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Difference and Discrete Equations on a Half-axis and the
Wiener–Hopf Method
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Abstract. In this paper we suggest to apply the Wiener–Hopf method for studying solvability of
some classes of linear difference and discrete equations. We introduce general concepts, describe
main classes of equations under consideration and correlation between discrete and difference equa-
tions.
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1. Introduction

This short report is dedicated to studying some special difference equations of type

+∞∑
−∞

ak(x)u(x+ βk) = v(x), x ∈ R, (1)

where {βk}+∞−∞ ⊂ R, ak(x) are complex-valued given functions on R. Such equations
appear in many applied problems, for example, in a control theory and signal processing
[15, 16], hence this study may be useful to develop these subjects. For the theory of such
equations with constant coefficients we refer the reader to the classical books [7, 8, 9], but
for the case of variable coefficients this theory is not complete.

“Differential-difference equation“ means that there are two ways for considering the
variable x.

We say the equation (1) is a difference equation if x is a continuous variable, and a
discrete one if x is a discrete variable, and use L2(D) as appropriate functional space
although such equations can be considered in more general Lp(D)-spaces.

A general linear difference equation of order n has the following from [8, 9]:

n∑
k=0

ak(x)u(x+ k) = v(x), x ∈ R, (2)
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where the functions ak(x), k = 1, . . . , n, v(x) are defined on R.
More general type of a finite order difference equation is

n∑
k=0

ak(x)u(x+ βk) = v(x), x ∈ R, (3)

where {βk}nk=0 ⊂ R (such equations were obtained in [10, 11]).

2. Linear difference operators

Definition 1. The operator

D : u(x) 7−→
+∞∑
−∞

ak(x)u(x+ βk), x ∈ R,

is called a linear difference operator, and a function σ(x, ξ) represented by the series

σ(x, ξ) =

+∞∑
−∞

ak(x)eiβkξ,

is called its symbol.

We will assume that ak(x), ∀k ∈ Z, σ(x, ξ) are continuous and bounded functions on
R×R, i.e. ∃ lim

ξ→∞
σ(x, ξ) ∈ C(R), and ∃ σ(±∞, ξ) = lim

x→±∞
σ(x, ξ).

Together with the operator D we consider a family of operators Dx0 , x0 ∈ R, where

Dx0 : u(x) 7−→
+∞∑
−∞

ak(x0)u(x+ βk), x0 ∈ R.

Lemma 1. The operator D is a linear bounded operator L2(R) → L2(R) if
+∞∑
−∞

ak(x) ∈

L∞(R).

Proof for this assertion easily follows from definition of the space L∞(R) and can be
obtained immediately.

If we consider the equation (1) with constant coefficients

n∑
k=0

aku(x+ βk) = v(x), x ∈ R, (4)

then it can be easily solved by the Fourier transform:

(Fu)(ξ) ≡ ũ(ξ) =

+∞∫
−∞

e−ix·ξu(x)dx.
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Indeed, applying the Fourier transform to (4) we obtain

ũ(ξ)

n∑
k=0

ake
iβkξ = ṽ(ξ),

or renaming
ũ(ξ)pn(ξ) = ṽ(ξ).

The function pn(ξ) is called a symbol of a difference operator in the left-hand side of
(3) (cf. [3]). If pn(ξ) 6= 0, ∀ξ ∈ R, then the equation (3) can be easily solved:

u(x) = F−1ξ→x
(
p−1n (ξ)ṽ(ξ)

)
.

Let us introduce the following function defined on all operators Dx0 by the formula

f(x0) = ||Dx0 ||, x0 ∈ R.

Lemma 2. f(x) is a continuous function on R and has one-side limits f(±∞) if the
function ess sup

ξ∈R
|σ(x, ξ)| is the same.

Proof. Indeed, the operator Dx0 is unitary equivalent to the operator

ũ(ξ) 7−→ σ(x0, ξ) · ũ(ξ),

hence it is a miltiplicator with the function σ(x0, ξ). Further,

f(x0) = ||Dx0 || = ess sup
ξ∈R
|σ(x0, ξ)|,

and thus we obtain the required property. J

Definition 2. The operator Dx0 and its symbol σ(x0, ξ) are called elliptic in the point x0
if

σ(x0, ξ) 6= 0, ∀ξ ∈ R,

and elliptic ewerywhere if
σ(x0, ξ) 6= 0, ∀x0, ξ ∈ R.

Lemma 3. If σ(x0, ξ) 6= 0, ∀x0, ξ ∈ R, then the operator Dx0 is invertible in the space
L2(R).

Proof. Under our assumptions, this property is equivalent to the invertibility of the
corresponding multiplier operator. J

Definition 3. An operator D has a Fredholm property if the dimensions of its kernel and
co-kernel are finite, and the difference

Ind D = dim KerD − dim CokerD,

is called an index of the operator D.
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Lemma 4. If the continuous family {Dx0} consists of invertible operators for all x0 ∈ Ṙ,
then the operator D has a Fredholm property in the space L2(R).

Proof. The operators Dx0 are local representatives of the operator D at the point x0,
and although the operator D is not an operator of a local type, each operator Dx0 is an
operator of a local type, [5]. It is easily seen in Fourier representation. According to the
general theory [5] such operator family has an envelope which is an operator of a local
type. Moreover, for operators of a local type the availability of a Fredholm property is
equivalent to the availability of a Fredholm property for its local representatives. Since
such an envelope is equivalent to the operator Dx0 at each point x0, then our initial
operator D and this envelope differ on a compact operator. Thus, Fredholm indices are
the same for these operators.J

These facts imply that to obtain a Fredholm property for the operator D we need
an invertibility of its local representatives by I.B. Simonenko’s terminology [5]. A crucial
moment here is obtaining invertibility conditions at infinity. We will use the following
notations: σ(+∞, ξ) ≡ σ1(ξ), σ(−∞, ξ) ≡ σ2(ξ), P± is a restriction operator on R±, a is a
multiplicator with the function a(ξ).

The following operator is a local representative of the operator D at intinity:

D∞ = D+∞ · P+ +D−∞ · P−, (5)

where D+∞,D−∞ are operators with symbols σ1(ξ), σ2(ξ), and we need invertibility con-
ditions for such operator.

If we apply the Fourier transform to the equation (5), we obtain the Fourier represen-
tation for the operator D∞:

FD∞ = σ1 ·Π+ + σ2 ·Π−, (6)

where Π± are the Fourier images of operators P± [6]. These operators are singular integral
operators.

It is well known that an equation with the operator (6) one-to-one corresponds to
the Riemann boundary value problem for upper and lower complex half-planes [1, 2, 3, 4].
Let’s remind the statement of that problem. It is required to find a pair of functions Φ±(ξ)
which admit an analytic continuation into upper (C+) and lower (C−) half-planes in the
complex plane C and whose boundary values on R satisfy the following linear relation:

Φ+(ξ) = G(ξ)Φ−(ξ) + g(ξ), (7)

where G(ξ), g(ξ) are given functions on R.
The correspondence between the Riemann boundary value problem (7) and the singular

integral equation with the operator (6)

(σ1 ·Π+ + σ2 ·Π−)U = V,

is the following:
G(ξ) = σ−11 (ξ)σ2(ξ), V (ξ) = σ−11 (ξ)g(ξ).
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3. A Fredholm property

To formulate our main result, we introduce the following

Definition 4. By the factorization of the elliptic symbol σ(ξ) we mean its representation
in the form

σ(ξ) = σ+(ξ) · σ−(ξ),

where factors σ±(ξ) admit an analytical continuation into upper and lower complex half-
planes C±, and σ±(ξ) ∈ L∞(R).

Note that such factorization can be constructed effectively with the help of the Cauchy
type integral [1, 2, 3, 4]. Let us remind we denote σ(ξ) = σ−11 (ξ)σ2(ξ) and use the theory
of classical Riemann boundary value problem [1, 2, 3, 4].

If the so-called transmission property

σ(−∞) = σ(+∞),

holds, then one can use the classical theory of Riemann boundary value problems for a
closed curve.

If it is not so, we consider a variation of the argument of σ(ξ) when ξ varies from −∞
to +∞, and the function

ω(ξ) = (ξ + i)−δ · (ξ − i)δ,

where

δ =
1

πi
ln
σ(−∞)

σ(+∞)
, α = Re δ, α =

1

π

+∞∫
−∞

d arg σ(ξ).

Thus, the function ω(ξ) · σ(ξ) has vanishing variation of its argument along the real
line, and such function has a transmission property. So, we write σ(ξ) = ω−1(ξ)ω(ξ) ·σ(ξ),
for ω−1(ξ) we have a special factorization as two natural factors, but for the ω(ξ) · σ(ξ)
we use a construction above.

Further, we denote by γ a closed curve in a complex plane C, which is obtained by
the following way. We take the image of the function σ(ξ) ≡ σ−11 (ξ)σ2(ξ), ξ ∈ R, and join
two points σ(−∞) and σ(+∞) by a line segment.

Definition 5. The curve γ is called non-singular if 0 /∈ γ.

Remark 1. It means that −1/2 < α < 1/2.

Definition 6. Winding number æ of such non-singular curve γ is called an index of the
Riemann boundary value problem (7).

Lemma 5. The operator (5) is invertible in the space L2(R) iff σ(ξ) 6= 0, ∀ξ ∈ Ṙ and the
winding number æ is equal to 0.
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Proof. The operators (5) and (6) are unitary equivalent, and the operator (6) is a
classical one-dimensional singular integral operator [1, 2, 3, 4], its invertibility conditions
can be obtained by different methods. We use the functional-theoretic approach of [4] and
corresponding terminology. J

Theorem 1. The operator D has a Fredholm property and Ind D is vanishing in the space
L2(R) iff σ(x, ξ) 6= 0, ∀x, ξ ∈ Ṙ and the winding number æ for σ(ξ) is equal to 0.

Proof. Since a Fredholm property for the operator D is equivalent to a Fredholm pro-
perty of its local representatives, the conditions of the theorem guarantee the invertibility
of all its local representatives. It remains for us to consider the index. The index will be
zero because the operator D is homotopic to any of its local representatives. Indeed, such
homotopy can be constructed by the following way. Fix the point x0 ∈ R and consider
the following symbol family:

σt(x, ξ) = σ((1− t)x0 + tx0, ξ), t ∈ [0, 1].

Obviously σ0(x, ξ) = σ(x0, ξ), σ1(x, ξ) = σ(x, ξ), and all intermediate operators with sym-
bols σt(x, ξ) have a Fredholm property. J

4. Possible Generalizations

Some cases are left unconsidered here. Hopefully we treat them later.

◦ The first is the one where the winding number æ is not zero.

◦ It seems multi-dimensional situations for difference-discrete equations are very interest-
ing, there are many surprises in a multi-dimensional space.

◦ The case of discrete equations should also be considered, we have already some works in
this direction [12, 13].

5. Conclusion

The theory presented in this work may be useful for applications and description of
real processes. Moreover, perhaps this is the first time when such a theory, related to
the factorization technique [17], is applied to difference equations. For properly discrete
equations, the corresponding theory of periodic Riemann boundary value problem was
developed by the authors in [12, 14].
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