≤ n− 1 (n = 1, 3, . . .), a =
∑
n:odd

an
n!!
.

Define a sequence {a∗2n−1}∞n=1 in the following manner.
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Rule 1 If there is no number n such that 1 ≤ an ≤ n− 2, that is, an = 0 or an = n− 1,

then define a∗n =
1

n− 1
an.

Rule 2 If there is a number n such that 1 ≤ an ≤ n− 1, then let The minimum number

be defined as n0. When n < n0, define a∗n =
1

n− 1
an. When n = n0, define

a∗n0
= 1. When n > n0, define a∗n = 0.

For a∗1, a
∗
3, . . . defined in this way, define a∗ by

a∗ =
∑
n:odd

a∗n

2
n+1
2

.

Below, we consider the property of the a∗.

Lemma 3. The definition of a∗ does not depend on the expression of a.

Proof. The proof is the same as Lemma 1. J

As in the case of the factorial, we have

Lemma 4. b∗ ≤ c∗ whenever 0 ≤ b ≤ c ≤ 1.

Proof. The proof is the same as that of Lemma 2. J

As in the case of the factorial, we have

Theorem 3. The Cantor function a 7→ a∗ generated by the odd factorial is a uniformly

continuous function of type (2−
n+1
2 , 1/n!!). Here, n runs over all odd positive integers.

Proof. The proof is the same as Theorem 2. J

If we reexamine the proof above, we have:

Proposition 12. Let n be an odd integer in [3,∞). Let a ∈ [0, 1− 1/n!!] be such that

n!!a is an integer. Write a =
a1
1!!

+
a3
3!!

+ · · · + an
n!!
, where a1 = 0, 0 ≤ a3 ≤ 2, · · · , 0 ≤

an−2 ≤ n − 3. Then

(
a+

1

n!!

)∗
− a∗ =

1

2
n+1
2

, if and only if a1 = 0, a3 = 0, 2, . . .,

an−2 = 0, n− 3.

3.4. Cantor function with respect to even factorial-type expansion

As in the case of the odd factorial, we define another Cantor function.
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Definition 4. Let a ∈ [0, 1]. Suppose that a has an expression:

0 ≤ an ≤ n− 1 (n = 2, 4, . . .), a =
∑
n:even

an
n!!
.

Define the sequence {a∗2n}∞n=1 in the following manner:

Rule 1 If there is no number n such that 1 ≤ an ≤ n− 2, that is, if an = 0 or an = n− 1

define a∗n =
1

n− 1
an. (a∗ assumes only the value 0 or 1.)

Rule 2 If there is a number n such that 1 ≤ an ≤ n− 2, then n0 as the minimum of such

numbers. When n < n0, define a∗n =
1

n− 1
an. When n = n0, define a∗n0

= 1.

When n > n0, define a∗n = 0. (Again a∗n =
1

n− 1
an ∈ {0, 1}.)

For a∗2, a
∗
4, . . . which is determined in this way, define a∗ as

a∗ =
∑
n:even

a∗n
2

n
2

.

Lemma 5. The definition of a∗ does not depend on the expression of a.

Proof. Go through the same argument as Lemma 1. J

As in the case of the odd factorial, we have:

Lemma 6. Whenenver 0 ≤ b ≤ c ≤ 1, b∗ ≤ c∗.

Proof. The proof is the same as that of Lemma 2. J

As in the case of the odd factorial, we have:

Theorem 4. Cantor function a 7→ a∗ generated by the even factorial is a uniformly
continuous function of type (2−n/2, 1/n!!). Here, n runs over all even integers.

Proof. Go through the same argument as Theorem 2. J

If we reexamine the proof above, we have:

Proposition 13. Let n be an odd integer in [3,∞). Let a ∈ [0, 1 − 1/n!!] be such

that n!!a is an integer. Write a =

n/2∑
l=1

a2l
2l!!

, where 0 ≤ a2 ≤ 1, 0 ≤ a4 ≤ 3, . . . , 0 ≤

an−2 ≤ n − 3. Then

(
a+

1

n!!

)∗
− a∗ =

1

2
n
2

if and only if a2 = 0, 1, a4 = 0, 3, . . .,

an−2 = 0, n− 3.
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4. An algorithm for approximating the Cantor function for some
simple cases

Here, we attempt to approximate these Cantor functions.

Definition 5. A piecewise linear function f on [0, 1] is a continuous function such
that there exists a partition {tj}Nj=0 of [0, 1] such that f is affine on each [tj−1, tj ]. In
this case, the point (tj , f(tj)), 0 ≤ j ≤ N, is called a vertex.

4.1. Cantor function with respect to factorial-type expansion

Definition 6. Let L be a natural number. The order L approximation of t 7→ t∗ of
order L is the piecewise linear function whose vertices are the points of the form (t, t∗),
where 0 ≤ t ≤ 1 and L!t is an integer.

Here, we explain the method of plotting the 5th order approximation.

(1) Calculate a2, a3, a4, a5 in the expansion of t =
a

120
=

a2
2!

+
a3
3!

+
a4
4!

+
a5
5!

for

a = 0, 1, 2, . . . , 119. Define

a2 =
[ a

60

]
= [2!t], (10)

a3 =
[ a

20
− 3a2

]
=
[
3!
(
t− a2

2!

)]
, (11)

a4 =
[a

5
− 12a2 − 4a3

]
=
[
4!
(
t− a2

2!
− a3

3!

)]
, (12)

a5 = 120
( a

120
− a2

2!
− a3

3!
− a4

4!

)
= 5!

(
t− a2

2!
− a3

3!
− a4

4!

)
. (13)

(2) We then calculate

t∗ =
( a

120

)∗
=
a∗2
22

+
a∗3
23

+
a∗4
24

+
a∗5
25
,

for a = 0, 1, 2, . . . , 119.

(3) Complementing a point

(
1,

1

2

)
, we create an affine function using the data( a

120
,
( a

120

)∗)
, (a = 0, 1, 2, . . . , 120).

According to Claim 1, we have the following:

Corollary 1. When a = 0, 1, 2, . . . , 119, the integers a2, a3, a4, a5 which are determined
by (10)–(13), satisfy 0 ≤ a2 ≤ 1, 0 ≤ a3 ≤ 2, 0 ≤ a4 ≤ 3, 0 ≤ a5 ≤ 4.
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4.2. Cantor function with respect to odd factorial-type expansion

Definition 7. Let L be a natural number. The approximate function of t 7→ t∗ of order
L is a piecewise linear function whose vertices are the points of the form (t, t∗), where
0 ≤ t ≤ 1 and (2L− 1)!!t is an integer.

Here, we explain the method of drawing the approximate function of the 5th order.

(1) Calculate a1, a3, a5, a7, a9 in the expansion of t =
a

945
=
a1
1!!

+
a3
3!!

+
a5
5!!

+
a7
7!!

+
a9
9!!

for a = 0, 1, 2, . . . , 944. Define

a1 =
[ a

945

]
= [t], (14)

a3 =
[ a

315
− 3a1

]
=
[
3!!
(
t− a1

1!!

)]
, (15)

a5 =
[ a

63
− 15a1 − 5a3

]
=
[
5!!
(
t− a1

1!!
− a3

3!!

)]
, (16)

a7 =
[a

9
− 105a1 − 35a3 − 7a5

]
=
[
7!!
(
t− a1

1!!
− a3

3!!
− a5

5!!

)]
, (17)

a9 = 945
( a

945
− a1

1!!
− a3

3!!
− a5

5!!
− a7

7!!

)
= 5!!

(
t− a1

1!!
− a3

3!!
− a5

5!!
− a7

7!!

)
. (18)

(2) We then calculate the

t∗ =
( a

945

)∗
=
a∗1
21

+
a∗3
22

+
a∗5
23

+
a∗7
24

+
a∗9
25
,

for a = 0, 1, 2, . . . , 944.

(3) Complementing a point

(
1,

1

2

)
, we create an affine function using the data( a

945
,
( a

945

)∗)
(a = 0, 1, 2, . . . , 945).

We shall show that this algorithm makes sense.

Corollary 2. When a = 0, 1, 2, . . . , 944, the integers a1, a3, a5, a7, a9, which are deter-
mined by (14)–(18), satisfies a1 = 0, 0 ≤ a3 ≤ 2, 0 ≤ a5 ≤ 4, 0 ≤ a7 ≤ 6, 0 ≤ a9 ≤ 8.

Proof. The proof is the same as Corollary 1. J

4.3. Cantor function with respect to even factorial-type expansion

Definition 8. Let L be a natural number. The approximate function of t 7→ t∗ of order
L is a piecewise linear function whose vertices are the points of the form (t, t∗), where
0 ≤ t ≤ 1 and (2L)!!t is an integer.

Here, we explain the method of drawing the approximate function of the 5th order.
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(1) Calculate a2, a4, a6, a8, a10 in the expansion of t =
a

3840
=
a2
2!!

+
a4
4!!

+
a6
6!!

+
a8
8!!

+
a10
10!!

for a = 0, 1, 2, . . . , 3839. Define as

a2 =
[ a

1920

]
= [2t], (19)

a4 =
[ a

480
− 4a2

]
=
[
4!!
(
t− a2

2!!

)]
, (20)

a6 =
[ a

80
− 24a2 − 6a4

]
=
[
6!!
(
t− a2

2!!
− a4

4!!

)]
, (21)

a8 =
[ a

10
− 192a2 − 48a4 − 8a6

]
=
[
6!!
(
t− a2

2!!
− a4

4!!
− a6

6!!

)]
, (22)

a10 = 3840
( a

3840
− a2

2!!
− a4

4!!
− a6

6!!
− a8

8!!

)
= 10!!

(
t− a2

2!!
− a4

4!!
− a6

6!!
− a8

8!!

)
.

(23)

(2) We then calculate t∗ =
( a

945

)∗
=
a∗2
21

+
a∗4
22

+
a∗6
23

+
a∗8
24

+
a∗10
25

for a = 0, 1, 2, . . . , 3839.

(3) Complementing (1, 1), we create an affine function using data
( a

3840
,
( a

3840

)∗)
(a = 0, 1, 2, . . . , 3840).

We shall show that this algorithm makes sense.

Corollary 3. When a = 0, 1, 2, . . . , 3839, the integers a2, a4, a6, a8, a10, which are de-
termined by (19)–(23), satisfies 0 ≤ a2 ≤ 1, 0 ≤ a4 ≤ 3, 0 ≤ a6 ≤ 5, 0 ≤ a8 ≤ 7,
0 ≤ a10 ≤ 9.

Proof. The proof is the same as Lemma 1. J

5. Nondifferentiability sets of the Cantor function

We specify the nondifferentiability set of the Cantor function with respect to the
factorial-type expansion.

We consider the union Kn of the intervals of the form:

Ia2,a3,...,an =

[
a2
2!

+
a3
3!

+ · · ·+ an
n!
,
a2
2!

+
a3
3!

+ · · ·+ an + 1

n!

]
,

where a2, a3, . . . , an run through all integers a2 = 0, 1, a3 = 0, 2, . . . , an = 0, n− 1.

Example 1. (n = 3) The endpoints of intervals that constitute K3 and the values of
f on the endpoints of the intervals are as follows:

a2, a3 endpoint of Ia2,a3 min
x∈Ia2,a3

f(x) max
x∈Ia2,a3

f(x)

(0, 0) 0, 1/6 0 1/8

(0, 2) 1/3, 1/2 1/8 1/4

(1, 0) 1/2, 2/3 1/4 3/8

(1, 2) 5/6, 1 3/8 1/2
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Thus

K3 =

[
0,

1

6

]
∪
[

1

3
,
1

2

]
∪
[

1

2
,
2

3

]
∪
[

5

6
, 1

]
=

[
0,

1

6

]
∪
[

1

3
,
2

3

]
∪
[

5

6
, 1

]
.

Example 2. (n = 4) The endpoints of intervals that constitute K4 and the values of
f on the endpoints of the intervals are as follows:

a2, a3, a4 endpoint of Ia2,a3,a4 min
x∈Ia2,a3,a4

f(x) max
x∈Ia2,a3,a4

f(x)

(0, 0, 0) 0, 1/24 0 1/16

(0, 0, 3) 1/8, 1/6 1/16 1/8

(0, 2, 0) 1/3, 3/8 1/8 3/16

(0, 2, 3) 11/24, 1/2 3/16 1/4

(1, 0, 0) 1/2, 13/24 1/4 5/16

(1, 0, 3) 5/8, 2/3 5/16 3/8

(1, 2, 0) 5/6, 7/8 3/8 7/16

(1, 2, 3) 23/24, 1 7/16 1/2

Thus

K4 =

[
0,

1

24

]
∪
[

1

8
,
1

6

]
∪
[

1

3
,
3

8

]
∪
[

11

24
,
1

2

]
∪
[

1

2
,
13

24

]
∪
[

5

8
,
2

3

]
∪
[

5

6
,
7

8

]
∪
[

23

24
, 1

]
=

[
0,

1

24

]
∪
[

1

8
,
1

6

]
∪
[

1

3
,
3

8

]
∪
[

11

24
,
13

24

]
∪
[

5

8
,
2

3

]
∪
[

5

6
,
7

8

]
∪
[

23

24
, 1

]
.

Example 3. (n = 5) The endpoints of intervals that constitute K5 and the values of
f on the endpoints of the intervals are as follows:

a2, a3, a4, a5 endpoint of Ia2,a3,a4,a5 min
x∈Ia2,a3,a4,a5

f(x) max
x∈Ia2,a3,a4,a5

f(x)

(0, 0, 0, 0) 0, 1/120 0 1/32

(0, 0, 0, 4) 1/30, 1/24 1/32 1/16

(0, 0, 3, 0) 1/8, 2/15 1/16 3/32

(0, 0, 3, 4) 19/120, 1/6 3/32 1/8

(0, 2, 0, 0) 1/3, 41/120 1/8 5/32

(0, 2, 0, 4) 11/30, 3/8 5/32 3/16

(0, 2, 3, 0) 11/24, 7/15 3/16 7/32

(0, 2, 3, 4) 59/120, 1/2 7/32 1/4

(1, 0, 0, 0) 1/2, 61/120 1/4 9/32

(1, 0, 0, 4) 61/120, 13/24 9/32 5/16

(1, 0, 3, 0) 5/8, 19/30 5/16 11/32

(1, 0, 3, 4) 79/120, 2/3 11/32 3/8

(1, 2, 0, 0) 5/6, 101/120 3/8 13/32

(1, 2, 0, 4) 13/15, 7/8 13/32 7/16

(1, 2, 3, 0) 23/24, 29/30 7/16 15/16

(1, 2, 3, 4) 119/120, 1 15/32 1/2

Thus

K5 =

[
0,

1

120

]
∪
[

1

30
,

1

24

]
∪
[

1

8
,

2

15

]
∪
[

19

120
,
1

6

]
∪
[

1

3
,

41

120

]
∪
[

11

30
,
3

8

]
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∪
[

11

24
,

7

15

]
∪
[

59

120
,
1

2

]
∪
[

1

2
,

61

120

]
∪
[

8

15
,
13

24

]
∪
[

5

8
,
19

30

]
∪
[

79

120
,
2

3

]
∪
[

5

6
,
101

120

]
∪
[

13

15
,
7

8

]
∪
[

23

24
,
29

30

]
∪
[

119

120
, 1

]
=

[
0,

1

120

]
∪
[

1

30
,

1

24

]
∪
[

1

8
,

2

15

]
∪
[

19

120
,
1

6

]
∪
[

1

3
,

41

120

]
∪
[

11

30
,
3

8

]
∪
[

11

24
,

7

15

]
∪
[

59

120
,

61

120

]
∪
[

8

15
,
13

24

]
∪
[

5

8
,
19

30

]
∪
[

79

120
,
2

3

]
∪
[

5

6
,
101

120

]
∪
[

13

15
,
7

8

]
∪
[

23

24
,
29

30

]
∪
[

119

120
, 1

]
.

As can be seen in the above examples, we obtain:

Proposition 14. Let f(x) = x∗, x ∈ [0, 1].

(1) Kn consists of one long interval with length
1

n!
and 2n−1−1 small closed intervals

with length
2

n!
.

(2) Kn ⊃ Kn+1 for all n ≥ 2.

(3) For x /∈
⋂∞
n=1Kn, f ′(x) = 0 .

Proof. We shall prove (3). Let us suppose x /∈ Km for some m ∈ N. Then x
is between two intervals Ia2,a3,...,am and Ib2,b3,...,bm , where Ia2,a3,...,am lies in the left-
hand side of x and Ib2,b3,...,bm lies in the right-hand side of x. Denote by p the point on
Ia2,a3,...,am closest to x and by q the point on Ib2,b3,...,bm closest to x. Then f(p) = f(q) as
we have seen from the above examples. Since f is non-decreasing, f(p) = f(x) = f(q),
since p < x < q. Thus, for all p < x′ < q, we have

f(x′)− f(x)

x′ − x
= 0.

Letting x′ → x, we obtain

f ′(x) = lim
x′→x

f(x′)− f(x)

x′ − x
= 0. J

Contrary to Proposition 14(3) above, the function f(x) = x∗ is nowhere differen-
tiable in

⋂∞
n=1Kn.

Theorem 5. Let f(x) = x∗, x ∈ [0, 1]. For all x ∈
⋂∞
n=1Kn, f ′(x) does not exist as a

finite value.

Proof. Let n ∈ N and x ∈
⋂∞
n=1Kn. Suppose that x is included in the interval

[an, bn] constituting Kn. Then

f(bn)− f(an)

bn − an
=

1

2n
÷ 1

n!
=
n!

2n
(n→∞).
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Assume that f ′(x) is well-defined [0,∞]. Then we have

f(bn)− f(x)

bn − x
,
f(x)− f(an)

x− an
→ f ′(x).

Since
f(bn)− f(an)

bn − an
=

bn − x
bn − an

· f(bn)− f(x)

bn − x
+
x− an
bn − an

· f(x)− f(an)

x− an
.

we obtain
f(bn)− f(an)

bn − an
→ f ′(x). It thus follows that f(x) =∞. J

Next, going through the same argument, we specify the nondifferentiability set of
the Cantor function with respect to the odd factorial-type expansion.

Example 4. (n = 3) The endpoints of intervals that constitute K3 and the values of
f on the endpoints of the intervals are as follows:

a1, a3 endpoint of Ia1,a3 min
x∈Ia2,a3

f(x) max
x∈Ia2,a3

f(x)

(0, 0) 0, 1/3 0 1/2

(0, 2) 3/2, 1 1/2 1

Thus, K3 =

[
0,

1

3

]
∪
[

3

2
, 1

]
.

Example 5. (n = 5) The endpoints of intervals that constitute K5 and the values of
f on the endpoints of the intervals are as follows:

a1, a3, a5 endpoint of Ia1,a3,a5 min
x∈Ia1,a3,a5

f(x) max
x∈Ia1,a3,a5

f(x)

(0, 0, 0) 0, 1/15 0 1/4

(0, 0, 4) 4/15, 1/3 1/4 1/2

(0, 2, 0) 2/3, 11/15 1/2 3/4

(0, 2, 4) 14/15, 1 3/4 1

Thus, K5 =

[
0,

1

15

]
∪
[

4

15
,
1

3

]
∪
[

2

3
,
11

15

]
∪
[

14

15
, 1

]
.

Example 6. (n = 7) The endpoints of intervals that constitute K7 and the values of
f on the endpoints of the intervals are as follows:

a1, a3, a5, a7 endpoint of Ia1,a3,a5,a7 min
x∈Ia1,a3,a5,a7

f(x) max
x∈Ia1,a3,a5,a7

f(x)

(0, 0, 0, 0) 0, 1/105 0 1/8

(0, 0, 0, 6) 2/35, 1/15 1/8 1/4

(0, 0, 4, 0) 4/15, 29/105 1/4 3/8

(0, 0, 4, 6) 34/105, 1/3 3/8 1/2

(0, 2, 0, 0) 2/3, 71/105 1/2 5/8

(0, 2, 0, 6) 76/105, 11/15 5/8 3/4

(0, 2, 4, 0) 14/15, 33/35 3/4 7/8

(0, 2, 4, 6) 104/105, 1 7/8 1
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Thus

K7 =

[
0,

1

105

]
∪
[

2

35
,

1

15

]
∪
[

4

15
,

29

105

]
∪
[

34

105
,
1

3

]
∪
[

2

3
,

71

105

]
∪
[

76

105
,
11

15

]
∪
[

14

15
,
33

35

]
∪
[

104

105
, 1

]
.

As can be seen from the above examples, we obtain;

Proposition 15. Let f(x) = x∗, x ∈ [0, 1].

(1) Kn consists of 2
n−1
2 − 1 closed intervals with length

1

n!!
.

(2) Kn ⊃ Kn+2 for all odd n ≥ 3.

(3) For x /∈
⋂∞
n=1K2n+1, f ′(x) = 0 .

Contrary to Proposition 15(3) above, the function f(x) = x∗ is nowhere differen-
tiable in

⋂∞
n=1K2n+1.

Theorem 6. For x ∈
⋂∞
n=1K2n+1, f ′(x) does not exist as a finite value.

Proof. The proof is the same as that of Theorem 5. J

Finally, we specify the nondifferentiability set of the Cantor function with respect
to the even factorial-type expansion.

Example 7. (n = 4) Here, we list endpoints of intervals that constitute K4 and the
values of f on the endpoints of the intervals are as follows:

a2, a4 endpoint of Ia2,a4 min
x∈Ia2,a4

f(x) max
x∈Ia2,a4

f(x)

(0, 0) 0, 1/8 0 1/4

(0, 3) 3/8, 1/2 1/4 1/2

(1, 0) 1/2, 5/8 1/2 3/4

(1, 3) 7/8, 1 3/4 1

Thus, K4 =

[
0,

1

8

]
∪
[

3

8
,
1

2

]
∪
[

1

2
,
5

8

]
∪
[

7

8
, 1

]
.

Example 8. (n = 6) The endpoints of intervals that constitute K6 and the values of
f on the endpoints of the intervals are as follows:

a2, a4, a6 endpoint of Ia2,a4,a6 min
x∈Ia2,a4,a6

f(x) max
x∈Ia2,a4,a6

f(x)

(0, 0, 0) 0, 1/48 0 1/8

(0, 0, 5) 5/48, 1/8 1/8 1/4

(0, 3, 0) 3/8, 19/48 1/4 3/8

(0, 3, 5) 23/48, 1/2 3/8 1/2

(1, 0, 0) 1/2, 25/48 1/2 5/8

(1, 0, 5) 29/48, 5/8 5/8 3/4

(1, 3, 0) 7/8, 43/48 3/4 7/8

(1, 3, 5) 47/48, 1 7/8 1
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Thus, K6 =

[
0,

1

48

]
∪
[

5

48
,
1

8

]
∪
[

3

8
,
19

48

]
∪
[

23

48
,
1

2

]
∪
[

1

2
,
25

48

]
∪
[

29

48
,
5

8

]
∪
[

7

8
,
43

48

]
∪
[

47

48
, 1

]
.

Example 9. (n = 8) The endpoints of intervals that constitute K8 and the values of
f on the endpoints of the intervals are as follows:

a2, a4, a6, a8 endpoint of Ia2,a4,a6,a8 min
x∈Ia2,a4,a6,a8

f(x) max
x∈Ia2,a4,a6,a8

f(x)

(0, 0, 0, 0) 0, 1/384 0 1/16

(0, 0, 0, 7) 7/384, 1/48 1/16 1/8

(0, 0, 5, 0) 5/48, 41/384 1/8 3/16

(0, 0, 5, 7) 47/384, 1/8 3/16 1/4

(0, 3, 0, 0) 3/8, 145/384 1/4 5/16

(0, 3, 0, 7) 151/384, 19/48 5/16 3/8

(0, 3, 5, 0) 23/48, 185/384 3/8 7/16

(0, 3, 5, 7) 191/384, 1/2 7/16 1/2

(1, 0, 0, 0) 1/2, 193/384 1/2 9/16

(1, 0, 0, 7) 199/384, 25/48 9/16 5/8

(1, 0, 5, 0) 29/48, 233/384 5/8 11/16

(1, 0, 5, 7) 239/384, 5/8 11/16 3/4

(1, 3, 0, 0) 7/8, 337/384 3/4 13/16

(1, 3, 0, 7) 343/384, 43/48 13/16 7/8

(1, 3, 5, 0) 47/48, 377/384 7/8 15/8

(1, 3, 5, 7) 383/384, 1 15/16 1

Thus

K8 =

[
0,

1

384

]
∪
[

7

384
,

1

48

]
∪
[

5

48
,

41

384

]
∪
[

47

384
,
1

8

]
∪
[

3

8
,
145

384

]
∪
[

151

384
,
19

48

]
∪
[

23

48
,
185

384

]
∪
[

191

384
,
1

2

]
∪
[

1

2
,
193

384

]
∪
[

199

384
,
25

48

]
∪
[

29

48
,
233

384

]
∪
[

239

384
,
5

8

]
∪
[

7

8
,
337

384

]
∪
[

343

384
,
43

48

]
∪
[

47

48
,
377

384

]
∪
[

383

384
, 1

]
.

As observed the above examples, we obtain;

Proposition 16. Let f(x) = x∗, x ∈ [0, 1].

(1) Kn consists of one long interval with length
1

n!!
and 2

n
2
−1−1 small closed intervals

with length
2

n!!
.

(2) Kn ⊃ Kn+2 for all even n ≥ 2.

(3) For x /∈
⋂∞
n=1K2n, f ′(x) = 0 .

Contrary to Proposition 16(3) above, the function f(x) = x∗ is again nowhere
differentiable in

⋂∞
n=1K2n.
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Theorem 7. For x ∈
⋂∞
n=1K2n, f ′(x) does not exist as a finite value.

Proof. The proof is the same as that of Theorem 5. J

6. Dimension of the nondifferentiability sets of the Cantor functions

6.1. Box dimension of the subset on the number line

Let us recall the definition of the box dimension.

Definition 9. Let E be a subset of [0, 1].

(1) Write Nr(E) for the smallest number of intervals of length r to cover E.

(2) The box dimension, dimB E of E, is defined to be dimB E = lim
r→0

logNr(E)

− log r
.

Example 10.

(1) Let E = {0}. Since Nr(E) = 1 for any r > 0, we have

dimB E = lim
r→0

logNr(E)

− log r
= lim

r→0

log 1

− log r
= 0.

(2) Let E = {a, b}, where 0 ≤ a < b ≤ 1. When 0 < r < b− a, then Nr(E) = 2, and

dimB E = lim
r→0

logNr(E)

− log r
= lim

r→0

log 2

− log r
= 0.

(3) Let E = (0, 1). Then it may be deduced that

Nr(E) =

{
1/r 1/r ∈ Z,
[1/r] + 1 1/r /∈ Z.

Thus, 1/r ≤ Nr(E) ≤ 1/r + 1. Since

1 =
log 1/r

− log r
≤ logNr(E)

− log r
≤ log 1/r + 1

− log r
= 1− 1

log r
,

as r ↓ 0, we obtain dimB E = 1.

6.2. Box dimension of the nondifferentiability set of the Cantor func-
tion with respect to factorial-type expansion

Theorem 8. Let K be the nondifferentiability set of the Cantor function with respect
to the expansion generated by the factorial. Then dimBK = 0.
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Proof. Let 0 < r ≤ 1

2
and take n ∈ N so that

1

n!
< r ≤ 1

(n− 1)!
. Recall that

Kn−1 is composed of 2n−2 − 1 intervals. We denote by Ln the union of the one-point
set {1/2} and the set of all endpoints of these intervals. Thus Ln is made up of 2n−2

points and the distance between them is at least
1

(n− 1)!
. Therefore, Nr(Ln) = 2n−2.

Since Ln ⊂ K, Nr(K) ≥ Nr(Ln) = 2n−2.

On the other hand, K ⊂ Kn, and Kn is made up of 2n−1 − 1 intervals. Decompose
one large interval equally to obtain [anj , b

n
j ] for j = 1, 2, . . . , 2n−1. Considering[

anj + bnj
2

− r,
anj + bnj

2
+ r

]
j = 1, 2, . . . , 2n−1,

we obtain Nr(K) ≤ Nr(Kn) ≤ 2n−1. Therefore

log 2n−2

log n!
≤ logNr(K)

− log r
≤ log 2n−1

log(n− 1)!
.

Since n→∞ as r → 0, we obtain

dimBK = lim
r↓0

logNr(K)

− log r
= 0. J

6.3. Box dimension of the nondifferentiability set of the Cantor func-
tion with respect to odd factorial-type expansion

Theorem 9. Let K be the nondifferentiability set of the Cantor function with respect
to the expansion generated by the odd factorial. Then dimBK = 0.

Proof. Although the proof is almost the same as Theorem 8, we give the details since

the intervals we need to consider are a little different from other cases. Let 0 < r ≤ 1

3
.

We take n ∈ N so that
1

(n+ 2)!!
< r ≤ 1

n!!
. Recall that Kn−2 is composed of

2
n−3
2 intervals. We denote by Ln the set of all endpoints of these intervals. Note that

Ln is made up of 2
n−1
2 points. Note that these points are torn apart: the distance

of any distinct points is at least
1

n!!
. Therefore, Nr(Ln) = 2

n−1
2 . Since Ln ⊂ K,

Nr(K) ≥ Nr(Ln) = 2
n−1
2 .

On the other hand, K ⊂ Kn, and Kn is made up of 2
n−1
2 intervals, which we label

[anj , b
n
j ] for j = 1, 2, . . . , 2

n−1
2 . Considering[

anj + bnj
2

− r,
anj + bnj

2
+ r

]
j = 1, 2, . . . , 2

n−1
2 ,
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we obtain Nr(K) ≤ Nr(Kn) ≤ 2
n−1
2 . Therefore

log 2
n−1
2

log(n+ 2)!!
≤ logNr(K)

− log r
≤ log 2

n−1
2

log n!!
.

Since n→∞ as r → 0, we obtain

dimBK = lim
r↓0

logNr(K)

− log r
= 0. J

6.4. Box dimension of the nondifferentiability set of the Cantor func-
tion with respect to even factorial-type expansion

Theorem 10. Let K be the nondifferentiability set of the Cantor function with respect
to the expansion generated by the even factorial. Then dimBK = 0.

Proof. The proof is the same as Theorem 8. J
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